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The typical training scenario for an artificial neural network involves
minimization of a cost-function in terms of the network output variables.
Alternatively, the minimization may be done on the basis of the probability
distributions of the network output, specifically, in terms of an informa-
tional entropy. A large class of such entropy based cost-functions are
not suitable for training as they provide a directed divergence of mutual
information between the network output and the desired behavior, that is,
they are one-sided or asymmetric divergence functions. It is shown that a
“symmetrization” of such divergence functions can transform them into
suitable cost-functions for gradient-descent based optimizations. Nine
such divergence measures are explicitly detailed and employed in training
a multilayer perceptron to demonstrate their utility as pragmatic cost-
functionals.

1. Introduction

Artificial neural networks (ANNs) have developed from precursory
structures intended to mimic the gross operational features of biological
neurons, into an important and useful class of computational archi-
tectures capable of performing many pragmatic functions not limited
to pattern recognition and model-free nonlinear estimation. With re-
spect to the latter class of computational tasks, feedforward ANNs
have demonstrated a robust and computationally efficient architecture
(once the ANN is trained) for realizing otherwise intractable numeri-
cal solutions. In a general sense, ANNs are simply implementations
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of computational algorithms that provide a functional mapping from
an n-dimensional input to an m-dimensional output space. Typically,
ANNs operate in two distinct phases.

1. The training phase, where the network adjusts its internal parameters in
response to training or environmental data.

2. A predictive phase, where the trained network responds to input data and
produces a functional mapping.

ANNs can be generally classified as either supervised, or unsupervised
paradigms. The former class requires a “teacher” to produce an error
output in response to training data, minimization of the error directs
the learning process and adjustment of the network internal parameters.
An unsupervised network does not rely on an external error source, but
utilizes a rule base to adjust the internal parameters in response to the
network output during training. ANNs can be further classified as either
feedforward or feedback types. This refers to the flow of information
during the predictive phase of operation.

The training process is a crucial step in producing a useful ANN for a
problem at hand, as this is the stage wherein an ANN organizes its inter-
nal structure. This process of a directed organization based on an error
minimization, when viewed from an information-theory perspective, is
a process of entropy minimization. That is, the network adjusts itself
from an essentially random, unusable state, through the minimization
of an error (or information) measure, into an ordered structure capable
of useful inference and generalization. This entropy of course is not
the thermodynamic entropy, but Shannon’s entropy. The emergence of
Shannon’s concept of an information measure [1] was arguably one of
the most profound and useful ideas to emerge in the field of communica-
tions engineering, and has recently been applied towards precisely this
problem of organizing ANNs into pragmatic computational machines
[2–6]. Prior to this application of entropy minimization in ANN train-
ing, the fiducial process was to train the network based on some measure
of error-difference between the desired and current state of the output
solely in the output domain. That is, if the network output represented a
thermodynamic temperature, then some form of temperature difference
between the desired and actual output was used as the error-correction
term.

An entropy-based network organization departs from this approach
by training the network based on the minimization of a cross-entropy
(the mutual information content) between the desired output distri-
bution and the current distribution of the network output. It has
been shown that training of a feedforward perceptron ANN in the
information-theoretic domain results in a more robust training phase
than training in the conventional output domain error-measures [4], in
that convergence of the network training is desensitized to increases in
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the learning rate. This is a welcome feature, as the “art” of parameter
selection for learning rates can become a tiresome and repetitive chore
in the training of conventional perceptron ANNs.

The authors have developed, applied, and evaluated a variety of such
information-theoretic error-measures in order to assay their relative ef-
ficacy in the training of ANNs [6]. During this work, it was found
that certain classes of information-theoretic error-measures were un-
suitable for training purposes, these error measures always caused a
network divergence, irrespective of the learning rates. Examination of
these ill-conditioned measures revealed that they were not balanced in
the information-theoretic sense, they directed the network organization
based on a one-sided information flow between the desired and actual
output.

To facilitate understanding of this concept, we can fix ideas based on
the classic definition of Shannon’s entropy which can be defined as:

H(x) =
N

‚
n=1

pn log(pn) (1)

for a random variable with sample space X = {x1, x2, . . . , xN} and as-
sociated probability measure P(xn) = pn. This represents the average
information of the random variable x, or in the case that xi represents
an individual symbol from a sequence of symbols intended to convey
information, the information per symbol. If one of the pi = 1, then
H(x) = 0, and there is no information conveyed, as there is no uncer-
tainty about which symbol is transmitted. In the case that all pi = 1/N,
then H(x) = log N, with an upper bounding value of H(x), as the uncer-
tainty about which symbol will be transmitted is maximum since they
are all equally probable. It follows that the reception of a symbol will
transfer maximum information, as there is maximal uncertainty about
which symbol would be received. The Shannon entropy then describes
the uncertainty associated with the outcome of a stochastic experiment
and maximization of this entropy, subject to the applied constraints,
provides a method for determination of probability distributions.

In the case that two independent probability distributions are in-
volved, denoted as p and q, an information measure is proposed in [7]
based on the Shannon entropy that would quantify the average infor-
mation for discrimination between the two distributions:

DKL(p : q) = ‚
i

pi log Kpi

qi
O . (2)

When p and q are equivalent distributions, then D = 0, there is no
information contained in p that q does not have. Alternatively, the
“distance” or difference between the two distributions is zero. As the
two distributions diverge, then the corresponding value of D increases.
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However, this D represents a directed divergence of the probability p
from q, and not vice versa. This is a consequence of the fact that in
general D(p : q) π D(q : p). That is, the measure is one-directional or
one-sided.

The basic tenet of applying information-theoretic divergence mea-
sures as a means of error-feedback for training ANNs is to ascribe the
desired output probabilities associated with the target values Tj to the
distribution q, and output probabilities arising from the actual network
output Oj to the distribution p. The divergence D is used at each
training iteration in place of the conventional error measure based on
f (Tj - Oj). However, when a one-sided error-measure such as DKL is
employed the network will quickly converge to a state that is not nec-
essarily representative of the desired behavior. It has been shown that
symmetric, two-sided information error-measures have demonstrated a
pragmatic utility in allowing for a wider range of learning rates to be
tolerated [4]. Therefore, it is useful to effect a “symmetrization” of the
available one-sided error-metrics so that they may be investigated for
enhanced network optimization characteristics and profitably employed
in ANN learning. The focus of this paper is the explicit symmetrization
of a set of one-sided information-theoretic error-measures which other-
wise would be useless as tools for gradient-descent learning in ANNs.
Before proceeding to elaborate the individual error measures and their
symmetrization, it is appropriate to detail the mechanics of applying
an information-theoretic error measure in the learning algorithm of an
ANN.

2. Application of information-theoretic error-measures to artificial

neural network training

Consider a general feedforward ANN as depicted in Figure 1. The ANN
consists of an agglomeration of individual information processing units,
referred to as neurons, arranged in successive layers with complete cross-
neuron interconnections between adjacent layers. The interconnections
are numerical weights, denoted as wij, between the ith and jth neurons.
This weight is multiplied by the output of the ith neuron, and is then
presented as one of the multiinputs to the jth unit. Each weight is
modified during the training process to produce a minimum error output
from the network. The input layer receives the network stimulus and
serves as a multiplexer to the first “hidden layer” of neurons. Successive
neural layers propagate the incrementally processed stimuli until the
network output layer is reached. Each neuron is a nonlinear processor
which takes the weighted sum of the multiinputs xj: Xi = ⁄ wijxj and
then processes this value by a (typically sigmoidal) activation function
FS(Xi) to produce the neuron output signal Oi.
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Figure 1. Schematic of the multilayer perceptron ANN.

The ANN will be trained via the “backpropagation” [8] gradient-
descent algorithm. However, a departure from the conventional para-
metric output-domain error gradient is that we employ the cross-entropy
between the actual neuron output and the specified training value as the
representation of the divergence of the actual output from the desired
one. This requires delineation of the probability distributions associ-
ated with both the actual output Oi and the desired output Ti. In the
general case of arbitrary training sets which may not be conveniently
expressable in closed-form, the training distributions qi(T(Xi)) may be
obtained from explicit relative-frequency distributions extracted from
the observable training set over the network output range. Likewise,
the distribution of the actual output pi(O(Xi)) can be ascertained from a
relative-frequency distribution evaluated at each discrete training cycle
over the output range of the neurons. Alternatively, in cases where the
training sets are expressable in a closed-form, it is possible to analytically
determine the associated distributions as detailed in [4].

Concerning the backpropagation algorithm, the fundamental entity
used in the weight adjustment process is the error ei of the network
output Oi at the ith unit, with respect to the target value Ti. This error is
used to calculate the effective gradient dj of the weight modification term.
In order to effect gradient-descent backpropagation in the information-
theoretic plane, the classical parametric euclidian error: e = (Ti - Oi),
is replaced with the information-theoretic cross-entropy e = D(p : q)
between the actual and target distributions. The effective gradient has
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two distinct definitions depending on whether or not a target value is
available for a particular unit. In the case of network output units for
which a target is known, dj is defined as the error of the jth unit times the
derivative of the activation function evaluated at the output value of the
ith unit. That is, dj = (∂Oi/∂Xi)ej where Xi represents the ith unit input to
the activation function. When the unit resides in a hidden or input layer,
a target value is not available for computation of the network error e.
Therefore, the definition is modified such that the product of cumulative
effective gradients from the next layer and the interconnection weights
are backpropagated to these units. In other words:

di =
∂Oi

∂Xi
‚

j

djwij.

In the case of the conventional euclidean metric, the sign of d is deter-
mined by the simple arithmetic difference between the target and output,
so that the direction of the gradient-descent is controlled by feedback
from the comparison of the target versus output difference. However,
the cross-entropy metrics involving logarithmic functions are strictly
nonnegative, and therefore would not allow for d to change its sign in
response to the target versus output differences changing sign, thereby
resulting in a loss of feedback control in the weight change algorithm.
To remedy this situation, the calculation of the effective gradient with
the cross-entropy error-metrics is multiplied by ±1, depending on the
sign of the target-output difference. That is, the value is specified by

di = di signum(Ti - Oi).

With the appropriate expression for the error gradient in hand, the
basic prescription for adjustment of weights at the nth training step is
given by the well known Widrow–Hoff delta rule [8]:

wij(n) = wij(n - 1) + hdjOi = wij(n - 1) + Dwij(n)

where h is the learning rate.
In regions of the error surface where large gradients exist, the d terms

may become inordinately large. The resulting weight modifications will
also be large, leading to extensive oscillations of the network output,
preventing convergence to the true error minimum. The learning co-
efficient could be set to an extremely small value to counteract this
tendency; however, this would drastically increase the training time. To
avoid this situation, the weight modification can be given a “memory”
so that it will no longer be subject to abrupt changes. That is, the weight
change algorithm is specified by:

Dwij(n) = hdjOi + l[Dwij(n - 1)]

where l is the momentum parameter. If l is set to a value close to 1, the
search in error space will be determined by the gradient accumulated
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over several epochs instead of a single iteration, improving the stability
of the network.

2.1 Artificial neural network implementation details

Specific to the ANN utilized in this work, the network architecture
consists of 30 neurons in the input layer, two hidden layers comprised
of 15 neurons each, and a single output layer neuron. The activation
functions used in the hidden layers are sigmoidal Bernoulli functions
LQ(x) [9], with Q = 1/2, and a linear function in the output layer. The
linear output activation functions allow the network output to converge
to values outside the ±1 interval set by the Bernoulli function bounds.
The input and hidden layers also have an additional bias unit clamped
to a fixed output of -1, connected to each unit in the succeeding layer
through a trainable weight.

The 30 input units are trained at equally-spaced x values over the
interval xj Œ [0, p], where each input unit corresponds to a single xj,
while the output unit is evaluated at an x value of xi = 0.3. The weights
and thresholds are initialized to uniformly distributed pseudorandom
values over [-1, 1]. A learning rate coefficient of 0.001 is used unless
otherwise specified, along with a momentum value of l = 0.9.

The network is sequentially presentedwith 100 sinc wave training sets
over the 30 points xj during each training epoch. The training sets are
specified by Tg = | sin(mpgx)/mpgx|, where g is a uniformly distributed
pseudorandomvariate in the range [-1, 1] and m is the frequencycontrol
integer. The output of the network at xi is used in the backpropagation
mode with the gradient-descent to adjust the weights for 500 training
epochs. After the training, the network is set to compute the values of
the sinc function (with g = 1) at 50 equally spaced points xn over the
interval [0, p].

3. Symmetrization of one-sided error-measures

A wide range of candidate error-metrics exists in the information-
theoretic domain for application to ANN optimization [6]. Many of
these measures have been profitably applied to constrained optimiza-
tion problems [10], such as the derivation of statistical mechanics distri-
butions, resulting in equivalent realizations with substantially reduced
effort. Here we concentrate on several such measures that were adapted
to the training of ANNs, yet proved ill-conditioned for successful ANN
convergence due to their inherently one-sided nature, and show that it is
possible to symmetrize each of these unstable error-metrics into a form
that allows for robust network training.

First, we introduce a nomenclature to facilitate description of the vari-
ous error measures. It was pointed out in [10] that information-theoretic
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Figure 2. ANN training evolution exhibiting one-sided divergence of the
Kullback–Leibler error measure.

divergence measures D can take the form of an arbitrary functional, as
long as the function meets the following criteria.

1. D is continuous in p and q.

2. D(p, q) ≥ 0.

3. D(pi : pj) + D(pj : pk) ≥ D(pi : pk).

4. D(p : q) is a convex function of p and q.

Therefore, a generalized functional F can be used to provide a conve-
nient framework for discussing the various error measures and their
symmetrization. The canonical form for a directed divergence measure
may be written as:

D(p : q) = q ◊ F(p : q). (3)

For example, the Kullback–Leibler error measure of equation (2) arises
if F(x) = x ln(x), with x = p/q. However, as ascribed earlier, this
constitutes a one-sided error measure unsuitable for convergence of
neural network error spaces. To illustrate this ill-conditioned behavior,
the feedforward neural network described in section 2 was used to learn
the nonlinear function | sin(x)/x| with the Kullback–Leibler divergence
of equation (2). The resulting temporal evolution of the error is shown
in Figure 2, with the error normalized to a maximum value of 1.

It is observed that the ANN initially oscillates in error-space about
the DKL = 0.5 value, then migrates to a negative terminal divergence
value approaching zero. Subsequent to this point, the error gradient
never again oscillated. This behavior indicates that the gradient-descent
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Figure 3. Kullback–Leibler error measure, exhibiting the unbalanced nature of
the information for discrimination with respect to the divergence of distribution
p from q.

has found a smooth (locally flat) region in the information divergence
space which has reduced the mutual information between the teacher
and predicted distributions to zero. That is, the network is perfectly
trained and the information-theoretic entropy of the network is zero.
This is however an erroneous interpretation which loses sight of the fact
that the divergence measure is strictly nonnegative. The network has not
in fact converged, but has evolved into an unbalanced state where the
information for discrimination as a measure of divergence between the
teacher and network predictions has lost meaning. In order to visualize
the one-sided and unbalanced nature of such a divergence function, the
DKL measure is depicted in Figure 3.

Therefore, it is sensible to balance the information discrimination
symmetrically between p and q to avoid the one-sided behavior. This is
achieved in the canonical sense via

D(p : q) = q ◊ F(p : q) + p ◊ F(q : p) (4)

so that the symmetrized form of the Kullback–Leibler divergence (de-
noted by the trailing S subscript and enumerated as Measure I) becomes:

DKLS(p : q) = ‚
i

pi log Kpi

qi
O + ‚

i

qi log Kqi

pi
O . (5)

A plot of the symmetrized Kullback–Leibler divergence is shown in
Figure 4, and it clearly demonstrates the balanced nature of information
for discrimination between the distributions.

The symmetrized version was employed with the exact same weight
initializations, and network parameters in the ANN to learn the same
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Figure 4. Symmetrized Kullback–Leibler error measure (h), demonstrating the
balanced nature of the information for discrimination with respect to the diver-
gence of distribution p from q.

nonlinear function as in the unsymmetrized case. The resulting network
outputs are shown in Figure 5.

Figure 5(a) shows that the symmetrized error measure allows the net-
work to converge, and that the error values are symmetrically distributed
about the converged value. The network prediction of the learned func-
tion is depicted in Figure 5(b), verifying that the network converged
to a reasonable approximation of the sinc function. One could argue
that predicted values are practically useless for a mathematical repre-
sentation, however, it is not the aim of this paper to fine-tune multilayer
perceptron performance to particular nonlinear functional representa-
tions. Rather, we are concerned with the ability to convert divergent
information-based error metrics into usable gradient-search directives.

In addition to the Kullback–Leibler measure, several one-sided di-
vergence measures were found which could be symmetrized into useful
ANN error measures. Each of these measures are enumerated below in
both the generalized functional F form, the explicit discrete probability
measure form D(p : q), and their symmetrized form DS(p : q).

Measure II. Havrda and Charvát [11] proposeda “structural a-entropy”
which incorporates an order parameter a. As a Æ 1, this function re-
duces to Shannon’s definition of entropy or information content:

F(x) =
(p/q)a - (p/q)

a - 1
; a > 0 and a π 1 (6)

DHC =
1

a - 1
‚

i

qi[p
a
i q(1-a)

i - pi] (6a)

Complex Systems, 11 (1997) 125–140



Symmetrization of Information-theoretic Error-measures 135

0 .0 0 .5 1 .0 1 .5 2 .0 2 .5 3 .0 3 .5

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

0 50 10 0 15 0 20 0 25 0 30 0 35 0 40 0 45 0 50 0

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0
(a )

(b )

Itera tion s o f T ra in in g  E p och s

D K L S

x

T arget: | s in (m πx) / m πx  |

A N N  P red ictio n

Figure 5. ANN training evolution and functional prediction with the sym-
metrized Kullback–Leibler error measure.

which in symmetrized form is:

DHCS =
1

a - 1

ÏÔÔÌÔÔ
Ó

ÊÁÁÁÁ
Ë

‚
i

pa
i q(1-a)

i - pi

ˆ̃
˜̃̃
¯

+
ÊÁÁÁÁ
Ë

‚
i

qa
i p(1-a)

i - qi

ˆ̃
˜̃̃
¯

Ô̧Ô̋
ÔÔ
˛

. (6b)

Measure III. Sharma and Mittal [12] developed a power-law functional
applicable to sum generalizations as:

F(x) =
(p/q)a - (p/q)b

a - b
; a > 1, b £ 1; or

a < 1, b ≥ 1, with a and b > 0
(7)
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DSM =
1

a - b
K‚ pa

i q(1-a)
i - ‚ pb

i q
(1-bi)
i O (7a)

DSMS =
1

a - b

ÏÔÔÌÔÔ
Ó

ÊÁÁÁÁ
Ë

‚
i

pa
i q(1-a)

i - ‚
i

pb
i q(1-b)

i

ˆ̃
˜̃̃
¯

+
ÊÁÁÁÁ
Ë

‚
i

qa
i p(1-a)

i - ‚
i

qb
i p(1-b)

i

ˆ̃
˜̃̃
¯

Ô̧Ô̋
ÔÔ
˛

. (7b)

Measures IV through IX were proposed by Kapur and Kesevan [10]
as generalized entropy functionals based on a class of information mea-
sures proposed by Csiszár [13], and are known collectively as forms of
Csiszár’s generalized measures.

Measure IV. Generalized Csiszar Type 1:

F = Kp + a
q

O log Kp + a
q + a

O ; a > 0 (8)

DCZ1 = ‚(pi + a) log Kpi + a
qi + a

O (8a)

DCZ1S = ‚(pi + a) log Kpi + a
qi + a

O + ‚(qi + a) log Kqi + a
pi + a

O . (8b)

Measure V. Generalized Csiszár Type 2:

F = K1 + ap
q

O log K1 + ap
1 + aq

O ; a > 0 (9)

DCZ2 = ‚(1 + api) log K1 + api

1 + aqi
O (9a)

DCZ2S = ‚(1 + api) log K1 + api

1 + aqi
O + ‚(1 + aqi) log K1 + aqi

1 + api
O . (9b)

Measure VI. Generalized Csiszár Type 3:

F(x) =
1
a

Ca Kp
q

O + bG log Ca Kp
q

O + bG

-
p
q

-
1
a

(a + b) log(a + b) + 1; a > 0 (10)

DCZ3 =
1
a

‚(api + bqi) log C api + bqi

qi
G -

1
a

(a + b) log(a + b) (10a)

DCZ3S =
1
a

;‚(api + bqi) log K api + bqi

qi
O

+ ‚(aqi + bpi) log K aqi + bpi

pi
O -

2
a

(a + b) log(a + b)? . (10b)
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Measure VII. Generalized Csiszár Type 4:

F Kp
q

O =
p
q

log K (p/q)
m(p/q) + (1 - a)

O ; 0 £ a £ 1 (11)

DCZ4 = ‚ pi log K pi

api + (1 - a)qi
O (11a)

DCZS4 = ‚ pi log K pi

api + (1 - a)qi
O + ‚ qi log K qi

aqi + (1 - a)pi
O . (11b)

Measure VIII. Generalized Csiszár Type 5:

F K p
q

O =
p
q

- ln Kp
q

O - 1 (12)

DCZ5 = q Cp
q

- log Kp
q

O - 1G (12a)

DCZS5 = q Cp
q

- log Kp
q

O - 1G + p Cq
p

- log Kq
p

O - 1G . (12b)

Measure IX. Generalized Csiszár Type 6:

F Kp
q

O =
(p/q)a - (p/q)

a(a - 1)
; a π 0, 1 (13)

DCZ6 =
1

a(a - 1)
CKp

q
O

a

- Kp
q

OG q (13a)

DCZS6 =
1

a(a - 1)
CKp

q
O

a

- Kp
q

OG q +
1

a(a - 1)
CKq

p
O

a

- Kq
p

OG p. (13b)

4. Evaluations via the multilayer perceptron

In order to verify the utility of the symmetrized divergence measures,
they are employed to direct the backpropagation gradient-descent train-
ing of the multilayer perceptron in learning the teacher function | sinc(x)|.
Each ANN realization is then used to predict the learned function over
50 equally-spaced points in the interval [0, p]. A measure of the pre-
diction veracity, and an indication that the network has converged to
a stable solution, is to assess the root mean-square (RMS) error of
the prediction from that of the teacher function over the 50 points.
For example, the ANN prediction using the unsymmetrized Kullback–
Liebler measure (corresponding to the temporal divergence evolution
of Figure 2) produces an RMS error of 5.933. Therefore, the average
magnitude of the error at any of the 50 prediction points was near 6,
confirming that the network did not converge to a pragmatically stable
solution. When the ANN is trained with the symmetrized Kullback–
Liebler measure, the resulting RMS error is 0.087, verifying that the
gradient-search sucessfully converged to a useful stable mean.
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Divergence Divergence RMS Divergence
Number Function Error Parameters

DKL 5.9325 a = 0.5
I DKLS 0.0874
II DHCS 0.0988 a = 0.5
III DSMS 0.2193 a = 0.5, b = 1.5
IV DCZS1 0.1984 a = 0.5
V DCZS2 0.0213 a = 0.5
VI DCZS3 0.1840 a = 0.5, b = 0.5
VII DCZS4 0.2215 a = 0.5
VIII DCZS5 0.1191
IX DCZS6 0.0955 a = 0.5

Table 1. RMS error of the ANN prediction of the | sinc | function over 50 equally
spaced points in the interval [0, p].

Table 1 lists the results of training the ANN with each of the sym-
metrized measures. Prior to symmetrization, none of the divergence
measures were capable of successfully training the ANN to a useful
organization. The results of Table 1 clearly demonstrate that sym-
metrization of the one-sided information measures transform the un-
usable divergence forms into usable information domain cost-functions
applicable to gradient-descent learning in ANNs. It is again emphasized
that the results are not intended to establish the accuracy of a multilayer
perceptron as a nonlinear functional estimator. Certainly, predictions
with a smaller RMS error are possible with an investment in selection of
network parameters and architecture. Rather, the results are intended
to verify the success of the network organization under the direction of
the symmetrized information-theoretic cost functions.

5. Conclusions

The use of information-theoretic cost functions based on Shannon’s
concept of information content has emerged as a powerful tool in
the derivation and analysis of probability distributions arising from
constrained optimization problems. The recent application of such
information-theoretic divergence measures to the goal-directed orga-
nization of ANNs has demonstrated an increased tolerance to accel-
erated learning rates in comparison to the usual network output er-
ror minimization, and demonstrated the utility of a gradient-descent
optimization in the cross-entropy (mutual information) domain. The
cross-entropy between two distributions may be viewed as a measure
of divergence between the distributions, and can therefore be used as
the cost-function for minimization. In general, such cross-entropy func-
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tions are not symmetric, that is D(p : q) π D(q : p), as can be observed
from the generalized divergence D(p : q) = qF(p : q). Such divergence
measures are inherently directed-divergences, and so do not symmet-
rically balance the flow of information between the stochastic state of
an ANN during training and the desired goal. This limitation renders
such unsymmetric divergences unsuitable as cost-functions for ANN
optimization.

The work described in this paper details a procedure for symmetriza-
tion of the basic one-sided algorithms of the Kullback–Leibler and/or
Csiszár family of cross-entropy measures so as to make them useful
for neural network applications. The basic procedure is to balance the
divergence symmetrically with mutual-information between both the p
and q, as well as the q and p as: D(p : q) = qF(p : q) + pF(q : p). With
this modification the divergence changes from a one-sided function with
a locally flat region (in the p, q space) encompassing one of the p or q
domains, into a symmetrically balanced function with global minimums
along the desired p = q boundary. This boundary delineates the D = 0
region, analogous to the Ti - Oi = 0 regions in conventional output
variable error-space. The smoothly rising amplitude on either side of
the p = q boundary ensure that the global minimums are accessible to
the gradient-descent algorithm as stable convergence points. Whereas
for the unsymmetric functions, the locally flat D = 0 regions extend
over a large area with p π q, allowing for network convergence into a
region far removed from a pragmatic network organization with D = 0.
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