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The Besicovitch and Weyl pseudometrics on the space AŸ of biinfinite
sequences measure the density of differences in either the central or arbi-
trary segments of given sequences. The Besicovitch and Weyl spaces are
obtained from AŸ by factoring through the equivalence of zero distance.
Cellular automata are considered as dynamical systems on the Besicov-
itch and Weyl spaces and their topological and dynamical properties are
compared with those they possess in the Cantor space.

1. Introduction

A cellular automaton (CA) consists of a biinfinite array of cells con-
taining letters from a finite alphabet, which are updated according to a
local interaction rule. CAs have been of considerable interest as mod-
els of physical and biological phenomena, and in symbolic dynamics
as homomorphisms of the shift [8]. They display a large spectrum of
dynamical behaviors ranging from stable to chaotic dynamics and could
also support universal computation. For a survey, see [2, 5, 13].

Until recently whenever a CA was conceived of as a dynamical sys-
tem, the space of biinfinite sequences was equipped with the product
topology, which makes it homeomorphic to the Cantor space. Often
people would criticize this topology, though hardly ever in articles. In-
tuitively it has several weak points. For example, it endows the shift
map with strong chaoticity properties: sensitivity to initial conditions,
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topological transitivity, and dense periodic points. However, regarded
as a shift of the observation point, the shift does not change the configu-
ration at all. Another instance is the importance of the 0 coordinate for
any distance defining this topology: two configurations are close to each
other if their coordinates coincide in a big interval [-n,+n], even if they
disagree completely outside. No such distance suits the usual image of
a perturbation. A perturbation ought to affect an asymptotically small
proportion of the coordinates, while for fixed n it does not matter much
whether many of those in [-n,+n] are changed.

With these reasons in mind the shift-invariant Besicovitch pseudo-
metric was recently introduced [4], which was previously used for the
study of almost periodic functions (e.g., [1]). The Besicovitch pseudo-
metrics measure the density of differences in the central part of two given
sequences. One obtains the Besicovitch space by factoring the space of
biinfinite sequences by the equivalence of zero distance. Obviously the
distance in the Besicovitch space represents physical perturbations as
described previously in a more fitting way.

We introduce a variant, the Weyl pseudometric, which measures the
density of differences between two given sequences in arbitrary segments
of given length. It is also shift-invariant, but in the definition of the Weyl
space the origin does not play any part at all.

Here our purposes are to further investigate properties of the Besi-
covitch space, and investigate those of the Weyl space, which are often
but not always close to those of the former; and, most of all, compare
the topological and dynamical properties of CA in the three spaces. CAs
are continuous with respect to both the Besicovitch and Weyl pseudo-
metrics, so they define dynamical systems in the corresponding spaces.

In the first direction it is shown in [6] that the Weyl space is pathwise
connected and incomplete. The Besicovitch space is also pathwise con-
nected but complete. Both spaces are infinite-dimensional and neither
is separable nor locally compact. This is the matter of section 3.

In section 4 we compare properties of CAs in the different spaces.
From the dynamical point of view, when passing from the Cantor met-
ric to one of the shift-invariant pseudometrics there is a drift towards
stability. For a CA to have some chaoticity property like topological
transitivity or sensitivity in one of the Besicovitch or Weyl spaces it is
necessary that it has the same property in the Cantor space (but in gen-
eral equicontinuity or equicontinuous points are not preserved). On the
other hand, chain transitivity and stability properties like equicontinu-
ity, existence of equicontinuity points, and stability of periodic points in
the Cantor space imply the same properties in the Besicovitch or Weyl
spaces; this is not true for expansivity or even sensitivity. For instance,
the shift transformation, which is sensitive to initial conditions in the
usual setting, is as far as possible from this property in the Besicovitch
space, since there it becomes an isometry! But other CAs lose some local
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or global sensitivity properties, and the interpretation is not always as
easy.

Finally, the shift-invariant pseudometrics proved to have an impor-
tant unexpected feature. Hedlund’s theorem states that for the Can-
tor topology the class of CAs coincides with that of continuous shift-
commuting maps; this is not true in the Weyl and Besicovitch spaces:
there are indeed many continuous shift-commuting maps that are not
given by any local rule. We do not know yet how to characterize this
natural class of maps. It is a matter of fact that the class of continuous
functions is larger than the one in Cantor spaces. In particular, it con-
tains the whole set of nonuniform CAs, that is, CAs in which different
cells may have different local rules. This class of systems is receiving
growing interest among scientists which employ them for solving hard
problems issuing from physics, computer science, and biology. Nonuni-
form CAs have never been considered from the dynamical systems point
of view since, in general, they are not continuous in Cantor spaces. We
hope that our study may give a new impulse in this direction.

2. Dynamical systems

Since we adopt the point of view of dynamical systems we give a few
definitions.

A dynamical system is a continuous map f : X Æ X of a nonempty
metric space X to itself. The nth iteration f n : X Æ X of f is defined
by f 0(x) = x, f n+1(x) = f (f n(x)). A point x Œ X is fixed, if f (x) = x. It
is periodic, if f n(x) = x for some n > 0. The least positive n with this
property is called the period of x. The orbit of x is the set ®(x) = {f n(x) :
n ≥ 0}. A set Y Õ X is positively invariant, if f (Y) Õ Y.

A point x Œ X is equicontinuous (x Œ E(f )) if the family of maps f n

is equicontinuous at X, that is, x Œ E(f ) if and only if

("∂ > 0)($d > 0)("y Œ Bd(x))("n > 0)(d(f n(y), f n(x)) < ∂).

Here Bd(x) = {y Œ X : d(y, x) < ∂}. The map f is equicontinuous if and
only if

("∂ > 0)($d > 0)("x Œ X)("y Œ Bd(x))("n > 0)(d(f n(y), f n(x)) < ∂).

For an equicontinuous system, E(f ) = X. Conversely if E(f ) = X and
X is compact, then f is equicontinuous; this need not be true in the
noncompact case. A system (X, f ) is sensitive (to initial conditions), if
and only if

($∂ > 0)("x Œ X)("d > 0)($y Œ Bd(x))($n > 0)(d(f n(y), f n(x)) ≥ ∂).

A sensitive system has no equicontinuous points; however, there exist
systems with no equicontinuous points that are not sensitive. A system
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(X, f ) is (positively) expansive if and only if

($∂ > 0)("x π y Œ X)($n ≥ 0)(d(fn(x), f n(y)) ≥ ∂).

A positively expansive system on a perfect space (i.e., a space with no
isolated points) is sensitive. A system (X, f ) is said to be (topologically)
transitive if for any nonempty open sets U, V Õ X there exists n ≥ 0
such that f-n(U) » V π ∆. If X is perfect and if the system has a dense
orbit, then it is transitive. Conversely, if (X, f ) is topologically transitive
and if X is compact, then (X, f ) has a dense orbit. Indeed, the set
{x Œ X : ®(x) = X} is residual in this case. An ∂-chain (from x0 to xn)
is a sequence of points x0, . . . , xn Œ X such that d(f (xi), xi+1) < ∂ for
0 £ i < n. A system (X, f ) is chain transitive if for any ∂ > 0 and any
x, y Œ X there exists an ∂-chain from x to y.

A fixed point x Œ X is stable if it is equicontinuous and there exists
a neighborhood U ú x such that for every y Œ U, limnÆ• f n(y) = x. A
periodic point x with period n is stable if it is stable for f n.

3. Cantor, Weyl, and Besicovitch spaces

In this section we introduce the usual metric (here called the Cantor met-
ric) and the Weyl and Besicovitch pseudometrics on the configuration
space AŸ. Each pseudometric induces a topology on the corresponding
quotient space of AŸ; we study the properties of the two correspond-
ing topological spaces, calling them the Weyl and Besicovitch spaces.
Finally, a few properties of dynamical systems on these spaces are given.

Let A be a finite alphabet with at least two letters. The binary
alphabet is denoted by 2 = {0, 1}. For n Œ Õ, denote by An the set
of words over A of length n, and by A* = «n≥0An the set of finite words
over A. We also consider words u Œ A[j,k] indexed by an interval of
integers [j, k]. Denote by AŸ the set of biinfinite sequences of letters
of A. The ith coordinate of a point x Œ AŸ is denoted by xi, and
x[j,k] = xj . . .xk Œ A[j,k] is the segment of x between indices j and k. For
u Œ A[j,k], u• is the infinite repetition of u, that is, (u•)m+n(k-j+1) = um

for n Œ Ÿ and m Œ [j, k]. The cylinder of u Œ A[j,k] is the set

[u] = {x Œ AŸ : x[j,k] = u}.

The Cantor metric on AŸ is defined by

dC(x, y) = 2-k where k = min{i ≥ 0 : xi π yi or x-i π y-i}

so dC(x, y) < 2-k if and only if x[-k,k] = y[-k,k]. The cylinders are
clopen (closed and open) sets for dC. It is well known that all Cantor
spaces (with different alphabets) are homeomorphic. The Cantor space
is compact, totally disconnected, and perfect.
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The Weyl pseudometric on AŸ is given by the formula

dW(x, y) = lim sup
lÆ•

max
kŒŸ

#{j Œ [k + 1, k + l] : xj π yj}

l
.

Here # means the number of elements of a set, so dW(x, y) < ∂ if and
only if

($l0 Œ Õ)("l ≥ l0)("k Œ Ÿ)(#{j Œ [k + 1, k + l] : xj π yj} < l∂).

For x Œ AŸ denote by x̃ = {y Œ AŸ : dW(y, x) = 0} and denote by
XW = {x̃ : x Œ AŸ} the Weyl space over the alphabet A. Clearly every
two Weyl spaces (with different alphabets) are homeomorphic.

The Weyl pseudometric could be considered also on the set AÕ of
unilateral sequences. For x, y Œ AÕ put

dW(x, y) = lim sup
lÆ•

max
kŒÕ

#{i Œ [k + 1, k + l] : xi π yi}
l

.

The map j : AŸ Æ AÕ defined by j(x) = x0x-1x1x-2x2 . . . is a homeo-
morphism between the unilateral and bilateral Weyl spaces. In fact j is
uniformly continuous, so it preserves completeness.

The Besicovitch pseudometric on AŸ is defined as follows:

dB(x, y) = lim sup
lÆ•

#{j Œ [-l, l] : xj π yj}

2l + 1

so dB(x, y) < ∂ if and only if

($l0)("l ≥ l0)(#{j Œ [-l, l] : xj π yj} < (2l + 1)∂).

For x Œ AŸ again put x̃ = {y Œ AŸ : dB(y, x) = 0} and XB = {x̃ : x Œ AŸ}
the Besicovitch space over the alphabet A; the notation is the same for
the Weyl and Besicovitch equivalence classes but they will always be
easy to distinguish according to context. Clearly any two Besicovitch
spaces (with different alphabets) are homeomorphic and they are also
homeomorphic to the unilateral Besicovitch space obtained from the
pseudometric

dB(x, y) = lim sup
lÆ•

#{i Œ [0, l - 1] : xi π yi}
l

, x, y Œ AÕ .

Since dB(x, y) £ dW(x, y), the identity on AŸ resolves into a continuous
surjective map I : XW Æ XB.

Both pseudometrics are shift-invariant, for instance, dW(sx,sy) =
dW(x, y). In other words s, considered as a continuous transformation
on the Weyl or Besicovitch space, is an isometry.

Both the Weyl and Besicovitch spaces are homogenous. For any
u Œ 2Ÿ, the map f : 2Ÿ Æ 2Ÿ defined by f (x)i = xi + ui mod 2 is a

Complex Systems, 11 (1997) 107–123



112 F. Blanchard, E. Formenti, and P. Kůrka

homeomorphism, which sends 0• to u. Using Toeplitz sequences, it is
shown in [6] that the Weyl space is pathwise connected. In the same
way we show this for the Besicovitch space and we also show that both
spaces are infinite-dimensional.

A sequence x Œ AÕ is a Toeplitz sequence if each of its subwords
occurs periodically, that is, if

("n Œ Õ)($p > 0)("j Œ Õ)(xn+jp = xn).

Toeplitz sequences are constructed by filling in periodic parts succes-
sively. For an alphabet A put Ã = A « {*}. For x, y Œ ÃÕ , T(x, y) Œ ÃŸ

is the point obtained by replacing the successive occurrences of stars in
x by the letters of y. Let ti be the increasing sequence of all integers for
which xti

= *. Then put

T(x, y)i = xi if xi π *
T(x, y)i = yj if i = tj for some j.

Consider a map f : {0, 1}* Æ ÃÕ defined by induction: f (l) = *•, then

f (x0 . . .xn+1) = T(f (x0 . . .xn), (0*)•) if xn = 0
f (x0 . . .xn+1) = T(f (x0 . . .xn), (*1)•) if xn = 1.

Thus

f (0) = 0 * 0 * 0 * 0 * 0 * 0 * . . .
f (1) = *1 * 1 * 1 * 1 * 1 * 1 . . .

f (00) = 000 * 000 * 000 * . . .
f (01) = 0 * 010 * 010 * 01 . . .
f (10) = 01 * 101 * 101 * 1 . . .
f (11) = *111 * 111 * 111 . . . .

For a real number x Œ [0, 1] with binary expansion x = ⁄•i=1 xi2
-i put

f (x) = limnÆ• f (x1 . . .xn). If 2nx is never an integer for n Œ Õ, then
x has a unique expansion and f (x) Œ {0, 1}Õ . If 2nx is an integer for
some n, then x has two binary expansions, and f (x) is the same for
both expansions. It contains at most one star, which can be filled in
so that f (x) is periodic. If |x - y| < 2-m, then x[1,m] = y[1,m]; therefore
dW(x, y) < 2-m+1 and f : [0, 1] Æ XW is continuous. Moreover, it is
one-to-one, since

dW(f (x), 0•) = dB(f (x), 0•) = x.

Proposition 1. The Weyl and Besicovitch spaces are pathwise connected
and infinite-dimensional.
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Proof. Consider the continuous map f : [0, 1] Æ XW constructed previ-
ously. Given u Œ 2Ÿ the map g : [0, 1] Æ 2Ÿ defined by g(x)i = uif (x)i
is continuous. Thus every point u Œ XW can be joined by a continuous
path to 0•, and XW is pathwise connected. Since the identity yields a
continuous surjection I : XW Æ XB, XB is pathwise connected too. Since
f : [0, 1] Æ XW is one-to-one, XW is at least one-dimensional. For any
n > 1 construct an embedding fn : [0, 1]n Æ XW of an n-dimensional
cube by fn(x0, . . . , xn-1)kn+j = f (xj)k, so

fn(x1, . . . , xn) = f (x1)0 . . . f (xn)0f (x1)1 . . . f (xn)1 . . . .

Thus XW is at least n-dimensional and therefore infinite-dimensional.

The following proof is adapted from [12].

Proposition 2. The Besicovitch space is complete.

Proof. We prove this for the unilateral Besicovitch space. Let x(n) Œ AÕ

be a Cauchy sequence. There exists a subsequence x(nj) such that

dB(x(nj+1), x(nj)) < 2-j-1.

Choose a sequence lj of positive integers such that lj+1 ≥ 2lj and for
every l ≥ lj

#{i Œ [0, l) : x
(nj+1)
i π x

(nj)
i } < l ◊ 2-j-1.

Then for k > j and l ≥ lk

#{i Œ [0, l) : x
(nk)
i π x

(nj)
i } < l ◊ (2-j-1 +µ + 2-k) < l ◊ 2-j.

Define x Œ AÕ by xt = x
(nj)
t if lj £ t < lj+1 and xt arbitrarily if t < l0.

If k > j and lk £ l < lk+1, then

#{i Œ [0, l) : xi π x
(nj)
i } £ #{i Œ [0, lj) : xi π x

(nj)
i }

+#{i Œ [lj+1, lj+2) : x
(nj+1)
i π x

(nj)
i }

+µ + #{i Œ [lk-1, lk) : x
(nk-1)
i π x

(nj)
i }

+#{i Œ [lk, l) : x
(nk)
i π x

(nj)
i }

£ lj + (lj+2 +µ + lk + l)2-j £ lj + 3l ◊ 2-j.

It follows that dB(x, x(nj)) £ 3 ◊ 2-j, so x(nj) converges to x. Since x(n) is a
Cauchy sequence, it converges to x as well.

To show further properties of the Weyl and Besicovitch spaces, we
use Sturmian sequences (e.g., [3, 11]). For an irrational x Œ (0, 1) define
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S(x) Œ 2Õ by

S(x)n = 0 if 0 < nx - k < 1 - x for some k Œ Õ;
S(x)n = 1 otherwise.

S(x) is called a Sturmian sequence with density x. We again have

dW(S(x), 0•) = dB(S(x), 0•) = x.

Lemma 1. If x, y Œ (0, 1) and x/y are all irrational, then

dW(S(x), S(y)) = dB(S(x), S(y)) = x(1 - y) + (1 - x)y.

Proof. Consider the rotation

T(a, b) = (a + x mod 1, b + y mod 1)

defined on the torus —2/Ÿ2; T is uniquely ergodic and its invariant
measure is the Lebesgue measure. One has S(x)n π S(y)n if and only if

Tn(0, 0) Œ [0, 1 - x] ¥ [1 - y, 1] « [1 - x, 1] ¥ [0, 1 - y],

this set has Lebesgue measure x(1 - y) + y(1 - x), by unique ergodicity
this is exactly the density of the set of coordinates where S(x)n and S(y)n
disagree.

Proposition 3. The Weyl and Besicovitch spaces are neither separable
nor locally compact.

Proof. For any 0 < a < b < 1 there exists an uncountable set Eab Õ (a, b)
such that for all x, y Œ Eab, x, y, and x/y are all irrationals. For every
x, y Œ Ea,b one has

a(1 - b) < dW(S(x), S(y)) = dB(S(x), S(y)) < b(1 - a).

It follows that neither XW nor XB is separable (i.e., they do not have a
countable base). Since b(1 - a) can be arbitrarily small, and since both
XW and XB are homogeneous, neither is locally compact.

Let f : AŸ Æ AŸ be a W- or B-continuous map. Then f (x̃) Õ f̂ (x),
so f̃ : XW Æ XW defined by f̃ (x̃) = f̂ (x) is continuous and (XW, f̃ ) (or
(XB, f̃ )) is a dynamical system. We refer to a dynamical property of a
map f that is continuous in at least one of the Cantor, Besicovitch, and
Weyl spaces by prefixing the letter C, B, or W: for instance, sensitivity
in the Weyl space is called W-sensitivity. Since dB(x, y) £ dW(x, y) the
following statements are true.

Proposition 4. Let f : AŸ Æ AŸ be both W- and B-continuous. Then
we have the following.

1. If f is W-transitive, then it is B-transitive.

Complex Systems, 11 (1997) 107–123



Cellular Automata in the Cantor, Besicovitch, and Weyl Topological Spaces 115

2. If f is W-chain transitive, then it is B-chain transitive.

3. If f is B-expansive, then it is W-expansive.

Since the Besicovitch and Weyl spaces are not separable, no dynam-
ical system on them can have a dense orbit. Nevertheless transitive
dynamical systems do exist on them.

Example 1. The map f defined by f (x)i = x2i is W- and B-transitive.

This map is obviously continuous (but not shift-commuting) on both
spaces. To check that it is transitive choose two points x and y, and
define z by putting zk◊2n = yk and zi = xi for i π k ◊ 2n; thus z is at a
distance of at most 2-n from x, and f n(z) = y.

Proposition 5. Let (X, f ) be a dynamical system on a nonseparable
space X. If (X, f ) is transitive, then it is sensitive.

Proof. By the assumption, there exist ∂ > 0 and an uncountable set
E Õ X such that for every x, y Œ E, x π y one has d(x, y) > 4∂. We show
that ∂ is a sensitivity constant for (X, f ).

Let x Œ X. For every n ≥ 0 there is at most one z Œ E whose distance
from f n(x) is less than 2∂. Since E is uncountable there exists z Œ E such
that d(f n(x), z) > 2∂ for all n ≥ 0. By transitivity, in every neighborhood
U of x there exists y Œ U such that d(f n(y), z) < ∂ for some n; hence

d(f n(x), f n(y)) ≥ d(f n(x), z) - d(z, f n(y)) ≥ 2∂ - ∂ = ∂.

4. Cellular automata

A CA is a C-continuous map f : AŸ Æ AŸ that commutes with the shift
s : AŸ Æ AŸ defined by s(x)i = xi+1. Every CA is defined by some local
rule F : A2r+1 Æ A with radius r ≥ 0 by

f (x)i = F(xi-r . . .xi+r).

It follows that any CA is continuous for the Weyl and Besicovitch pseu-
dometrics [4].

We now compare topological and dynamical properties of CAs in the
Cantor, Weyl, and Besicovitch spaces. After a result on surjectivity we
address stability properties and then chaoticity properties. Then we give
a series of illustrative examples and counterexamples, finishing with a
B- and W-continuous, shift-commuting map on AŸ that is not a CA.
Recall, for instance, that a CA is “B-sensitive” if it acts sensitively on
the Besicovitch space.

Proposition 6. A CA f : AŸ Æ AŸ is surjective if and only if it is W-
surjective and if and only if it is B-surjective (i.e., if f̃ : XW Æ XW or
f̃ : XB Æ XB is surjective).

Complex Systems, 11 (1997) 107–123



116 F. Blanchard, E. Formenti, and P. Kůrka

Proof. Clearly if f is surjective so is f̃ . Suppose that f̃ : XW Æ XW is
surjective. By a theorem of Hedlund in [8], f is surjective if and only if
every block u Œ A* has a preimage. Consider the periodic point x = u•.
By the assumption, there exists y Œ AŸ such that dW(f (y), x) = 0. It
follows that in y one can find blocks that are mapped to u. The proof
for dB is identical.

Proposition 7. If a CA f is C-equicontinuous, then it is both W- and
B-equicontinuous.

Proof. By the assumption for ∂ = 1 there exists d = 2-m such that for
every x, y Œ AŸ if x[-m,m] = y[-m,m], then f n(x)0 = f n(y)0 for every n ≥ 0.
Therefore, if x[j-m,k+m] = y[j-m,k+m], then f n(x)[j,k] = f n(y)[j,k] for every
n ≥ 0. Given ∂ > 0 put d = ∂/(2m+ 2) and suppose that dW(x, y) < d, so
there exists l0 such that for all l ≥ l0 and all k Œ Ÿ

#{i Œ [k + 1, k + l] : xi π yi} < ld.

Thus in the interval [k+1, k+ l], f n(x) may differ from f n(y) only in one
of the end intervals [k + 1, k +m], [k + l -m + 1, k + l] or in an interval
[i -m, i +m] for some i with xi π yi. It follows that

card{i Œ [k + 1, k + l] : f n(x)i π f n(y)i} < ld(2m + 1) + 2m.

If ld > 2m, then

#{i Œ [k + 1, k + l] : f n(x)i π f n(y)i}
l

< d(2m + 2) = ∂

so dW(f n(x), f n(y)) < ∂. Thus f is W-equicontinuous. The proof of
B-equicontinuity is analogous.

Proposition 8. If a CA f has a C-equicontinuity point, then it has a
W-equicontinuity point and a B-equicontinuity point.

Proof. Let r be the radius of f and z Œ AŸ be a C-equicontinuity point
of f . For ∂ = 2-r there exists d = 2-m such that whenever y[-m,m] =
z[-m,m] = u Œ A[-m,m], then f n(y)[-r,r] = f n(z)[-r,r] for all n ≥ 0. We
show that x = u• is a W-equicontinuity point. For given ∂ > 0 put
d = ∂/(4m - 2r + 1). If dW(x, y) < d, then there exists l0 such that for all
l ≥ l0 and all k Œ Ÿ

#{i Œ [k + 1, k + l] : xi π yi} < ld.

Every change in one of the blocks x[k+1,k+2m+1] = u with k = j(2m+1) may
change only this block or m - r positions in any of its two neighboring
blocks, that is, at most 4m - 2r + 1 positions. Thus

#{i Œ [k + 1, k + l] : f n(x)i π f n(y)i}
l

< d(4m - 2r + 1) = ∂
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and dW(f n(x), f n(y)) < ∂. The proof is practically the same in the Besi-
covitch space.

The following result is implicit in [9].

Lemma 2. If x Œ AŸ is a C-stable periodic point of a CA f , then
s(x) = x and f (x) = x.

Proof. Let p be the period of x. If [u] ú x is an attracting neighborhood
of x, then s(x) is a stable periodic point with attracting neighborhood
s([u]). For k large enough [u] » sk[u] and [u] » sk+1[u] are both
nonempty. For y Œ [u] » sk[u] and z Œ [u] » sk+1[u] we get

sk(x) = lim
nÆ•

f np(y) = x = lim
nÆ•

f np(z) = sk+1(x)

so s(x) = x and x = a• for some a Œ A. Then f (x) = b• for some b Œ A,
and a• = limnÆ• f np(a•b•) = b•, so a = b and p = 1.

Proposition 9. If x Œ AŸ is a C-stable periodic point of a CA f , then x̃
is W-stable.

Proof. By Lemma 2, x = a• for some a Œ A. By the proof of Propo-
sition 8, x̃ is both W- and B-equicontinuous. Since x is C-stable, there
is m > 0 such that for a2m+1 Œ A[-m,m], limnÆ• f n(y) = x for ev-
ery y Œ [a2m+1]. Then there is s such that f s[a2m+1] Õ [a2m+3] with
a2m+3 Œ A[-m-1,m+1], so occurrences of a spread at least one coordinate
in both directions after s steps. For the Weyl pseudometric consider a
neighborhood

U = {y Œ AŸ : dW(y, x) < 1
2m+1 }.

For y Œ U there exists l such that for every k

#{i Œ [k + 1, k + l(2m + 1)] : yi π a} < l,

so every subword of y of length l(2m + 1) contains a2m+1 as a subword.
It follows that for t > s(l - 1)(2m + 1), f t(y) = x, so x is W-stable.

Proposition 10. If a CA f is W- or B-sensitive, it is also C-sensitive.

Proof. If f is W- or B-sensitive, it has no W- or B-equicontinuity point,
so by Proposition 8 it has no C-equicontinuity point and by Theorem 3
in [10] it is C-sensitive.

The existence of W- or B-transitive CAs is an open question, so though
the next statement may be empty, it at least tells us where not to look
for counterexamples.

Proposition 11. If a CA f is W- or B-transitive, then it is C-transitive.
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Proof. Let f be B-transitive and u, v Œ A[-m,m]. We show that [u] »
f-n[v] π ∆ for some n > 0. Consider spatially periodic points u•, v•.
By the assumption for ∂ = 1/3(2m + 1) there exists x Œ AŸ and n > 0
with dB(x, u•) < ∂ and dB(y, v•) < ∂, where y = f n(x). It follows that
there is l > 0 such that in the interval [-m - (2m + 1)l, m + (2m + 1)l]
there are at most (2m + 1)(2l + 1)∂ = (2l + 1)/3 differences, that is,

#{i Œ [-m - (2m + 1)l, m + (2m + 1)l] : xi π (u•)i} <
2l+1

3

#{i Œ [-m - (2m + 1)l, m + (2m + 1)l] : yi π (v•)i} <
2l+1

3 .

Thus there exists at least one unperturbed block, that is, there is |l1| £ l
such that for j = (2m + 1)l1 one has

x[j-m,j+m] = u, f n(x)[j-m,j+m] = v

and sj(x) Œ [u] » f-n([v]). For W-transitivity apply Proposition 4.

Proposition 12. If a CA f is C-chain transitive, then it is W- and B-chain
transitive.

Proof. Let F : A[-r,r] Æ A be the local rule for f . A sequence x(i) Œ AŸ

is a 2-m-chain for dC if x
(n+1)
j = F(x

(n)
j-r, . . . , x

(n)
j+r) for |j| £ m. Since

only the sites |j| £ m + r are involved, we identify 2-m-chains with
sequences x

(i)
[-m-r,m+r] Œ A[-m-r,m+r]. There exists a letter a Œ A such

that a• is periodic. Denote its period by p. Given ∂ > 0 let m Œ Õ
be such that 2r/(2r + 2m + 1) < ∂. By the assumption for every u Œ
A[-m-r,m+r] there exists a 2-m-chain u(1), . . . , u(n) Œ A[-m-r,m+r] such that
u(1) = a2m+2r+1 and u(n) = u. We can assume that n > p. Let w Œ A[-b,b]

be a word containing all the words u(n-p+1), . . . , u(n) as subwords. By
the assumption, there is again a 2-b+r-chain from a2b+1 to w. Denote by
q the length of this chain. If we restrict this chain to positions where
u(j) is located, we obtain a 2-m-chain of length l from a2r+2m+1 to u(j). It
follows that there are 2-m-chains of all lengths q, q+1, . . . , q+p-1 from
a2m+2r+1 to u and since a• has period p there are chains from a2m+2r+1 to
u of all lengths greater than l. If we also consider chains from v to a•,
we obtain that there exists q such that for every pair u, v Œ A[-m-r,m+r]

there exists a 2-m-chain from u to v, whose length is exactly q.
Given x, y Œ AŸ we now construct an ∂-chain x(1), . . . , x(q) leading

from x to y for the Weyl pseudometric. In every interval

[bj, cj] = [-m - r + j(2m + 2r + 1), m + r + j(2m + 2r + 1)]

where j Œ Ÿ, we construct a 2-m-chain x
(n)
[bj,cj] from x[bj,cj]

to y[bj,cj]
,

so x(1) = x and x(q) = y. Moreover f (x(n))k = x
(n+1)
k for every k Œ

[bj +m, cj -m], so x(n) is an ∂-chain for dW.
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Proposition 13. No CA is B-positively expansive.

Proof. Let f : 2Ÿ Æ 2Ÿ be a CA and fix ∂ > 0. Choose a positive integer
q with 1/(q + 1) < ∂ and consider points x, y Œ 2Ÿ that are symmetric
(i.e., x-i = xi and y-i = yi) with nonnegative coordinates

x[0,•) = 0q1
1q0

0q3
1q2

0q5 . . .

y[0,•) = 1q1
0q0

1q3
0q2

1q5 . . . .

To evaluate dB(0•, x), note that the differences are greatest at the ends of
blocks of ones. Thus for l = q1+q0+µ+q2n+1+q2n = (q2n+2-1)/(q-1),
we have

{i Œ [0, l - 1] : xi π 0} = q0 + q2 +µ + q2n =
q2n+2 - 1

q2 - 1

so dB(0•, x) = 1/(1 + q) < ∂ and similarly dB(1•, y) = 1/(1 + q) < ∂. Let
F : A2r+1 Æ A be the local rule of f . The dynamics of f on the points
x, y, 0•, and 1• depend only on the value of F on the homogenous
blocks. All other blocks have zero density. Thus we distinguish four
cases; in each of them one can find a pair of points that contradicts
expansivity.

1. F(02r+1) = 0 and F(12r+1) = 0; in this case dB(f (x), 0•) = 0, thus for any
t Œ Õ, dB(f t(0•), f t(x)) < ∂.

2. F(02r+1) = 0 and F(12r+1) = 1; in this case dB(f (x), x) = 0, thus for any
t Œ Õ, dB(f t(0•), f t(x)) = 1/(1 + q) < ∂.

3. F(02r+1) = 1 and F(12r+1) = 1; in this case dB(f (y),1•) = 0, and for any
t Œ Õ, dB(f t(1•), f t(y)) < ∂.

4. F(02r+1) = 1 and F(12r+1) = 0; in this case dB(f (0•), 1•) = 0, dB(f (1•), 0•) =
0, dB(f (x), y) = 0, and dB(f (y),x) = 0, hence "t Œ Õ, d(f t(0•), f t(x)) =
1/(1 + q) < ∂.

We do not know whether the same is true in the Weyl space. Note
that dW(x, 0•) = 1, so the preceding proof does not work for XW.

The next set of observations account (together with Propositions 7,
8, and 10) for the fact that passing from the Cantor to the Besicovitch
and Weyl topologies considerably diminishes the set of sensitive CA.

Proposition 14. Let f be a continuous shift-commuting map on the Weyl
space. Suppose f is W-equicontinuous, or W-sensitive, or that x is a W-
equicontinuity point for f : then sn Î f has the same property. The same
statements are true in the Besicovitch space.

Proof. These are immediate consequences of the facts that f commutes
with the shift and that s preserves the Weyl and Besicovitch pseudo-
metrics.
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Now we give some examples showing that the converses of Proposi-
tions 7–9, 10, and 12 are false.

Example 2. The identity map f (x) = x.

The identity is W-chain transitive (since the Weyl space is connected),
but not C-chain transitive (since the Cantor space is totally discon-
nected). Thus the converse of Proposition 12 is false.

Example 3. The shift map s(x)i = xi+1.

The shift map is a W-isometry, so it is W-equicontinuous, though it
is C-transitive and C-sensitive. Thus the converses of Propositions 7,
8, and 10 are not true. Observe that s̃ : XW Æ XW has an infinite
number of fixed points. Any sequence kn of positive integers growing
fast enough yields a fixed point

x = . . .1k30k21k10k01k10k21k3 . . . .

Example 4. The permutive CA f (x)i = xi-1 + xi + xi+1.

This is B-sensitive (see [4]). We do not know whether it is B-transitive.

Example 5. The multiplication CA f (x)i = xi-1xixi+1.

The system has a C-stable fixed point 0•, and a W- and B-stable fixed
point

ı
0•. In XB and XW f̃ has many other fixed points such as 0•1•,

1•0•, and when the sequence kn grows fast enough, the point

x = . . .1k30k21k10k01k10k21k3 . . . .

Example 6. Gilman’s CA f (x)i = xi+1xi+2.

Here the fixed point 0• is W-stable but not C-stable. The converse
of Proposition 9 is false.

Example 7 has an important topological, not merely dynamical,
meaning. It is well known that in the Cantor topology any contin-
uous shift-commuting map on AŸ is a CA. This is not true for the
Besicovitch and Weyl pseudometrics, as shown in the following. The
construction is generic. It uses the local rule of the CA “addition of the
two nearest neighbors,” and in order to obtain another transformation
with the same property it is enough to use another local rule instead.

Example 7. Let the application f : AŸ Æ AŸ, where A = {0, 1, s}, be
defined as follows:

f (x)i = a + b + c if x[i-j-1,i+k+1] = asjbskc
f (x)i = a + b if x[i-j-1,•) = asjbs•

f (x)i = b + c if x(-•,i+k+1] = s•bskc
f (x)i = b if x(-•,•) = s•bs•, xi = b
f (x)i = s if xi = s

where a, b, c Œ 2.
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The restriction of this map to {0, 1}Ÿ is just the addition of the two
nearest neighbors. In AŸ the letter s stays unmodified, and wherever
possible f acts on other letters as if it were the addition of the two nearest
neighbors, overlooking occurrences of s in between. By definition f
commutes with the shift; but a coordinate of f (x) does not depend on
any bounded set of neighbors, so f is not a CA. We claim it is both W-
and B-continuous. First let x Œ AŸ and suppose x¢i = xi except for i = 0;
then f (x¢)i π f (x)i for at most three values of i: 0, the first occurrence of
a 0 or 1 to the left, and the first one to the right. Now consider y Œ AŸ

and an integer n > 0; for each interval of coordinates [k, k + n - 1],
k Œ Ÿ one has

#{j Œ [k + 1, k + l] : f (x)j π f (y)j} £ 3 ◊ #{j Œ [k + 1, k + l] : xj π yj} + 2.

The first term of the right-hand sum is a very rough majoration of the
differences between f (x) and f (y) arising in this interval from differences
between x and y in the same interval; the term 2 majorates the number
of differences arising in the interval because of differences between x
and y outside this interval. Dividing by n and taking the lim sup one
obtains dW(f (x), f (y)) £ 3dW(x, y), and the same is obviously true for
dB, since one has only to consider one value of k for each odd n; so f is
both W- and B-continuous.

This example has an interesting dynamical property: there is a unique
W-equicontinuous point for f . One easily shows that the fixed pointı
s• has this property; all other points in the Weyl space do not, because
they inherit the sensitivity property of their coordinates on {0, 1}.

5. Discussion

There are many differences between the Cantor space and the two oth-
ers. The Cantor space is a compact metric, so CAs acting on it fit
perfectly into the general theory of topological dynamics as developed
during the last 50 years.

Compactness and the Hausdorff property often create clear-cut situ-
ations, which is not the case with less powerful topologies; this paper
illustrates the contrast in many instances. First, we know that many con-
tinuous shift-commuting transformations on dB and dW are not CAs. A
CA having no equicontinuous points for dC is sensitive to initial con-
ditions, whereas for dB or dW there may exist counterexamples. A
CA having one equicontinuous point for dC has a dense set of them,
but we do not know whether this is true for dB and dW; we know of
at least one shift-commuting map acting continuously on these spaces,
having exactly one equicontinuous point. Many dynamical properties
in the Cantor space can be interpreted simply in terms of words and
their combinatorics; for instance, surjectivity [8], existence of equicon-
tinuous points [10], expansiveness, and others; in the other two spaces
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this is the case only for surjectivity, but, apparently, this is an isolated
case.

Our idea is not to advertise the Cantor topology especially. We
just want to point out that there may still be plenty of hard work for
researchers in the Weyl and Besicovitch theories of CAs.

Since our point of view is almost purely mathematical we cannot
conclude that one topology is much better than the two others for the
study of CAs. The only remark we can make is that if one wishes a small
perturbation to concern a set of coordinates of small density rather than
any coordinates not in [-n,+n], then one should prefer the Weyl or
Besicovitch space.

At present we are not aware of many significant differences between
the Weyl and Besicovitch spaces. While the set of intervals used for the
definition of the pseudometric dB still privileges the origin, this feature
completely disappears in the definition of dW; on the other hand, because
of lack of completeness, the Weyl space may be harder to use.
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