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This paper considers the following generalization of classical vector quan-
tization: to (vector) quantize or, equivalently, to partition the domain of
a given function such that each cell in the partition satisfies a given set
of topological constraints. This formulation is called decentralized goal-
based vector quantization (DGVQ). The formulation is motivated by the
resource allocation mechanism design problem from economics. A learn-
ing algorithm is proposed for the problem. Various extensions of the
problem, as well as the corresponding modifications in the proposed al-
gorithm, are discussed. Simulation results of the proposed algorithm for
DGVQ and its extensions, are given.

1. Introduction

In classical vector quantization (VQ), a given stream of data vectors
is statistically encoded into a digital sequence suitable for communica-
tion over or storage in a digital channel. The goal is to reduce the bit
rate so as to minimize communication channel capacity or digital stor-
age requirements while maintaining a good fidelity of the data. Even in
systems with substantial channel bandwidth available, such as those em-
ploying fiber optic communication links, there is still a need to compress
data because of the growing amount of information that is required to
be communicated or stored.

VQ has been shown useful in compressing data that arises in a wide
range of applications, most prominent are image and speech process-
ing [4, 5]. Typically, the applications which employ VQ require large
amounts of storage or channel bandwidth, and can tolerate some loss
of fidelity for the sake of compression. Moreover, in many applications,
VQ not only compresses data, but also reduces the time complexity of
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the post-processing of the data (e.g., pattern recognition in images and
speech recognition).

From rate distortion theory, it can be shown that VQ can achieve
better compressionperformance than conventional techniques which are
based on the encoding of scalars, even if the data source does not have
any time dependencies (e.g., the data stream consists of a sequence of
independentand identically distributed random variables) [5]. However,
practical use of VQ has been limited because of the prohibitive amount
of computation associated with existing encoding algorithms. This is
because most of these algorithms, such as the LBG algorithm [9], do
batch-mode processing; that is, they need to have access to the entire
training data set for designing the quantizer. Given the large data sets
required to learn an adequate representation of the input vector space in
some applications (e.g., speaker-independent speech coding), the batch-
mode algorithms appear infeasible using existing technology. Hence a
number of adaptive VQ algorithms have been suggested which encode
successive input vectors in a manner that does not depend on previous
input vectors or their coded outputs [6, 8].

Many of these adaptive algorithms are based on neural network (NN)
techniques. A major advantage of formulating VQ as NNs is that the
large number of adaptive learning algorithms that are used for NNs
can now be applied to VQ. The two most widely used techniques are:
Kohonen’s self-organizing feature maps and the competitive learning
networks. These schemes are (relatively) computationally cheap as they
adapt the quantization map with the arrival of each new data vector,
and no batch-mode processing of the data stream is required.

In this paper, we formulate a generalization of VQ that extends the
application domain of VQ to distributed computing and the modeling
of organizations in economics. The generalization that we consider is
to (vector) quantize or, equivalently, to partition the domain of a given
function such that each cell in the partition satisfies a given set of topo-
logical constraints (e.g., each cell of the partition may be required to have
the cartesian-product property). We call this formulation decentralized
goal-based vector quantization (DGVQ). We propose an adaptive algo-
rithm for the DGVQ problem.

The main motivation for considering the DGVQ formulation is the
resource allocation mechanism design problem from economics [7, 11].
An economic organization is modeled as a hierarchy of agents and su-
pervisors. Each agent in the organization observes its local environment.
The organization is required to take an appropriate action f (x) in re-
sponse to the present environment x. Since the relevant information
is initially dispersed among the agents, messages need to be exchanged
between agents and their supervisors. The problem is to design optimal
messages for given criteria. In the economics literature, criteria based on
the topological properties (e.g., size) of the message space are used. In-
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stead, we consider criteria based on the bit complexity of the messages.
For this purpose, we first reformulate the two-level hierarchy model as
the DGVQ problem. We then extend the proposed DGVQ algorithm
for the resource allocation problem, and for other generalizations such
as when the desired-outcome function f of the organization is unknown
and when the function f is time-varying.

The rest of this paper is organized as follows. Section 2 gives a brief
review of VQ. Section 3 discusses the mathematical formulation of the
DGVQ problem and gives two specific motivations for studying the
problem. In section 4 we propose an adaptive algorithm for the DGVQ
problem. Section 5 extends the proposed algorithm for the resource
allocation problem and other generalizations. We conclude with some
continuing work in section 6.

2. Vector quantization

VQ is a process of mapping a sequence of continuous or discrete vec-
tors into a digital sequence. The space of the vectors to be quantized
is divided into a number of regions and a reproduction vector is cal-
culated for that region. Given any data vector to be quantized, the
region in which it lies is determined and the vector is represented by the
reproduction vector for that region. Instead of transmitting or storing
a given data vector, a symbol which indicates the appropriate reproduc-
tion vector is used. This can result in a considerable reduction in the
transmission bandwidth, though at the cost of some distortion.

More formally, a vector quantizer Q of dimension l and size N is a
mapping from a vector in l-dimensional euclidean space ¬l into a finite
set C containing N output or reproduction points, called code vectors
or codewords. Thus,

Q : ¬l Æ C (2.1)

where C = {y1, . . . , yN} and yi Œ ¬
l for i = 1, . . . , N. The set C is called

the codebook. Associated with N-point vector quantizer Q is a partition
S of ¬l into N regions or cells, si, i = 1, . . . , N. The ith cell is defined by

si = {x Œ ¬
l : Q(x) = yi}.

Clearly «i si = ¬
l and si » sj = ∆ for i π j.

A vector quantizer can be decomposed into two component opera-
tions, the vector decoder and the vector encoder. The encoder E is a
mapping which assigns to each input vector x ∫ (x1, . . . , xn) a symbol
E(x) in some symbol set M, and the decoder D is a mapping which as-
signs to a symbol m in M the vector D(m) in the reproduction alphabet
C. Thus,

E : ¬l ÆM and D :M Æ C Ã ¬l . (2.2)
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The symbol set M is often assumed for convenience to be a space of
binary vectors. An element m of M is called a quantization level (Q-
level).

The goal of a quantization system is to minimize a distortion measure
for a given codebook size N. A distortion measure d is an assignment of
a nonnegative cost d(x, x̂) associated with quantizing any input vector
x with a reproduction vector x̂. The most convenient and widely used
(as well as the one adapted in this paper) measure of distortion d is the
squared euclidean distance between the input vector x and its quantized
vector x̂ = Q(x), (i.e., d(x, x̂) = (¸ x - x̂ ¸2)2). The performance of a
system can then be quantified by the average distortion D = E[ d(x, x̂) ]
between the input and the final reproduction. Given such a perfor-
mance criterion, the VQ design process involves the determination of a
codebook that is optimal with respect to this criterion. In general, this
requires the knowledge of the probability distribution of the input data.
However, in most applications, this distribution is not known before-
hand, and the codebook is designed through a process called training.
During training a set of data vectors, drawn independently according to
the unknown distribution, is used to construct an optimal codebook.

2.1 Adaptive algorithms for vector quantization

A number of NN techniques have been found useful in VQ encoding
and codebook design or training [6, 8]. Before discussing the training
algorithms, we first consider how the VQ encoder can be formulated as
a NN structure. As before, let the vectors which are to be quantized
be from an l-dimensional space, and let a distortion measure d(x, y) be
defined on this space. Let the size of the codebook C be N, and let the
codewords be yi, i = 1, . . . , N. Consider a NN with N neural units, and
make the ith codeword yi the weight vector associated with neural unit
i. Given any vector x that is to be encoded, x is fed in parallel to all
the N neural units. Each of these units computes the distortion between
the input vector and the weight vector, di = d (x, yi), i = 1, . . . , N. The
input vector is then encoded as the symbol m, where m corresponds to
the index i* of the neural unit with the minimum distortion di* = mini di.

A more fundamental benefit of formulating VQ as a NN task is that
the large body of NN algorithms can now be adapted to the prob-
lem of training vector quantizers. We discuss two alternative training
algorithms: the competitive learning network and the Kohonen self-
organizing feature maps.

The competitive learning network
Assume that the N neural units of the NN VQ are initialized with the
(random) weight vectors yi(0), i = 1, . . . , N. The training algorithm
iterates a number of times through the training data, adjusting weight
vectors of the neural units after the presentation of each training vector.
The algorithm used to adjust the weight vectors is based on competitive
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learning [6, 8]; that is, the input vector x is presented to all of the neural
units and each unit computes the distortion between its weight and the
input vector. The unit with the smallest distortion is designated as the
winner and its weight vector is adjusted towards the input vector.

More precisely, let yi(k) be the weight vector of neural unit i before
the input is presented. The output zi of the unit is computed as follows:

zi(k) = ; 1 if d( x , yi(k) ) £ d( x , yj(k) ), j = 1, . . . , N
0 otherwise.

(2.3)

The new weight vectors yi(k + 1) are now computed as

yi(k + 1) = yi(k) + h(k) ◊ ( x - yi(k) ) ◊ zi(k) (2.4)

where h is the learning rate, and is typically reduced monotonically to
zero with k.

One problem with this training procedure is that it sometimes leads
to neural units which are underutilized. Various heuristics have been
suggested to overcome this problem, for example, conscience mecha-
nism [2] or frequency-sensitive competitive learning [1]. The problem,
however, is rather intricate. For example, there may be dead units that
do not receive any input, reflecting local minima of the cost function
of the VQ. On the other hand, the primary aim of VQ is to minimize
an appropriate distortion measure, not to make the utilization of neural
units equal. (These goals can be somewhat conflicting.) The conscience
mechanism, for example, addresses the latter goal.

Kohonen self-organizing feature maps
Another NN structure that has been widely used for VQ is the Kohonen
self-organizing feature map (KSFM) [8]. The KSFM and the competi-
tive learning network are similar; however, in the KSFM structure each
neural unit has an associated topological neighborhood of other units.
During the training process, the winning neural unit, as well as the neu-
ral units in the neighborhood of the winner, are updated. The size of
the neighborhood is decreased as training progresses until each neigh-
borhood has only one unit.

More precisely, let yi(k) be the weight associated with the ith neural
unit, and let x be the input vector. Compute the distortion d(x, yi(k)), k =
1, . . . , N, and let the neural unit with the minimum distortion be i*. Also,
let R(i*) be the topological neighborhood associated with unit i*. The
weight update equations are:

yi(k + 1) = ; yi(k) + h(k) ◊ (x - yi(k)), i Œ R(i*)
yi(k), otherwise.

where, as before, h(k) is the learning rate. It is clear from these equations
the KSFM structure involves more computation than the competitive
learning network. At each step of the training process, the neighborhood
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R(i*) of the winning node must be computed and all of the units in
the neighborhood updated. However, by the use of neighborhood-
based adaptation, KSFM overcomes the problem of underutilized nodes,
associated with the competitive learning algorithm. (It should be kept
in mind, however, that the primary aim of KSFM is to form topology
preserving maps.)

3. A generalization of vector quantization

In this section we formulate a generalization of VQ and give two specific
motivations for studying the problem.

Suppose we are interested in quantizing D Õ ¬l with the following
constraints.

Goal-based quantization. Given a function f : D Æ O, where O Õ ¬p

for some p Œ IN. The goal of quantization is to minimize the following
average distortion:

E = ‡
D
I¸ f (x) - f ( Q(x) ) ¸2M2 P(dx) (3.1)

where Q is the quantization map and P is a given probability distribution
on D.

Decentralization. Given n sets, D1, . . . , Dn, such that D = D1 ¥D2 ¥µ¥
Dn. Any cell s in the constructed codebook or partition of D, denoted
S, is required to be of the form s1 ¥s2 ¥µ¥sn, with si Õ Di, i = 1, . . . , n
(e.g., n = l and Di is the projection of D on the ith coordinate axis).

This problem is clearly a generalization of the VQ problem considered
before—if f is the identity map, n = 1 and D1 = D, then the given
formulation reduces to the classical VQ design problem. Note that
the formulation is indeed a nontrivial generalization. Had we asked
for just goal-based quantization, the problem would be to quantize the
range of f to, say, {yi : i = 1, . . . , r}, and then take the preimage of each
codeword yi as well as the borders of the correspondingVoronoi regions,
to obtain a partition of D. But the problem becomes much harder, even
in principle, if we bring in the second constraint, decentralization, since
it may now so happen that the preimage of a codeword does not have the
particular cartesian-product topology desired in the second constraint.

We refer to the given formulation as decentralized goal-based vector
quantization (DGVQ). Two specific motivations for studying DGVQ
are discussed in sections 3.1 and 3.2.

3.1 A distributed-computing problem

Suppose we would like to compute, for every point x in a set D, the
real-valued function f̄ (x). Suppose f̄ (x) can be written as

f̄ (x) = f (f1(x1), . . . ,fn(xn))
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Figure 1. A two-level hierarchy model.

where xi Œ Di, and x ∫ (x1, . . . , xn). Let Zi ∫ {fi(xi) : xi Œ Di}.
Suppose we have n + 1 processors. Processor i, i = 1, . . . , n, receives
an approximate xi (e.g., quantized). Processor i then approximately
computes fi(xi) and reports the result to a central processor n + 1 that
(approximately) computes f . In other words, Di and Zi are partitioned
into a finite number of sets; let Si and si denote the typical sets of
those partitionings. Also, let S ∫S 1 ¥µ ¥ Sn and s ∫ s1 ¥µ ¥ sn.
Processor i receives the set in which xi lies and reports to the central
processor the set in which fi(xi) lies. Having received these n reports,
the central processor knows that f(x) ∫ (f1(x1), . . . ,fn(xn)) lies in the
set Z» (s1 ¥µ ¥ sn) where Z = {f(x) : x Œ D}. The central processor
then computes its approximation of f .

We now have all the elements of the DGVQ problem. We have a
partitioning S of Z, with its cells indexed by a set M, and which has the
cartesian-product property. The problem is to find an error-minimizing
S having the desired cartesian-product property.

3.2 Resource allocation mechanism design

In economics, an organization is modeled as a hierarchy of agents and
supervisors [7, 11]. Each agent in the organization observes its local en-
vironment. The organization is required to take an appropriate action
in response to the present environment. Since the relevant information
is initially dispersed among the agents, messages need to be exchanged
among the agents and their supervisors. The problem is to design opti-
mal messages with respect to given criteria.

For example, consider a two-level hierarchy model composed of n
agents A1, . . . , An, and a single supervisor S (Figure 1). Agent Ai observes
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its local environment xi, which lies in a set Di. Let x ∫ (x1, . . . , xn) and
D ∫ D1 ¥ D2 ¥ µ ¥ Dn. The organization would like to take an
appropriate action, namely f (x) in response to the current environment
x; f (x) lies in some set A. f is referred to as the desired outcome function.
Since information about x is initially dispersed among the n agents,
we have to design a scheme in which some suitable communication
occurs between the agents and the supervisor. In particular, we assume
that the organization will use a mechanism on D, which we have to
design. A mechanism on D is a triple p = [M, (m1, . . . ,mn), h], where
M ∫ M1 ¥µ ¥ Mn is a set called the message space, with a typical
element m, called a message; mi is a mapping from Di to Mi; and h,
called the outcome function, is from M to A. One way to interpret
the operation of the mechanism is as follows: let qi be a quantization
map on Di (i.e., qi maps Di to a finite subset Ci of Di), and let li be
an indexing map on the image of qi (i.e., li maps Ci to {1, 2, . . . , |Ci|}).
Agent Ai quantizes xi using qi and sends the index corresponding to
qi(xi), li(qi(xi)), as message mi to the supervisor S (i.e., mi = li Î qi).
Let m ∫ (m1, . . . , mn), m Œ M, and l-1

i be the inverse map of li. Then
S outputs h(m) ∫ f (l-1

1 (m1), . . . , l-1
n (mn)) ∫ f (q1(x1), . . . , qn(xn)) as the

response of the organization to the environment x. Now we would
like to find a mechanism p that minimizes the mean-square error E
from equation (3.1) and is informationally least costly (i.e., with least
communication requirement between the agents and the supervisor).

The most widely studied measures of information costs are various
measures of the size of the message space M. In the bulk of the mech-
anisms in the economics literature both the message space and the set
of outcomes are either continua or discrete-but-infinite [11]. But real
communication and computing technologies do not in fact permit a
message or an outcome to be a point of a continuum. Messages and
outcomes must be quantized, and the benefits of greater precision of
quantization have to be weighed against the costs (i.e., the number of
Q-levels). Accordingly, it is of considerable interest to study mecha-
nisms in which message space and outcome set are not continua but are,
rather, quantized as in the two-level hierarchy example above.

Hence we use bit complexity of the message space M as a measure
of information cost. Moreover, instead of imposing hard constraints on
the bit size of the messages, we propose the following energy functionH:

H = ‡
D

(¸ f (x) - f ( q1(x1), . . . , qn(xn) ) ¸2 )2 P(dx) + l ◊ S (3.2)

where l is a positive weighing factor and S is a bit-based complexity
measure of the messages. Note that the choice of l will dictate the
tradeoff between fidelity (i.e., lowering of distortion) and message com-
plexity. Its choice perforce will involve some judgment, which makes
it a “design parameter.” It will be interesting to come up with a theo-
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retically justified choice, but no obvious choice offers itself. A similar
comment applies to equation (4.7) later.

In the two-level hierarchy example, S can be chosen as

S =
n‚

i=1

log2 Ni

where Ni indicates the cardinality of the set qi(Di) (i.e., the number of
Q-levels for agent Ai).

4. An adaptive algorithm for decentralized goal-based vector
quantization

In this section we describe an adaptive algorithm for designing the quan-
tization maps qi, i = 1, . . . , n, such that the energyH from equation (3.2)
is minimized. The proposed algorithm is adaptive in the sense that it
tries to improve its performance with every instance of the input-output
pair seen.

The basic idea is as follows. The algorithm starts by assigning a
fixed number of Q-levels, say 1, to each agent. It adapts qi, i = 1, . . . , n,
using a Kohonen-like rule for a fixed number, say g, of input-output
pairs seen. Concurrently, it collects the error statistics for each agent.
Based on the error statistics, the algorithm adds (deletes) a Q-level in
qi* , where i* is the agent which induced maximum change in H in its
previous adaptation. It again adapts qis for g input-output pairs. The
algorithm repeats these two steps of adaptation and addition (deletion)
of Q-levels until the energyH stops decreasing.

We now discuss in detail each of the steps involved in the algorithm.

4.1 Adaptation rule for single-agent case

Since we are interested in an adaptive algorithm, we seek a rule which
updates the quantization maps qi after every input-output pair (x, f (x))
seen, so as to minimize the energy functionH. In order to concentrate on
this step of the algorithm, we consider the following simplification of the
problem: Given m instances of the input-output pairs (x(k), f (x(k))), k =
1, . . . , m, where {x(k)} are independent and identically drawn from D
according to the probability distribution P. Also given is a fixed number
N. Consider a two-level hierarchy in which a single agent A reports to
supervisor S. The quantization map q of agent A has exactly N Q-levels.
The problem is to adapt the map q, keeping the number of Q-levels fixed
to N, so as to minimize the mean-square error E from equation (3.1).
Note that the problem has the following constraints.

For a given pair (x, f (x)), x is known only to A and the desired out-
come f (x) is known only to S. Hence gradient-based adaptation of the
quantization map q cannot be done.
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Since we consider bit-based complexity measure of the messages ex-
changed between agent A and supervisor S (section 3.2), S can feedback
to A only discretized information about the error between the desired
outcome f (x) and the response of the organization f (q (x)).

Probability distribution P is, in general, not known beforehand. Thus we
use the following empirical estimate of the error function instead:

Ē =
1
m

m‚
k=1

(¸ f (x(k))- f ( q(x(k)) ) ¸2 )2. (4.1)

In section 2.1, we discussed the competitive learning (CL) algorithm
for VQ. We adapt the CL algorithm as our starting point and indicate
how it can be modified to tackle the present problem.

As observed before, supervisor S can only give to A discretized in-
formation about the error between the desired outcome f (x) and the
response of the organization f (q(x), ). In particular, let us consider the
case in which S can feedback to A only one bit of information about the
error. For this purpose, assume that the goal of adaptation is to reduce
the mean-square error E below a prespecified e > 0, that is,

E ∫ ‡
D

(¸ f (x) - f (q(x)) ¸2 )2 P (dx) < e. (4.2)

Now we let S feedback to A the following reinforcement signal r:

r(k) = ; 1 if I¸ f (x(k)) - f ( q(x(k)) ) ¸2M2 < e,
0 otherwise.

On receiving r, agent A adapts its Q-levels yi as follows:

yi(k + 1) = yi(k) + h(k) ◊ (x(k) - yi(k)) ◊ zi(k) ◊ (1 - r(k)) (4.3)

where h(k) is the learning rate, and zi(k) is as in equation (2.3). In
other words, agent A moves the winning Q-level towards the input
only if the error exceeds a prespecified value. A particularly interesting
choice of h(k) is when it varies with different rates for different Q-levels
yi, i = 1, . . . , N, as follows:

hi(k) =
1⁄k

j=1 zi(j) ◊ ( 1 - r(j) ) + 1
(4.4)

which along with equation (4.3) gives

yi(k + 1) ª
1⁄k

j=1 zi(j) ◊ ( 1 - r(j) ) + 1

◊
ÊÁÁÁÁÁÁ
Ë

k‚
j=1

x(j) ◊ zi(j) ◊ ( 1 - r(j) ) + yi(0)
ˆ̃̃
˜̃̃
˜
¯

. (4.5)
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That is, equation (4.3) adapts the quantization map q such that each
Q-level yi goes to the centroid of all x for which it is at the minimum
distance and representing x by yi causes the error to exceed e. Note
that yi(k + 1) is only approximately given by equation (4.5) because, in
the adaptation rule equation (4.3), yi is updated after every input x seen
and, therefore, the region for which yi is at the minimum distance, is
changing.

To get an intuitive feel of the rule, consider the following example:
Let D = [0, 1], N = 1, y1(0) = 0.5, e = 0.1, P is uniform over D, and
the function f is as shown in Figure 2. We would like to adapt y1 so as
to minimize the error E. Now the adaptation rule equation (4.3) will
give y1 an expected push towards the right as that side of y1 contributes
more error than the other side. But that is what the adaptation rule is
required to do in the single Q-level case.

Next, consider the same example but with N = 2 (i.e., the quantiza-
tion map q has two Q-levels). Let y1(0) = 0.3 and y2(0) = 0.8. Now
the expected push for both the Q-levels is 0. That is, since the two
sides of yi, i = 1, 2 contribute the same amount of error, they receive
the same expected reinforcement signal r and, therefore, the expected
change in yi is 0. But the two Q-levels y1 and y2 contribute unequally
to the error E (in fact, error occurs only in the second Q-level y2). Such
a problem occurs because the adaptation rule equation (4.3) updates yi
only to minimize its own error, and not the overall error. To overcome
this problem, one way is to modify the metric d while computing zis
with equation (2.3) so as to ensure that, during the course of the train-
ing process, all Q-levels contribute approximately the same error (e.g.,
conscience mechanism [2], or frequency-sensitive competitive learning
[1], can be suitably adapted for the task). Alternatively, we can adapt
the number of Q-levels as discussed next.

x

f (x)

0.6 1.00

1.0

Figure 2. An example for the adaptation rule.
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4.1.1 Adaptation of the number of quantization levels

This step of the algorithm helps not only in overcoming the limitations
of the adaptation rule, but also in avoiding the requirement of a prespec-
ified number of Q-levels. Moreover, this step becomes essential when
there is more than one agent in the problem. But let us first consider the
single-agent case.

We start by assigning two Q-levels to A (i.e., N = 2). We next
adapt these Q-levels using the adaptation rule equation (4.3) for a fixed
number, say g, of input-output pairs. Also, we collect the error statistics
for each Q-level; that is, we keep count of the number of times the ith
Q-level has received the reinforcement signal r as 0, denoted by Ẽi. Then
the value of Ẽi, after k input-output pairs have been seen, is

Ẽi(k) =
k‚

j=1

zi(j) ◊ ( 1 - r(j) )

where zi is as in equation (4.3).
After the completion of g adaptation steps, consider an estimate of

the mean-square error Ẽ = ⁄N
i=1 Ẽi. If Ẽ < e, then we are done as the aim

of equation (4.2) has been achieved. Otherwise, we add a Q-level yN+1
between the maximum-error Q-level and its maximum-error neighbor.
Specifically, let i* = arg max1£i£N Ẽi. Then add a Q-level between Q-
level i* and its maximum-error neighbor. Two Q-levels are said to be
neighbors if their regions have a common boundary, that is, let si be the
region associated with ith Q-level, yi (i.e., si = {x : arg minj ¸ x - yj ¸2=
i}), then yi and yj are neighbors if s̄i » s̄j π ∆, where s̄i refers to the
closure of the set si). Let NE(i) be the set of all Q-levels which are
neighbors of i, and let b(i) = arg maxkŒNE(i*) Ẽk. Then a Q-level is added
between the maximum-error Q-level i* and its maximum-error neighbor
b(i*). The newly added Q-level yN+1 is initialized as:

yN+1 =
yi* ◊ Ẽi* + yj ◊ Ẽb(i*)

Ẽi* + Ẽb(i*)
.

This procedure requires knowledge of the neighborhood set of each
Q-level. A number of techniques exist to iteratively compute the neigh-
borhood sets ([3, 12], and references therein). However, all of them
are computation-intensive and impose specific restrictions on the topol-
ogy of the Q-levels. We, therefore, use a crude-but-simple procedure:
split the maximum-error Q-level i* into two Q-levels i*new and (N + 1).
Let j = arg maxkπi* Ẽk, that is, j is the maximum-error-but-one Q-level.
Then the new Q-levels are computed as

yi*new
= yi* + D ◊ (yj - yi*), and

yN+1 = yi* - D ◊ (yj - yi*) (4.6)
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(a) (b)

i

j

*

j

N+1
i *new

Figure 3. An illustration of the splitting procedure. (a) Quantization before
splitting the maximum-error Q-level i*, j is the maximum-error-but-one Q-level.
(b) After splitting i* into i*new and N + 1.

where D is a positive real number such that the set {x : ¸ x - yi* ¸2 £ D}
is contained in si*. In other words, the procedure splits the region si*

into two regions with a hyperplane which passes through yi* and is
orthogonal to the line joining yi* and yj. Moreover, if D is small enough,
then the other cells of the partition are not affected much by the split.
Figure 3 illustrates the procedure for a two-dimensional case.

In addition to splitting the maximum-error Q-level, we delete a very-
low-error Q-level. In particular, let im = arg min1£i£N Ẽi and Ẽ = ⁄N

i=1 Ei.
If Ẽim

/Ẽ < 0.1/N, then we delete the Q-level im, that is, a Q-level
contributing less than one percent of its share of Ẽ is removed. Deletion
is required because the adaptation rule, as well as the splitting procedure,
is not exact. Hence there may exist a Q-level which has a small error
compared to the rest of the Q-levels.

4.1.2 Simulation results for single-agent case

We now present simulation results for the adaptation procedure for
DGVQ in the single-agent case on some synthetic problems. More
specifically, we consider the two-level hierarchy where a single agent A
reports to supervisor S. That is, when there is no decentralization, but
just goal-based quantization.

Recall that the algorithm has four main parameters: the number of
adaptation steps g, the error threshold e, the weight factor l, and the
stopping parameterDe. The number of adaptation steps g is chosen such
that the error estimates obtained in those steps are close to the true val-
ues. Hence this parameter does not affect the simulations substantially
as long as it is sufficiently large. In the simulation results given here we
chose g = 200. On the other hand, e and l are critical parameters, and
are chosen carefully. e is chosen depending on the accuracy to which
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e l De a Q-levels(0) g maxLatency

0.01 0.01 0.001 0.7 1 200 3 ◊N

Table 1. Default values for the parameters of the algorithm.

the quantized output is required to match the desired outcome function
f , while l decides the relative weight given to the bit complexity of the
quantization maps as compared to the quantization error. A very small
value of l leads to a relatively large number of Q-levels. On the other
hand, a large l results in a small number of Q-levels at the cost of large
error. Finally, the stopping parameter De decides the minimum change
in the energy function H required to continue with the adaptation of
the number of Q-levels.

One point to note is that as the proposed algorithm is designed to
work in real time, it is assumed that the training data is being con-
tinuously generated. Hence the problem of overfitting does not arise.
However, if the algorithm is to be used in batch-mode (i.e., the algo-
rithm is required to design DGVQ on a given set of data), the problem
of overfitting the training data can be addressed through complexity
regularization.

We first consider the case when A observes just a single one-dimension-
al variable x and D = [0, 1]. The probability distribution P is taken to be
the uniform distribution over D. Let the desired outcome function f be
as shown in Figure 2. The parameters of the algorithm take their values
from Table 1. Figure 4 gives the output of the algorithm, as well as the
corresponding energy versus number of iterations plot. Note that, as
desired, the algorithm has created a single Q-level for [0, 0.6], and has
(approximately) uniformly quantized the interval [0.6, 1.0]. Moreover,
the energyH decreases monotonically with the number of iterations.

We next summarize the simulation results for a few other desired
outcome functions in Table 2. The corresponding graphical outputs are
given in Figure 5.

Now consider the case when agent A observesmore than one variable.
In particular, we assume that A observes two one-dimensional variables
x and y, each lying in [0, 1]. Note that the problem still does not involve
decentralization. Table 3 gives the performance of the algorithm on
various f (x, y). The parameter values are the same as before except that
g = 500, l = 0.001, and De = 0.0001. Figure 6 gives the graphical
output for f (x, y) = xy.

4.2 Adaptation rule for multiagent case

Until now we have considered the single-agent case. We next generalize
the procedure for the case when n agents report to supervisor S. The
adaptation step remains the same, with all agents receiving the same
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f(x)          
Quantized f(x)
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Figure 4. Output of the algorithm for f (x) from Figure (2): (a) f (x) and quantized
f (x) versus x, and (b) energy versus number of iterations.

Simu- Desired outcome Iter- Q- Initial Final Final
lation function f (x) ations levels Error Error Energy

1 0, if x < 0.6;
(x - .6)/0.4, otherwise 22 14 0.20 0.0082 0.086

2 sin(p ◊ x) 23 23 0.37 0.0210 0.072
3 x10 15 11 0.09 0.0092 0.047
4 50(x - .1)(x - .2)

¥(x - .5)(x - .8) 23 23 0.36 0.0380 0.094
5 2 ◊ x, if x < 0.6;

(1 - x), otherwise 32 20 0.60 0.0240 0.075

Table 2. Simulation results for various functions when agent A observes a single
variable x.
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Figure 5. Output of the algorithm for various desired outcome functions: (a)
f (x) = sin(p ◊ x), (b) f (x) = x10, (c) f (x) = 50(x- 0.1)(x- 0.2)(x- 0.5)(x - 0.8),
and (d) f (x) = 2 ◊ x, if x < 0.6; (1 - x), otherwise. Refer to Table 2 for other
details.
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Figure 5(continued).

Simu- Desired outcome Iter- Q- Initial Final Final
lation function f (x,y) ations levels Error Error Energy

1 2 ◊ sin(p ◊ x)
+1 ◊ sin(p ◊ y) 80 70 1.08 0.144 0.187

2 x2 ◊ y 74 56 0.15 0.021 0.032
3 xy 90 66 0.22 0.035 0.047
4 e-10◊[(x-.25)2 +(y-.75)2-(x-.25)◊(y-.75)] 42 38 0.16 0.038 0.055

Table 3. Simulation results for various functions when agent A observes two
one-dimensional variables x and y.

0
0.2

0.4
0.6

0.8
1

0
0.2

0.4
0.6

0.8
1

0

0.2

0.4

0.6

0.8

1

x

y

f(x
,y

)

Figure 6. The case where agent A observes two variables x and y: f (x, y) = xy.
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reinforcement signal r. That is, each agent adapts its quantization map
using the adaptation rule equation (4.3) for g number of input-output
pairs. After g adaptation steps, each agent updates its number of Q-
levels as if it were the only agent reporting to S, that is, each agent adds
(deletes) Q-levels as discussed for the single-agent case.

The problem with this simple procedure is that the agents end up hav-
ing approximately the same number of Q-levels irrespective of the actual
dependence of the outcome function on their local environments. Such
a problem occurs because all the agents receive the same reinforcement
signal r, and the agents adapt their number of Q-levels independently
of each other. The former is a constraint arising due to decentralization
and cannot be avoided unless supervisor S has explicit knowledge of the
relative dependence of the outcome function on each agent’s environ-
ment. But the latter can be circumvented as discussed next.

4.2.1 Differential adaptation of the number of Q-levels

As indicated previously, we need a way to ensure that the agents have
a number of Q-levels in proportion to the relative dependence of the
outcome function on their local environment. That is, if the outcome
function f has less variation with respect to local environment xi of
agent Ai than with respect to xj, the number of Q-levels for Ai, Ni,
should be proportionately less than Nj. We now discuss two methods
for achieving the goal: credit assignment and sequential adaptation.

Credit assignment method

The basic idea has been adapted from the reinforcement learning litera-
ture (a good survey can be found in [13]). In the problems considered,
the reinforcement signal r for an action arrives after a random amount
of time since the action has been taken. Hence credit for receiving r
is assigned among all the actions taken until the arrival of r. Such an
assignment problem is usually referred to as temporal credit assignment.
In our problem, all agents receive the same error signal (1 - r). We call
the problem of assigning credit for the error signal among the agents
spatial or structural credit assignment.

More precisely, let ci denote the credit assigned to agent Ai for the
present error probability, Ē = P ({r = 0}), where 0 £ ci £ 1 and⁄n

i=1 ci =
1. The procedure for adapting the number of Q-levels is as follows.
As before, each agent Ai starts with two Q-levels and ci = 1/n. Agents
then adapt their quantization maps for g input-output pairs using the
adaptation rule equation (4.3). After the completion of g adaptation
steps, each agent Ai adapts its number of Q-levels Ni so as to minimize
the following function:

H̄i = ci ◊ P ({r = 0}) + l ◊ log2 Ni. (4.7)

Hence ci decentralizes the process of minimizing the original energy
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function H from equation (3.2). Note that equation (4.7) uses the
probability of error exceeding e instead of the mean-square error because
the agents receive information from the supervisor only about the former
and not the latter.

Agent Ai adapts Ni as follows: let wi be 1 (resp.-1) if agent Ai added
(resp. deleted) a Q-level in the previous iteration. One iteration refers to
the completion of g adaptation steps. Also, let DH̄i indicate the change
in H̄i during the previous iteration. Then

wi := sgn I-wi ◊ DH̄i M
where sgn (x) = 1 if x ≥ 0 else sgn (x) = -1. In other words, Ai continues
to take the action (addition or deletion of a Q-level) taken in the previous
adaptation if the action resulted in a decrease in H̄i, otherwise it takes
the opposite action.

Now observe that ci, i = 1, . . . , n, are themselves dependent on Ni.
Hence ci is also adapted with time, but at a slower rate compared to
Ni. In particular, ci can be adapted after a fixed number, say a, of Ni
adaptations. Call the duration between two adaptations of ci an epoch.
Let H̃ = 1/a ⁄ak=1 H̄(k), that is, H̃ indicates the average value of the
energy function over an epoch. Then the adaptation rule for ci is:

ci := ci + h ◊ sgn I-DH̃ ◊ Dci M (4.8)

where h is the learning rate, and DH̃ and Dci indicate the respective
changes in H̃ and ci over the previous epoch. After every adaptation
of ci, project and normalize ci so as to ensure that 0 £ ci £ 1 and⁄n

i=1 ci = 1.

Sequential adaptation method

Though the previous method adapts the number of Q-levels simulta-
neously for all agents, it requires an additional loop for updating the
credits ci. Moreover, the performance of the method in simulations is
not very satisfactory. Hence we now describe a procedure which adapts
the number of Q-levels for only one agent at a time. As in equation (3.2),
let the goal of adaptation be to minimize the following energy function:

H = ‡
D

(¸ f (x) - f (q1(x1), . . . , qn(xn)) ¸2)2P(dx) + l ◊
n‚

i=1

log2 Ni. (4.9)

Now the basic idea is to let supervisor S decide which agent is to adapt
its number of Q-levels in the present iteration. For this purpose, S keeps
track of the change in the energy function H, DHi, resulting from the
previous adaptation of the number of Q-levels of agent Ai (i.e., Ni). S
then asks the agent that induced maximum change in H in its previous
adaptation, to update its number of Q-levels. Specifically, let b(k-1) be
the agent that adapted its number of Q-levels after the (k-1)th iteration
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(recall that one iteration refers to the completion of g adaptation steps).
Also, let

wi(k - 1) =

ÏÔÔÔÔÔÔÔÌÔÔÔÔÔÔÔ
Ó

+1 if i = b(k - 1) and
b(k - 1) added a Q-level,

-1 if i = b(k - 1) and
b(k - 1) deleted a Q-level,

wi(k - 2) otherwise.

That is, wi = 1 (resp. -1) indicates that agent Ai added (resp. deleted) a
Q-level in its previous adaptation of the number of Q-levels. Next, let

DHi(k) = ; H(k) -H(k - 1) if i = b(k - 1),
DHi(k - 1) otherwise. (4.10)

Then, after the kth iteration, S asks the b(k)th agent to update its number
of Q-levels according to wb(k)(k), where

b(k) = arg max
1£i£N

| DHi(k) |

wb(k)(k) = sgn (-wb(k)(k - 1) ◊ DHb(k)(k) ). (4.11)

Equivalently, S asks the b(k)th agent to add a Q-level if either its previous
adaptation was the addition of a Q-level that resulted in a reduction of
H, or its previous adaptation was the deletion of a Q-level that increased
H. Otherwise, S asks b(k) to delete a Q-level.

This procedure is repeated until maxi |DHi(k)| < De, where De > 0
is a prespecified value. In other words, the training process is stopped if
none of the agents are able to substantially reduce the energy function
by adapting its number of Q-levels.

For this procedure we assumed that we had an exact estimate ofH(k),
an optimal adaptation rule, and an optimal splitting procedure. Since
that is not the case, we further modify the procedure as follows.

SinceH(k) is estimated from a finite number of samples, it will have some
variance around a mean value. To reduce the effect of this variance, we
average DHi(k) as follows:

DHi(k) = ; a ◊ DHi(k - 1) + (1 - a) ◊ IH(k) -H(k - 1)M if i = b(k - 1),
DHi(k - 1) otherwise

where a Œ [0, 1].

In general, DHi is dependent not only on Ni, but also on the number of
Q-levels in the quantization maps of the rest of the agents. For example,
consider the case where two agents, each observing one variable x and y,
report to supervisor S. Let the desired outcome function be f (x, y) = xy.
Then the change in the energy function due to adaptation of the number
of Q-levels of x is also dependent on the current number of Q-levels for
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y. Now, in one iteration, only one agent updates its DHi. Hence it is
possible that an agent last adapted its number of Q-levels (and thus its
DHi) a large number of iterations ago. In such a case, that agent’s DHi
may not be a true reflection of the agent’s potential in reducing the energy
function.

Therefore, if an agent, say i0, has not updated its DHi0
for the last

maxLatency number of iterations, then b(k) is set to i0 and wi0
(k) = 1 (i.e,

i0 adds a Q-level, so as to update its DHi0
). maxLatency is taken to be a

multiple of the number of agents in the organization.

Finally, since the adaptation rule, as well as the splitting procedure, is
nonoptimal, each agent periodically deletes a very-low-error Q-level. This
deletion is separate from the deletion due to equation (4.11).

Remark 4.1. In this algorithm, we have assumed that supervisor S can
feedback to agents only a single bit of information about the quantiza-
tion error E; that is, the reinforcement signal r can take only two values,
0 or 1. The algorithm can be easily extended to the more general case:
when S can feedback l bits of information. The supervisornow transmits
to agents an l-bit reinforcement signal, r ∫ (rl, . . . , r1) Œ {0, 1}l, which
encodes the quantization error E such that a higher value of r indicates
lower E. Let R : {0, 1}l Æ [0, 1], be defined by R(r) = 1/2l⁄l

i=1 2i-1 ◊ ri.
Then the agents adapt their quantization maps using the adaptation rule
equation (4.3), with r being replaced by R(r). The rest of the algorithm
remains the same.

Remark 4.2. While arriving at this algorithm, we have assumed that
supervisor S has knowledge of the quantization map qi of agent Ai,
for each i. But Ai adapts qi after every input-output pair seen by the
organization, and therefore, Ai needs to transmit the changes in qi to
S. For this purpose we can discretize the adaptation rule, that is, qi is
allowed to take values only over a prespecified grid on Di. Then, after
every adaptation of qi, Ai transmits the number of steps by which qi
has moved over the grid. Or, to reduce the communication overhead,
Ai can transmit to S the net change in its quantization map qi after
the completion of each iteration (i.e., g adaptation steps), and not after
every adaptation step.

4.2.2 Simulation results for multiagent case

We now present simulation results for the given procedure for DGVQ
in the multiagent case. We first discuss the case when two agents, A1
and A2, report to supervisor S. Moreover, for the sake of simplicity,
we assume that A1 and A2 observe only one variable each: x and y
respectively.

We first consider the desired outcome function f (x, y) to be such that
decentralization of the quantization process is “natural,” that is, f (x, y)
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Simu- A B Iter- Q-levels Q-levels Initial Final Final
lation ations for x for y Error Error Energy

1 2.0 2.0 50 23 22 1.45 0.063 0.35
2 1.0 2.0 40 14 23 1.10 0.056 0.32
3 0.5 2.0 40 8 23 0.92 0.056 0.30
4 0.0 2.0 36 1 20 0.74 0.050 0.20
5 2.0 0.0 33 23 1 0.71 0.042 0.21
6 2.0 0.5 35 20 8 0.90 0.060 0.30
7 2.0 1.0 39 22 14 1.08 0.059 0.32

Table 4. Simulation results for the two-agent case. The agents observe one
variable each, x and y respectively. The desired outcome function is f (x, y) =
A ◊ sin(p ◊ x) + B ◊ sin(p ◊ y).

Simu- Desired outcome Iter- Q Q Initial Final Final
lation function f (x, y) ations for x for y Error Error Energy

1 x2 ◊ y 37 16 14 0.15 0.011 0.092
2 xy 34 17 12 0.22 0.018 0.099
3 e-10[(x-.25)2+(y-.75)2-(x-.25)(y-.75)] 42 14 19 0.16 0.015 0.059
4 4 sin(p ◊ x ◊ y) 41 17 21 1.29 0.088 0.370

Table 5. Simulation results for various f (x, y) for the two-agent case.

can be written as g(x) + h(y). In particular, we consider

f (x, y) = A ◊ sin(p ◊ x) + B ◊ sin(p ◊ y) (4.12)

where A, B Œ ¬. Table 4 gives the outputs of the algorithm for various
values of A and B. The parameter values are taken from Table 1.
Note that, as the result of using differential adaptation of Q-levels
(section 4.2.1), the algorithm creates the number of Q-levels for the two
agents in proportion to the relative dependence of the outcome function
on their local environments.

Now consider f (x, y) for which decentralization is not natural. Ta-
ble 5 gives the output of the algorithm for various f (x, y). Figure 7 gives
the graphical output for f (x, y) = xy. Comparing with the correspond-
ing entries in Table 3, we expectedly find that the latter performs better
than the former.

We now consider the case when more than two agents report to
supervisor S. This will illustrate the performance of the algorithm for
higher-dimensional input. Here we discuss two examples.

In the first example, four agents Ai, 1 £ i £ 4, each observing one
variable xi, report to S. The desired outcome function is taken to be:

f (x1, x2, x3, x4) = x1 ◊ x
2
2 + x1 ◊ x3 ◊ x4. (4.13)

The second example also has four agents, but now A1 and A4 observe
two variables each: xij, j = 1, 2; i = 1, 4. A2 and A3 continue to observe
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Figure 7. Two-agent case, each agent observes one variable (x and y resp.),
f (x, y) = xy.

Simu- f (◊) Iter- Q Q Q Q Initial Final Final
lation ations for A1 for A2 for A3 for A4 Error Error Energy

1 (4.13) 88 27 22 17 13 0.21 0.014 0.032
2 (4.14) 285 46 35 25 79 0.64 0.120 0.340

Table 6. Two examples for the four-agent case.

one variable each. The desired outcome function is:

f (x) = x11 ◊ sin(p ◊ x2) + 2 ◊ x12 ◊ x
2
3 ◊ x41 + e-5(x42-0.25)(x3-0.6). (4.14)

Table 6 gives the performance of the algorithm on the two examples.
The parameter values are as in Table 1 except that l = 0.001 and
De = 0.0001, and in the second example g = 500. Figure 8 gives the
corresponding energy versus number of iterations plots.

5. Extensions

In this section we discuss the following extensions of the DGVQ prob-
lem: unknown desired outcome function, multilevel hierarchy, and time-
varying outcome function.

5.1 Unknown desired outcome function

In the preceding section, we discussed an algorithm for the two-level
hierarchy example of section 3.2. We assumed that the desired outcome
function f was known to supervisor S to the extent that given an input
x, S could evaluate f (x). We now relax this condition and indicate how
our algorithm can be modified so as to learn the quantization maps as
well as the unknown f .
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Figure 8. Energy versus number of iterations plots for the four-agent case: (a)
Example 1, and (b) Example 2.

The basic idea is to use a NN to learn the outcome function f .
Specifically, let f̃ be the approximation of f learned by the organization,
then the goal is to minimize the following modified energy function:

H = ‡
D
J¸ f (x) - f̃ ( q1(x1), . . . , qn(xn) ) ¸2 N2 P(dx) + l ◊

n‚
i=1

log2 Ni.

Supervisor S uses a feedforward NNN to learn f , with input to N being
x̂ ∫ (q1(x1), . . . , qn(xn)) and the desired output being f (x). The NN N
is trained using the backpropagation algorithm so as to minimize the
mean-square error, E [ (¸ f (x) - f̃ (x̂) ¸2 )2 ]. Simultaneously, the agents
Ai, i = 1, . . . , n learn their quantization maps qi using the algorithm of
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Simu- Desired outcome Itera- Q-levels Initial Final Final
lation function f (x) ations Error Error Energy

1 0.6 ◊ x10 + 0.2 20 10 0.09 0.01 0.04
2 0.6 ◊ sin(p ◊ x) + 0.2 38 17 0.20 0.02 0.06
3 0.5 sin(p ◊ x)

+0.2 sin(p ◊ y) + 0.15 103 71 0.23 0.04 0.10
4 0.7 ◊ x2 ◊ y + 0.2 44 41 0.14 0.02 0.04

Table 7. Unknown desired outcome function, f (x) for the single-agent case: 1
and 2 for when A observes one variable x, and 3 and 4 for when A observes
two variables x and y.

Simu- Desired outcome Iter- Q Q Initial Final Final
lation function f (x, y) ations for x for y Error Error Energy

1 0.5 sin(p ◊ x)
+0.2 sin(p ◊ y) + 0.15 32 22 5 0.23 0.01 0.08

2 0.7 ◊ x2 ◊ y + 0.2 44 11 9 0.14 0.02 0.07

Table 8. Various unknown desired outcome functions for the two-agent case.

the previous section. One modification to the algorithm is that each
agent initializes its quantization maps with a sufficiently large number
of Q-levels, instead of just one Q-level. This is required in order to
stabilize the simultaneous learning of the unknown outcome function
and the quantization maps.

5.1.1 Simulation Results
We now present simulation results for the preceding case, that is, when
the desired outcome function f is unknown. In all the examples consid-
ered, we have used a two-layer feedforward NN with 10 and 1 sigmoidal
neurons in the first and the second layers respectively. The parameters
are taken from Table 1 except that g = 500 and the starting number of
Q-levels is 3. Larger values are chosen because now the desired outcome
function is also being learned.

As before, we first discuss the case when a single agent A reports
to supervisor S. Table 7 gives the output of the algorithm for some
unknown desired outcome functions. Figure 9 gives some sample plots.

We then consider the case when two agents A1 and A2, observing
x and y respectively, report to supervisor S and the desired outcome
function f (x, y) is unknown. Table 8 gives the output of the algorithm
for two f (x, y).

5.2 Multilevel hierarchy

Until now we have discussed the two-level hierarchy model of an orga-
nization. We next consider multilevel hierarchies.
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Figure 9. Single-agent case with unknown desired outcome function, f (x): (a)
f (x) = 0.6 ◊ x10 + 0.2, (b) f (x) = 0.6 * sin(p ◊ x) + 0.2.

In a multilevel hierarchy model, an organization has a hierarchy of
agents and supervisors. A hierarchy is a connected and directed acyclic
graph G ∫ (V,E) where V is the vertex (resp. agent) set of the graph
(resp. organization) and E is the set of directed edges in the graph
G. A directed edge from vertex A1 to vertex A2 indicates that the
corresponding members of the organization have an agent-supervisor
relationship. Equivalently, we say that A1 is a subordinate of A2, and
A2 is a superior of A1. Since G is acyclic, each member has well-
defined superiors and subordinates; that is, it cannot happen that one is
a subordinate as well as a superior (according to the given definitions)
of another. Next we assume that the hierarchy can be organized in
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Figure 10. A three-level hierarchy model. Aij is the jth agent in the ith level of
the hierarchy.

levels such that each member in the hierarchy is a superior only of those
belonging to one particular level, and each member is subordinate only
to those of another particular level. Note that if we are allowed to
introduce dummy agents—those that just output their inputs—then any
hierarchy can be modified to satisfy the given requirement. With this
assumption, one way of indexing the levels is: members that have no
superior are assigned level 1, their subordinates are assigned level 2, and
so on. Figure 10 illustrates a three-level hierarchy.

A multilevel hierarchy operates as follows: each member in the hier-
archy observes their local environment as well as receives messages from
their subordinates. Each member then evaluates its input-output func-
tion, and reports the outcomes to their superiors. Now the objective
is to design the messages to be exchanged between the subordinate-
superior pairs in the organization, so as to minimize a given energy
function. As before, we assume that each member in the hierarchy
knows its input-output function. Moreover, the energy function con-
tinues to be a weighted sum of the mean-square error and the bit-based
information-exchange complexity of the hierarchy, that is,

H = ‡
D
I¸ f (x) - f ( Q(x) M ¸2 )2 P ( dx ) + l ◊

H‚
h=1

nh‚
i=1

log2 N(h)
i

where H indicates the number of levels in the hierarchy, nh the number
of agents at the hth level, and Q(x) denotes the overall effect on x due
to quantization at various levels of the hierarchy.

Now such a hierarchy can be trained—each member in the hierarchy
learns its quantization maps—in stages using the algorithm of the pre-
vious section. That is, first the agents at the highest level are trained to
learn their quantization maps, then the agents in the next level learn,
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and so on. While agents at the hth level are being trained, those at
higher levels use their learnt quantization maps before exchanging mes-
sages with their superiors. All the agents at levels below the hth level
act transparently. That is, they do not perform any quantization before
exchanging messages with their superiors.

Note that if all the external variables are observed at the highest
level in the hierarchy, then, in the given procedure, the domain of the
quantization map of each member at levels other than the highest level
is discrete. Hence the training process for levels other than the highest
level involves learning the quantization maps on a discrete domain,
and is, therefore, fast and simple. However, learning at the highest
level requires that members at all the other levels are able to transmit
and receive real-valued variables. Since on-line learning requires that
all members in the hierarchy exchange only bit-based messages, this
procedure cannot be used for on-line learning. One way to overcome
this problem is to let each member uniformly quantize the range of its
input-output mapping with a large number of Q-levels. Then, while
the agents at the highest level are being trained, each member at any
other level uses that quantization map before transmitting the outcome
to their superiors.

5.2.1 Simulation Results
We now give simulation results for learning the quantization maps in
multilevel hierarchies. We assume that each member in the hierarchy
knows its input-output function. In the following, we illustrate the
procedure on three hierarchies.

Example 1. The hierarchy is as shown in Figure 11(a). The hierarchy
has a single subordinate-superior pair, and is similar to the single-agent
single-supervisor case considered previously except for two differences.
First, the agent A not only quantizes its environmentx, but also evaluates
its input-output map g(◊) on the environment x and sends the quantized
outcome to the supervisor. Second, S, in addition to receiving messages
from A, observes its own local environment y. The desired outcome
function is f (x, y).

Here we take

g(x) = sin(p ◊ x)
f (x, y) = y ◊ g(x). (5.1)

The performance of the algorithm is given in Table 9. Figures 12 and
13(a) give, respectively, the output and the energy versus iterations plot
of the algorithm.

Example 2. The hierarchy is as shown in Figure 11(b). The hierarchy
is similar to that of Example 1 except that now two agents A1 and A2,
observing variables x and z respectively, report to supervisor S. The
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A A21

h(y)g(x)

(b)

Figure 11. Multilevel hierarchies: (a) Example 1, and (b) Example 2.

Iterations Q-levels Initial Final Final
Stage I Stage II x g(x) y Error Error Energy

26 38 24 12 13 0.23 0.019 0.15

Table 9. Multilevel hierarchy: Example 1.

Iterations Q-levels Initial Final Final
Stage I Stage II x y z g(x) h(y) Error Error Energy

36 52 17 20 21 9 11 0.73 0.033 0.24

Table 10. Multilevel hierarchy: Example 2.
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Figure 12. Multilevel hierarchy: Example 1.
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Figure 13. Energy versus number of iterations: (a) Example 1, and (b) Example
2. The sudden jump in the energy value indicates the switch in the training of
one stage to that of the next.
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input-output functions of A1 and A2 are g(◊) and h(◊) respectively. As
before, S receives the messages from A1 and A2 and also observes its
own local environment y. The desired outcome function is f (x, y, z).
Here we take

g(x) = exp I-20 ◊ (x - 0.5)2M
h(y) = sin(p ◊ y)

f (x, y, z) = g(x) ◊ h(y) + 2 ◊ (z - 0.3)3. (5.2)

The performance of the algorithm is given in Table 10. Figure 13(b)
gives the energy versus iterations plot.

Example 3. Now we consider the three-level hierarchy of Figure 10.
Let fij be the input-output map of the jth agent in the ith level of the
hierarchy. In the present example, we choose

f31(x31) = 2 ◊
sin(5 ◊ p ◊ (x31 - 0.5))

5 ◊ p ◊ (x31 - 0.5)
f32(x32) = 3 ◊ x32 ◊ (x32 - 0.4) ◊ (x32 - 0.7)
f33(x33) = exp I-5 ◊ (x33 - 0.6)2M

f21(x21, f31, f32) = 2 ◊ x21 ◊ f31 + f32

f22(x22, f32, f33) =
x22 + f32 + f33

2
f11(x11, f21, f22) = x11 ◊ f21 + f 2

22. (5.3)

The performance of the algorithm is given in Table 11. Figure 14
gives the energy versus iterations plot.

5.3 Time-varying outcome function

An important generalization of the DGVQ problem is when the desired
outcome function itself varies with time. Such a model of an organiza-
tion is clearly more realistic than when the outcome function is fixed.

Let the desired outcome function f (t) vary “slowly” (clarified later)
and continuously with time t. To learn f (t) we use our algorithm (sec-
tion 4) to learn the quantization maps of each agent, assuming that

Iterations Ei Ef H

I II III 0.82 0.063 0.57
88 113 63

Q-levels

x31 x32 x33 x21 f31 f32 f32 f33 x22 x11 f21 f22

42 22 24 17 21 11 7 19 19 22 22 13

Table 11. Multilevel hierarchy: Example 3.
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Figure 14. Example 3: Energy versus number of iterations.

f (t) varies slowly enough as to be approximately constant over the time
required to learn the quantization maps. After the completion of the
learning process, supervisor S continues to observe the energy func-
tion H from equation (4.9). Once S realizes that H exceeds the value
of the energy function at the completion of the learning process by a
prespecified threshold, the learning process is initiated again. More
precisely, let to be the time instant when the previous learning process
was completed, with the value of the energy function beingH(to). Once
(H(t) - H(to) ) ≥ D, where D > 0 is a prespecified real number, the
learning process is started all over again.

6. Conclusions

We have considered a generalization of classical vector quantization,
which we have called decentralized goal-based vector quantization
(DGVQ). The problem is to (vector) quantize or, equivalently, to par-
tition the domain of a given function such that each cell in the par-
tition satisfies a given set of topological constraints (e.g., each cell of
the partition may be required to have the cartesian-product property).
We have proposed an adaptive algorithm for DGVQ. The algorithm
learns the quantization maps having the desired topological properties,
by minimizing an appropriately defined energy function. We have in-
dicated how a two-level hierarchy model of an economic organization
can be formulated as DGVQ. We have also discussed a number of other
generalizations: multilevel hierarchy model, DGVQ when the desired
outcome function of the organization is unknown, and DGVQ when
the function is time-varying. We have given extensive simulation results
of the proposed algorithm on a number of synthetic problems.
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Many aspects of the proposed learning scheme need further investi-
gation as briefly explained in the following.

For training a multiagent two-level hierarchy, we have suggested
two methods: namely, the credit assignment method and the sequential
adaptation method. In the former, all the agents adapt their number
of Q-levels simultaneously, but the method requires an additional loop
to update the credits assigned to the agents for the quantization error.
Because of this reason—and that the method did not perform very well
in simulation—we have proposed the sequential adaptation method, in
which only one agent adapts its number of Q-levels in one iteration.
Now this method is inherently sequential, and takes a large number of
iterations to converge for organizations having a large number of agents.
Thus, it is desirable to have a method in which all agents simultaneously
adapt their number of Q-levels. One way could be to reconsider the
credit assignment method: the requirement of the additional loop for
updating the credits can be avoided by adapting the credits after each
iteration, and only those agents whose credits exceed the average credit
value by a prespecified threshold, adapt their number of Q-levels.

For a multilevel hierarchy, we have suggested a method in which
only one level of the hierarchy was trained at a time. In the resource
allocation problem, it is more desirable that the agents, irrespective of
the level to which they belong, learn their quantization maps simulta-
neously. For this purpose, the following generalization of the credit
assignment method can be considered: after the completion of each iter-
ation, the credit for the quantization error is assigned among the agents
at the lowest level (i.e., agents that do not have any supervisors); those
agents then distribute the credit received among their subordinates and
themselves, and so on. Now, the agents can simultaneously adapt their
number of Q-levels, as in the multiagent case.

In the original formulation of the resource allocation mechanism de-
sign problem [11], agents and supervisors repeatedly exchange messages
until the equilibrium is reached. Then the outcome of the organization
is a function of the equilibrium message. In this paper, we have con-
sidered a static message mechanism. It would be interesting to study
the generalization of the proposed algorithm, or other methods, to the
dynamic messaging model.

Finally, our algorithm is based on a number of heuristics. It would
be nice if we could obtain some theoretical justification—through some
convergence analysis—for those steps.
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