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The algebraic conditions under which two one-dimensional cellular au-
tomata can commute is studied. It is shown that if either rule is permutive,
that is, one-to-one in its leftmost and rightmost inputs, then the other rule
can be written in terms of it; if either rule is a group, then the other is
linear in it; and if either is permutive and affine, that is, linear up to a
constant, then the other must also be affine. We also prove some sim-
ple results regarding the existence of identities, idempotents (quiescent
states), and zeroes (absorbing states).

1. Introduction

When do two cellular automata (CA) commute? This question has been
studied under several names, including the “commuting block maps
problem” [3, 12] and the “commuting endomorphisms problem” since
a CA can also be thought of as an endomorphism on the set of sequences.
In [13] the special case of two-state CAs is also studied. In this paper,
we extend these results using an algebraic approach to CAs that has
been succesful in a number of other areas.

Given a finite alphabet A, consider the set S = AŸ of biinfinite se-
quences (ai) in which ai Œ A for all i Œ Ÿ. A CA is a dynamical system
on S of the form

a¢i = f (ai-r, . . . , ai, . . . , ai+r)

where r is the radius of the rule.
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Figure 1. By combining blocks of 2r sites, we can transform any CA into one
with r = 1/2. Here r = 2.

Consider a CA with radius 1/2, taking place on a staggered space-
time. Then each site has just two predecessors,

a¢i = f (ai-1/2, ai+1/2)

and we can think of the CA rule as a binary algebra,

a = f (b, c) = b ◊ c.

In fact, any CA can be rewritten in this form, by lumping blocks of
2r sites together as shown in Figure 1. A number of authors [1, 2, 5,
7–10] enjoy looking at CAs in this way, and have studied properties
such as reversibility, permutivity, periodicity, and the computational
complexity of predicting CA behavior, depending on what algebraic
identities ◊ satisfies.

Suppose two CAs, represented by binary algebras ◊ and ¯, commute
as mappings on S. Then the two space-time diagrams

a b c
a ◊ b b ◊ c
(a ◊ b) ¯ (b ◊ c)

a b c
a ¯ b b ¯ c
(a ¯ b) ◊ (b ¯ c)

must evaluate to the same state, and we have the identity

(a ◊ b) ¯ (b ◊ c) = (a ¯ b) ◊ (b ¯ c). (1)

The rest of this paper will consist of looking at the consequences of
equation (1) under various assumptions about the two CA rules.

We show that if ◊ is permutive, that is, one-to-one in its left and right
inputs (or leftmost and rightmost for CAs with larger radius) then ¯ is
isotopic to it, a ¯ b = f (a) ◊ g(b) for some functions f and g. Moreover,
if ◊ is a group, then f and g are homomorphisms so that ¯ is linear with
respect to ◊ . Finally, if ◊ is permutive and affine, that is, linear up to a
constant, then ¯ is also affine. We prove a number of lesser results as
well.

An extensive study of the special case

(a ◊ b) ¯ (b ◊ c) = (a ¯ b) ◊ (b ¯ c) = b

where ◊ and ¯ represent reversible CAs which are each others’ inverses,
is carried out in [1, 2].
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2. Preliminaries

A binary algebra ◊ is a function f : A ¥ A Æ A, written f (a, b) = a ◊ b.
A left (right) identity is an element 1 such that 1 ◊a = a (resp. a ◊1 = a)

for all a. A left (right) zero is an element z such that z◊a = z (resp. a◊z = z)
for all a. An identity (zero) is both a left and a right identity (zero).

An element e is idempotent if e ◊ e = e, and an algebra is idempo-
tent if all its elements are. Dynamically, an idempotent is a quiescent
state, since rows of it remain constant; it often appears as a downward-
pointing triangle in space-time diagrams. A zero is an absorbing state,
which spreads outward at the speed of light and eats everything in its
path.

The right (left) shift operation is simply a ◊b = a (resp. a ◊b = b). It is
equivalent to the r = 1 CA rule f (a, b, c) = a (resp. f (a, b, c) = c) when
pairs of sites are combined to produce an r = 1/2 CA.

We sometimes write left and right multiplication as functions, L◊a(b) =
a ◊ b and R◊a(b) = b ◊ a. A CA is left (right) permutive if La (resp. Ra)
is one-to-one for all a. When we combine sites to produce an r = 1/2
CA, this corresponds exactly with the usual definition of permutivity
for CAs of arbitrary radius, namely that f is one-to-one in its leftmost
(rightmost) input when all other inputs are held constant [9].

A quasigroup is an algebra which is both left and right permutive.
Then for any a and b, there exist (possibly different) elements a/b =
R-1

b (a) and bîa = L-1
b (a) such that (a/b) ◊ b = a and b ◊ (bîa) = a. A loop

is a quasigroup with an identity.
A group is a quasigroup which is associative, so that a◊(b◊c) = (a◊b)◊c.

Then it follows that an identity exists, and every element a has an inverse
a-1 such that a ◊ a-1 = a-1 ◊ a = 1.

Two elements commute if a ◊ b = b ◊ a. An algebra is commutative if
all elements commute. Commutative groups are also called abelian. We
will use + and 0, instead of ◊ and 1, when discussing an abelian group.

Two quasigroups ¯ and ◊ are isotopic if a ¯ b = f (a) ◊ g(b) for some
functions f and g. We call ¯ an isotope of ◊ in the more general case
where f and g are not necessarily one-to-one, in which case ¯ may not
be a quasigroup. Typically there are many pairs of functions f , g that
define the same isotope.

A function h on A is a homomorphism with respect to ◊ if it is
linear, that is, if h(a ◊ b) = h(a) ◊ h(b). Homomorphisms of abelian
groups can be represented as matrices. An automorphism is a one-to-
one homomorphism.

We recommend [4, 11] as introductions to the theory of quasigroups
and loops.
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3. Identities, idempotents, and zeroes

First, we note that equation (1) is a rather weak constraint, since every
CA rule commutes with the shift operation and with itself, as shown in
Propositions 1 and 2.

Proposition 1. If ◊ is the right (left) shift a ◊ b = a (resp. a ◊ b = b), then
equation (1) holds for any algebra ¯.

Proof. Both sides of equation (1) evaluate to a ¯ b (resp. b ¯ c).

Proposition 2. If ◊ and ¯ are identical then equation (1) holds.

Proof. Obvious.

Thus without further assumptions, equation (1) places very little
constraint on the structure of ◊ and ¯. Nor will associativity or the
existence of one-sided identities or zeroes improve matters much, since
for the right shift a ◊ (b ◊ c) = (a ◊b) ◊ c = a, and every element is a left zero
and a right identity.

We prove a number of trivial results based on the existence of ident-
ities, idempotents, or zeroes in Propositions 3 through 8.

Proposition 3. If ◊ has a left identity 1, and if L¯1 is one-to-one, then
1 ¯ 1 is also a left identity of ◊ .

Proof. Writing L-1
1¯ (a) as 1îa, we have (1¯ 1) ◊ a = (1 ¯ 1) ◊ (1¯ (1îa)) =

(1 ◊ 1) ¯ (1 ◊ (1îa)) = 1 ¯ (1îa) = a.

Proposition 4. If ◊ and ¯ have identities 1◊ and 1¯, then they are equal
and ◊ and ¯ are identical.

Proof. First we show that 1◊ = 1¯:

1◊ = 1◊ ◊ 1◊ = (1¯ ¯ 1◊) ◊ (1◊ ¯ 1¯) = (1¯ ◊ 1◊) ¯ (1◊ ◊ 1¯) = 1¯ ¯ 1¯ = 1¯ .

Writing 1◊ = 1¯ = 1, then

a ¯ b = (a ◊ 1) ¯ (1 ◊ b) = (a ¯ 1) ◊ (1 ¯ b) = a ◊ b

and the two operations are identical.

Proposition 5. If an element e is idempotent with respect to ◊ , then e¯e
is also. Thus, if e is the only idempotent of ◊ , it is also idempotent with
respect to ¯.

Proof. (e ¯ e) ◊ (e ¯ e) = (e ◊ e) ¯ (e ◊ e) = e ¯ e.

Corollary 1. If ◊ is a loop, its identity 1 is idempotent with respect to ¯.

Proof. In a loop, the identity is the only idempotent.
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Proposition 6. If ◊ and ¯ are commutative and idempotent, they are
identical.

Proof. a ¯ b = (a ¯ b) ◊ (b ¯ a) = (a ◊ b) ¯ (b ◊ a) = a ◊ b.

Proposition 7. If ◊ has a left zero z, and if L¯z is one-to-one, then z¯ z is
also a left zero of ◊ .

Proof. Writing L-1
z¯ (a) as zîa, we have (z ¯ z) ◊ a = (z ¯ z) ◊ (z ¯ (zîa)) =

(z ◊ z) ¯ (z ◊ (zîa)) = z ¯ z.

Proposition 8. If ◊ has a two-sided zero z, then L¯z and R¯z cannot be
one-to-one unless z ¯ z = z and ◊ is the constant algebra a ◊ b = z for all
a and b.

Proof. a ◊ b = ((a/z) ¯ z) ◊ (z ¯ (zîb)) = ((a/z) ◊ z) ¯ (z ◊ (zîb)) = z ¯ z for
any a and b, but a ◊ z = z so z ¯ z = z.

4. Isotopy, linearity, and affinity

In this section we give several classes of commuting CAs that are iso-
topic.

Proposition 9. If f is a homomorphism on ◊ , then the isotope a ¯ b =
f (a ◊ b) = f (a) ◊ f (b) commutes with ◊ .

Proof. Both sides of equation (1) become (f (a) ◊ f (b)) ◊ (f (b) ◊ f (c)).

An algebra is medial if (a ◊ b) ◊ (c ◊ d) = (a ◊ c) ◊ (b ◊ d). Then we have
Proposition 10.

Proposition 10. If ◊ is medial and f and g are homomorphisms on ◊ ,
then a ¯ b = f (a) ◊ g(b) commutes with ◊ .

Proof. Equation (1) becomes (f (a) ◊ f (b)) ◊ (g(b) ◊g(c)) = (f (a) ◊g(b)) ◊ (f (b) ◊
g(c)).

Conversely, isotopy is implied by equation (1) if ◊ fulfills certain con-
ditions given in Theorem 1.

Theorem 1. If ¯ and ◊ commute, and if there is an element b such that
L◊b and R◊b are one-to-one, then ¯ is an isotope of ◊ .

Proof. Writing bîa and a/b for L◊
-1

b (a) and R◊
-1

b (a) respectively, we have

a ¯ c = ((a/b) ◊ b) ¯ (b ◊ (bîc)) = ((a/b) ¯ b) ◊ (b ¯ (bîc)) = f (a) ◊ g(c)

where f = R¯b R◊
-1

b and g = L¯b L◊
-1

b .

Corollary 2. If ◊ is a quasigroup or has an identity, then ¯ is an isotope
of ◊ .
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Proof. Multiplication by 1, or by any element in a quasigroup, is one-
to-one.

Furthermore, if b plays the same role in both algebras, then one is
permutive if and only if the other is, as stated in Proposition 11.

Proposition 11. If an element b exists such that L◊b, R◊b, L¯b , and R¯b are
all one-to-one, then ¯ is an isotope of ◊ with one-to-one functions f and
g, and is left (right) permutive, or a quasigroup, if and only if ◊ is.

Proof. If L¯b and R¯b are one-to-one, then f and g in Theorem 1 are
one-to-one. Then L¯a = L◊f (a)g is one-to-one if and only if L◊f (a) is, and
similarly on the right.

If ◊ is a loop, we can strengthen Theorem 1 further, as stated in
Proposition 12.

Proposition 12. If ◊ is a loop, then ¯ is an isotope of ◊ with functions f
and g such that f (1) = g(1) = 1 and f (b) and g(b) commute in ◊ for all b.

Proof. If a ¯ b = f (a) ◊ g(b), then equation (1) becomes

f (a ◊ b) ◊ g(b ◊ c) = (f (a) ◊ g(b)) ◊ (f (b) ◊ g(c)). (2)

Letting a = b = c = 1 gives

f (1) ◊ g(1) = (f (1) ◊ g(1)) ◊ (f (1) ◊ g(1)).

Since 1 is the only idempotent, f (1) ◊ g(1) = 1. Letting b = 1 in equa-
tion (2) gives

a ¯ c = f (a) ◊ g(c) = (f (a) ◊ g(1)) ◊ (f (1) ◊ g(c)) = f ¢(a) ◊ g¢(c)

where f ¢(a) = f (a) ◊ g(1) and g¢(c) = f (1) ◊ g(c).
Since f ¢ and g¢ also work as a pair of functions to define the isotopy

of ¯, and since f ¢(1) = g¢(1) = f (1) ◊ g(1) = 1, we can assume without
loss of generality f (1) = g(1) = 1. Then letting a = c = 1 in equation (2)
gives

f (b) ◊ g(b) = g(b) ◊ f (b)

so f (b) and g(b) commute for all b.

Adding associativity makes ¯ linear, as stated in Theorem 2.

Theorem 2. If ◊ is a group, then ¯ is an isotope of ◊ where f and g are
homomorphisms with respect to ◊ .

Proof. If ◊ is associative, equation (2) now reads

f (a ◊ b) ◊ g(b ◊ c) = f (a) ◊ g(b) ◊ f (b) ◊ g(c).
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Letting c = 1, commuting f (b) with g(b), and dividing by g(b) on the
right gives

f (a ◊ b) = f (a) ◊ f (b)

and similarly for g.

We call this “linearity” not just because f and g are homomorphisms,
but because the evolution of the CA of ¯ obeys a principle of superposi-
tion in the case where ◊ is abelian. Call ¯ linear with respect to + (some
authors prefer “additive”) if space-time diagrams of the CA of ¯ can be
combined with +:

a b
a ¯ b +

c d
c ¯ d =

a + c b + d
(a + c) ¯ (b + d)

or in other words

(a + c) ¯ (b + d) = (a ¯ b) + (c ¯ d). (3)

Such principles of superposition are studied in [7]. Equation (3) is a
kind of generalized medial identity [4]; it is also the interchange rule
of horizontal and vertical composition of natural transformations in
category theory [6], a fact that may or may not have anything to do
with CA.

Then we have Theorem 3.

Theorem 3. If + is an abelian group, then ¯ commutes with + if and
only if ¯ is linear with respect to + .

Proof. If ¯ commutes with +, then a¯b = f (a)+ g(b) where f and g are
homomorphisms on+ by Theorem 2, and then both sides of equation (3)
evaluate to f (a) + g(b) + f (c) + g(d). Conversely, equation (3) clearly
contains equation (1) as a special case when b = c.

This includes rules such as elementary rule 150 (numbered according
to [14]), f (x, y, z) = x + y + z mod 2; which, when pairs of sites are
combined, becomes the linear quasigroup

K x
y O ◊ K w

z O = K 1 1
0 1 O K x

y O + K 1 0
1 1 O K w

z O .
More generally, say that ◊ is affine with respect to an abelian group +

if it is of the form

a ◊ b = f (a) + g(b) + h

where f and g are homomorphisms on + . The behavior of such rules is
easily predictable [7], even if the f s, gs, and hs vary in space-time [8].
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Theorem 4. Two affine CAs, a◊b = f (a)+g(b)+h and a¯b = j(a)+k(b)+l,
commute if and only if the following relations hold:

jf = fj, (jg + kf ) = (fk + gj), and kg = gk (4)

(j + k)(h) + l = (f + g)(l) + h. (5)

Proof. Equation (1) becomes

jf (a) + (jg + kf )(b) + kg(c) + (j + k)(h) + l =
fj(a) + (fk + gj)(b) + gk(c) + (f + g)(l) + h

which yields equations (4) and (5) if we variously set a, b, and c to
zero.

Conversely, if ◊ is permutive, then ¯must be of this form, as stated in
Theorem 5.

Theorem 5. If ◊ and¯ commute, and if ◊ is a quasigroup and affine with
respect to an abelian group +, then ¯ is also affine with respect to + and
equations (4) and (5) hold.

Proof. By Theorem 1, ¯ is an isotope of ◊ , and therefore also of +:

a ¯ b = p(a) ◊ q(b) = fp(a) + gq(b) + h

which we can write in the form

a ¯ b = fp(a) - fp(0) + gq(b) - gq(0) + h + (fp + gq)(0)
= j(a) + k(b) + l

where j(a) = fp(a) - fp(0), k(b) = gq(b) - gq(0), and l = h + (fp +
gq)(0). Moreover, j(0) = k(0) = 0. We will now show that j and k are
homomorphisms.

With this form for ¯, equation (1) becomes

j(f (a) + g(b) + h) + k(f (b) + g(c) + h) + l =
fj(a) + (fk + gj)(b) + gk(c) + (f + g)(l) + h. (6)

Letting a = b = c = 0 gives equation (5), which subtracted from equa-
tion (6) leaves

j(f (a) + g(b) + h) + k(f (b) + g(c) + h) - (j + k)(h) =
fj(a) + (fk + gj)(b) + gk(c) (7)

Letting a, b, and c in turn be the only nonzero variables gives the
relations

j(f (a) + h) - j(h) = fj(a) (8)
j(g(b) + h) + k(f (b) + h) - (j + k)(h) = (fk + gj)(b) (9)

k(g(c) + h) - k(h) = gk(c). (10)
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Letting c = 0 in equation (7), and subtracting equations (8) and (9),
yields

j(f (a) + g(b) + h) = j(f (a) + h) + j(g(b) + h) - j(h).

Since ¯ is permutive, f and g are one-to-one, and we can replace f (a)
and g(b) + h with arbitrary elements a¢ and b¢ respectively, giving:

j(a¢ + b¢) = j(a¢ + h) + j(b¢) - j(h).

Letting b¢ = 0 gives

j(a¢ + h) = j(a¢) + j(h)

so

j(a¢ + b¢) = j(a¢) + j(b¢).

Thus j is a homomorphism, and similarly for k. Equations (8), (9), and
(10) reduce to equation (4), and the theorem is proved.

Roughly speaking, we can rephrase this as follows: CAs that are both
permutive and linear (up to a constant) cannot commute with nonlinear
ones. A similar result is proved for CAs on a two-state alphabet in
[3]. However, their methods do not generalize easily to CAs with more
than two states, since they use the multiplicative, as well as additive,
properties of Ÿ2.

Further work should include extending these methods to two and
higher dimensions. We strongly believe that Theorem 5 holds in all
dimensions, where permutive then means one-to-one in inputs on the
convex hull of the neighborhood of the CA.
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