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This paper formalizes linguists’ intuitions about language change, propos-
ing a dynamical systems model for language change derived from a model
for language acquisition. Linguists must explain not only how languages
are learned but also how and why they have evolved along certain trajec-
tories and not others. While the language learning problem has focused
on the behavior of individuals and how they acquire a particular gram-
mar from a class of grammars G, this paper considers a population of
such learners and investigates the emergent, global population character-
istics of linguistic communities over several generations. It is argued that
language change follows logically from specific assumptions about gram-
matical theories and learning paradigms. Roughly, as the end product
of two types of learning misconvergence over several generations, indi-
vidual language learner behavior leads to emergent, population language
community characteristics.

In particular, it is shown that any triple {G,A,P} of grammatical theory,
learning algorithm, and initial sentence distributions can be transformed
into a dynamical system whose evolution depicts the evolving linguistic
composition of a population. It is explicitly shown how this transforma-
tion can be carried out for memoryless learning algorithms and param-
eterized grammatical theories. As the simplest case, the example of two
grammars (languages) differing by exactly one binary parameter is formal-
ized, and it is shown that even this situation leads directly to a quadratic
(nonlinear) dynamical system, including regions with chaotic behavior.
The computational model is applied to some actual data, namely the ob-
served historical loss of “verb second” from old French to modern French.
Thus, the formal model allows one to pose new questions about language
phenomena that one otherwise could not ask, such as the following.

1. Do languages (grammars) correctly follow observed historical tra-
jectories? This is an evolutionary criteria for the adequacy of grammatical
theories.
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2. What are the logically possible dynamical change envelopes given
a posited grammatical theory? These are rates and shapes of linguistic
change, including the possibilities for the past and the future.

3. What can be the effect of quantified variation in initial conditions?
For example, population differences resulting from socio-political facts.

4. Other intrinsically interesting mathematical questions regarding lin-
guistic dynamical systems.

1. Introduction: The paradox of language change

Much research on language has focused on how children acquire the
grammar of their parents from “impoverished” data presented to them
during childhood. The logical problem of language acquisition, cast for-
mally, requires the learner to converge (attain) its correct target grammar
(i.e., the language of its caretakers, that belongs to a class of possible
natural language grammars). However, this learnability problem, if
solved perfectly, would lead to a paradox: If generation after genera-
tion children successfully attained the grammar of their parents, then
languages would never change with time. Yet languages do change.

Language scientists have long been occupied with describing phono-
logical, syntactic, and semantic change, often appealing to an analogy
between language change and evolution, but rarely going beyond this.
For instance, in [11] language change is talked about in this way:

Some general properties of language change are shared by other
dynamic systems in the natural world. . . In population biology
and linguistic change there is constant flux. . . . If one views a
language as a totality, as historians often do, one sees a dynamic
system.

Indeed, entire books have been devoted to the description of language
change using the terminology of population biology: genetic drift, clines,
and so forth. For a recent example, see Nichols (1992), Linguistic Diver-
sity in Space and Time. Other scientists have explicitly made an appeal
to dynamical systems in this context; see especially Hawkins and Gell-
Mann, 1989. Yet to the best of our knowledge, these intuitions have
not been formalized. That is the goal of this paper. A remarkable ef-
fort in quantifying cultural change that has many potential unexploited
applications to language is developed in [2].

In particular, we show formally that a model of language change
emerges as a logical consequence of language acquisition, an argument
made informally by Lightfoot in [11]. We shall see that Lightfoot’s in-
tuition that languages could behave just as though they were dynamical
systems is essentially correct, as is his proposal for turning language ac-
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quisition models into language change models. We can provide concrete
examples of both “gradual” and “sudden” syntactic changes, occurring
over time periods of many generations to just a single generation. In
[11] these sudden changes acting over a single generation are referred
to as “catastrophic” but this term usually has a different meaning in the
dynamical systems literature.

Many interesting points emerge from the formalization, some empir-
ical, some programmatic.

1. Learnability is a well-known criterion for the adequacy of gram-
matical theories. Our model provides an evolutionary criterion: By
comparing the trajectories of dynamical linguistic systems to histori-
cally observed trajectories, one can determine the adequacy of linguistic
theories or learning algorithms.

2. We derive explicit dynamical systems corresponding to parame-
trized linguistic theories (e.g., the head first/final parameter in head-
driven phrase structure grammars or government-binding grammars)
and memoryless language learning algorithms (e.g., gradient ascent in
parameter space).

3. In the simplest possible case of a two-language (grammar) sys-
tem differing by exactly one binary parameter, the system reduces to a
quadratic map with the usual chaotic properties (dependent on initial
conditions). That such complexity can arise even in the simplest case
suggests that formally modeling language change may be quite mathe-
matically rich.

4. We illustrate the use of dynamical systems as a research tool by
considering the loss of verb second position in old French as compared
to modern French. We demonstrate by computer modeling that one
grammatical parameterization advanced in the linguistics literature does
not seem to permit this historical change, while another does.

5. We can more accurately model the time course of language change.
In particular, in contrast to [10] and others, who mimic population
biology models by imposing an S-shaped logistic change by assumption,
we explain the time course of language change, and show that it need
not be S-shaped. Rather, language-change envelopes are derivable from
more fundamental properties of dynamical systems; sometimes they are
S-shaped, but they can also be nonmonotonic.

6. We examine by simulation and traditional phase-space plots the
form and stability of possible “diachronic envelopes” given varying
alternative language distributions, language acquisition algorithms, pa-
rameterizations, input noise, and sentence distributions. The results
bear on models of language “mixing,” so-called “wave” models for
language change, and other proposals in the diachronic literature.
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7. As topics for future research, the dynamical system model pro-
vides a novel possible source for explaining several linguistic changes
including the evolution of modern Greek metrical stress assignment from
proto-Indo-European and Bickerton’s (1990) “creole hypothesis” con-
cerning the striking fact that all creoles, irrespective of linguistic origin,
have exactly the same grammar. In the latter case, the “universality” of
creoles could be due to a parameterization corresponding to a common
condensation point of a dynamical system, a possibility not considered
in Bickerton.

2. An acquisition-based model of language change

How does the combination of a grammatical theory and learning algo-
rithm lead to a model of language change? We first note that just as with
language acquisition, there is a seeming paradox in language change: it
is generally assumed that children acquire their caretaker (target) gram-
mars without error. However, if this were always true, at first glance
grammatical changes within a population could seemingly never occur,
since generation after generation children would successfully acquire the
grammar of their parents.

Of course, Lightfoot and others have pointed out the obvious solu-
tion to this paradox: the possibility of slight misconvergence to target
grammars could, over several generations, drive language change, much
as speciation occurs in the population biology sense [11]:

As somebody adopts a new parameter setting, say a new verb-
object order, the output of that person’s grammar often differs
from that of other people’s. This in turn affects the linguistic
environment, which may then be more likely to trigger the new
parameter setting in younger people. Thus a chain reaction may
be created.

We pursue this point in detail below. Similarly, just as in the biological
case, some of the most commonly observed changes in languages seem
to occur as the result of the effects of surrounding populations, whose
features infiltrate the original language.

We begin our treatment by arguing that the problem of language
acquisition at the individual level leads logically to the problem of lan-
guage change at the group or population level. Consider a population
speaking a particular language. In our analysis this implies that all
the adult members of this population have internalized the same gram-
mar (corresponding to the language they speak). This is the target
language—children are exposed to primary linguistic data (PLD) from
this source, typically in the form of sentences uttered by caretakers
(adults). The logical problem of language acquisition is how children
acquire this target language from their PLD, that is, to come up with
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an adequate learning theory. We take a learning theory to be simply a
mapping from PLD to the class of grammars, usually effective, and so
an algorithm. For example, in a typical inductive inference model, given
a stream of sentences, an acquisition algorithm would simply update its
grammatical hypothesis with each new sentence according to some pre-
programmed procedure. An important criterion for learnability (Gold,
1967) is to require that the algorithm converge to the target as the data
goes to infinity (identification in the limit).

Now suppose that we fix an adequate grammatical theory and an
adequate acquisition algorithm. There are then essentially two means
by which the linguistic composition of the population could change over
time. First, if the PLD data presented to the child is altered (due to any
number of causes, perhaps to presence of foreign speakers, contact with
another population, disfluencies, and the like), the sentences presented
to the learner (child) are no longer consistent with a single target gram-
mar. In the face of this input, the learning algorithm might not converge
to the target grammar. Indeed, it might converge to some other gram-
mar (g2); or it might converge to g2 with some probability, g3 with some
other probability, and so forth. In either case, children attempting to
solve the acquisition problem using the same learning algorithm could
internalize grammars different from the parental (target) grammar. In
this way, in one generation the linguistic composition of the population
can change. Sociological factors affecting language change affect lan-
guage acquisition in exactly the same way, yet are abstracted away from
the formalization of the logical problem of language acquisition. In this
same sense, we similarly abstract away such causes here, though they
can be brought into the picture as variation in probability distributions
and learning algorithms; we leave this open as a topic for additional
research.

Second, even if the PLD comes from a single target grammar, the
actual data presented to the learner is truncated, or finite. After a finite
sample sequence, children may, with nonzero probability, hypothesize a
grammar different from that of their parents. This can again lead to a
differing linguistic composition in succeeding generations.

In short, the diachronic model is this: Individual children attempt
to attain the target grammar of their caretakers. After a finite num-
ber of examples, some are successful, but others may misconverge.
The next generation will therefore no longer be linguistically homo-
geneous. The third generation of children will hear sentences produced
by the second—a different distribution—and they, in turn, will attain
a different set of grammars. Over successive generations, the linguistic
composition evolves as a dynamical system.

In this view, language change is a logical consequence of specific
assumptions about the following.
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1. The grammar hypothesis space—a particular parametrization, in a para-
metric theory.

2. The language acquistion device—the learning algorithm the child uses to
develop hypotheses on the basis of data.

3. The primary linguistic data—the sentences presented to the children of
any one generation.

If we specify 1 through 3 for a particular generation, we should, in
principle, be able to compute the linguistic composition for the next
generation. In this manner, we can compute the evolving linguistic
composition of the population from generation to generation, that is, we
arrive at a dynamical system. We now proceed to make this calculation
precise. We first review a standard language acquisition framework,
and then show how to derive a dynamical system from it.

2.1 The language acquisition framework

To formalize the model, we must first state our assumptions about
grammatical theories, learning algorithms, and sentence distributions.

1. Denote by G a family of possible (target) grammars. Each grammar g Œ G
defines a language L(g) Õ S* over some alphabet S in the usual way.

2. Denote by P a distribution on S* according to which sentences are drawn
and presented to the learner. Note that if there is a well defined target gt
and only positive examples from this target are presented to the learner,
then P will have all its measure on L(gt), and zero measure on sentences
outside. Suppose n examples are drawn in this fashion, one can then let
Dn = (S*)n be the set of all n-example data sets the learner might be pre-
sented with. Thus, if the adult population is linguistically homogeneous
(with grammar g1) then P = P1. If the adult population speaks 50 percent
L(g1) and 50 percent L(g2) then P = 1/2P1 + 1/2P2.

3. Denote by A the acquisition algorithm that children use to hypothesize
a grammar on the basis of input data. A can be regarded as a mapping
fromDn to G. Acting on a particular presentation sequence dn Œ Dn, the
learner posits a hypothesisA(dn) = hn Œ G. Allowing for the possibility of
randomization, the learner could, in general, posit hi Œ Gwith probability
pi for such a presentation sequence dn.

The standard (stochastic version) learnability criterion (Gold, 1967) can
then be stated as follows.

For every target grammar gt Œ G with positive-only examples pre-
sented according to P as above, the learner must converge to the
target with probability 1, that is,

Prob[A(dn) = gt]ônÆ• 1.
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One particular way of formulating the learning algorithm is as a local
gradient ascent search through a space of target languages (grammars)
defined by a one-dimensional n-length boolean array of parameters,
with each distinct array fixing a particular grammar (language). With n
parameters, there are 2n possible grammars (languages). For example,
English and Japanese differ in that English is a so-called “verb first”
language, while Japanese is “verb final.” Given this framework, we
can state the so-called triggering learning algorithm (TLA) from [5] as
follows.

Step 1. Initialize. Start at some random point in the (finite) space of possible
parameter settings, specifying a single hypothesized grammar with its
resulting extension as a language.

Step 2. Process input sentence. Receive a positive example sentence si at time ti
(examples drawn from the language of a single target grammar L(Gt))
from a uniform distribution on unembedded (nonrecursive) sentences
of the target language.

Step 3. Learnability on error detection. If the current grammar parses (gener-
ates) si, then go to Step 2; otherwise, continue.

Step 4. Single-step hill climbing. Select a single parameter uniformly at random,
to flip from its current setting, and change it (0 mapped to 1, 1 to 0)
if and only if that change allows the current sentence to be analyzed;
otherwise, leave the current parameter settings unchanged.

Step 5. Iterate. Go to Step 2.

Of course, this algorithm carries out “identification in the limit” in
the standard terminology of learning theory (Gold, 1967); it does not
halt in the conventional sense.

It turns out that if the learning algorithm A is memoryless (in the
sense that previous example sentences are not stored) and G can be
described by a finite number of parameters, then we can describe the
learning system A, Gt, G as a Markov chain M with as many states as
there are grammars in G. More specifically the states in M are in one-to-
one correspondence with grammars g Œ G and the target grammar Gt
corresponds to a particular target state st of M. The transition probabil-
ities between states in M can be computed straightforwardly based on
set difference calculations between the languages corresponding to the
Markov chain states. We omit the details of this demonstration here;
for a simple, explicit calculation in the case of one parameter, see sec-
tion 3. For a more detailed analysis of learnability issues for memoryless
algorithms in finite parameter spaces, consult [14, 18, 19].

2.2 From language learning to popuation dynamics

The framework for language learning has learners attempting to infer
grammars on the basis of linguistic data. At any point in time n (i.e.,
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after hearing n examples) the learner has a current hypothesis h with
probability pn(h). What happens when there is a population of learn-
ers? Since an arbitrary learner has a probability pn(h) of developing
hypothesis h (for every h Œ G), it follows that a fraction pn(h) of the
population of learners internalize the grammar h after n examples. We
therefore have a current state of the population after n examples. This
state of the population might well be different from the state of the
parent population. Assume for now that after n examples, maturation
occurs, that is, after n examples the learner retains the grammatical hy-
pothesis for the rest of its life. Then one would arrive at the state of the
mature population for the next generation. This new generation now
produces sentences for the following generation of learners according
to the distribution of grammars in its population. Then, the process
repeats itself and the linguistic composition of the population evolves
from generation to generation.

We can now define a discrete time dynamical system by providing its
two necessary components as follows.

1. A state space. A set of system states S. Here the state space is the
space of possible linguistic compositions of the population. Each state is
described by a distribution Ppop on G describing the language spoken by
the population. As usual, one needs to be able to define a s-algebra on
the space of grammars, and so on. This is unproblematic for the cases
considered here because the set of grammars is finite. At any given point
in time t the system is in exactly one state s Œ S.

2. An update rule. How the system states change from one time step to the
next. Typically, this involves specifying a function f that maps st Œ S to
st+1. In general, this mapping could be fairly complicated. For example,
it could depend on previous states, future states, and so forth; for reasons
of space we do not consider all possibilities here. For more information
see Strogatz, (1993).

For example, a typical linear dynamical system might consist of state
variables x (where x is a k-dimensional state vector) and a system of dif-
ferential equations x¢ = Ax (A is a matrix operator) which characterize
the evolution of the states with time. RC circuits are a simple example
of linear dynamical systems. The state (current) evolves as the capacitor
discharges through the resistor. Population growth models (e.g., using
logistic equations) provide other examples.

As a linguistic example, consider the three-parameter syntactic space
described in [5]. This system defines eight possible “natural” grammars,
that is, G has eight elements. We can picture a distribution on this space
as shown in Figure 1. In this particular case, the state space is

S =
ÏÔÔÌÔÔ
Ó
P Œ R8 |

8‚
i=1

Pi = 1
Ô̧Ô̋
ÔÔ
˛

.
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Figure 1. A simple illustration of the state space for the three-parameter syntactic
case. There are eight grammars. A probability distribution on these eight
grammars, as shown above, can be interpreted as the linguistic composition of
the population. Thus, a fraction P1 of the population have internalized grammar
g1 and so on.

Here we interpret the state as the linguistic composition of the popu-
lation. Note that we do not allow for the possibility of a single learner
having more than one hypothesis at a time; an extension to this case,
in which individuals would more closely resemble the “ensembles” of
particles in a thermodynamic system, is left for future research. For
example, a distribution that puts all its weight on grammar g1 and 0
everywhere else indicates a homogeneous population that speaks a lan-
guage corresponding to grammar g1. Similarly, a distribution that puts
a probability mass of 1/2 on g1 and 1/2 on g2 denotes a population (non-
homogeneous) with half its speakers speaking a language corresponding
to g1 and half speaking a language corresponding to g2.

To see in detail how the update rule may be computed, consider
the acquisition algorithm A. For example, given the state at time t,
(Ppop,t), the distribution of speakers in the parental population, one can
obtain the distribution with which sentences from S* will be presented
to the learner. To do this, imagine that the ith linguistic group in the
population, speaking language Li, produces sentences with distribution
Pi. Then for any w Œ ⁄*, the probability with which w is presented to
the learner is given by

P(w) =‚
i

Pi(w)Ppop,t(i).

This fixes the distribution with which sentences are presented to the
learner. The logical problem of language acquisition also assumes some
success criterion for attaining the mature target grammar. For our
purposes, we take this as being one of two broad possibilities: either (1)
the usual Gold scenario of identification in the limit, what we call the
limiting sample case; or (2) identification in a fixed, finite time, what we
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call the finite sample case. Of course, a variety of other success criteria,
for example, convergence within some epsilon, or polynomial in the size
of the target grammar, are possible; each leads to potentially different
language change models. We do not pursue these alternatives here.

Consider case (2) first. Here, one draws n example sentences accord-
ing to distribution P, and the acquisition algorithm develops hypotheses
(A(dn) Œ G). One can, in principle, compute the probability with which
the learner will posit hypothesis hi after n examples:

Finite Sample: Prob[A(dn) = hi] = pn(hi). (1)

The finite sample situation is always well defined, that is, the probability
pn always exists. This is easy to see for deterministic algorithms, Adet.
Such an algorithm would have a precise behavior for every data set
of n examples drawn. In our case, the examples are drawn in i.i.d.
fashion according to a distribution P on S*. It is clear that pn(hi) =
P[{dn |Adet(dn) = hi}]. For randomized algorithms, the case is trickier,
though tedious, but the probability still exists because all the finite
choice paths over all sequences of length n is enumerable. Previous
work [15–19] shows how to compute pn for randomized memoryless
algorithms.

Now turn to case (1), the limiting case. Here learnability requires
pn(gt) to go to 1 for the unique target grammar gt if such a grammar
exists. However, in general there need not be a unique target grammar
since the linguistic population can be nonhomogeneous. Even so, the
following limiting behavior might still exist:

Limiting Sample: lim
nÆ•

Prob[A(dn) = hi] = p(hi). (2)

Turning from the individual child to the population, since the in-
dividual child internalizes grammar hi Œ G with probability pn(hi) in
the “finite sample” case or with probability p(hi) “in the limit,” in a
population of such individuals one would therefore expect a proportion
pn(hi) or p(hi) respectively to have internalized grammar hi. In other
words, the linguistic composition of the next generation is given by
Ppop,t+1(hi) = pn(hi) for the finite sample case and by Ppop,t+1(hi) = p(hi)
in the limiting sample case. In this fashion,

Ppop,t ô
A Ppop,t+1.

Remarks
1. For a Gold-learnable family of languages and a limiting sample

assumption, homogeneous populations are always stable. This is simply
because each child and therefore the entire population always eventually
converges to a single target grammar, generation after generation.

2. However, the finite sample case is different from the limiting sample
case. Suppose we have solved the maturation problem, that is, we know
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roughly the time, or number of examples N the learner takes to develop
its mature (adult) hypothesis. In that case pN(h) is the probability
that a child internalizes the grammar h, and pN(h) is the percentage of
speakers of Lh in the next generation. Note that under this finite sample
analysis, even for a homogeneous population with all adults speaking
a particular language (corresponding to grammar, g, say), pN(g) will
not be 1, that is, there will be a small percentage of learners who have
misconverged. This percentage could blow up over several generations,
and we therefore have potentially unstable languages.

3. The formulation is very general. Any {A,G,P} triple yields a dy-
namical system. Note that this probability could evolve with generations
as well, which would complete all the logical possibilites. However, for
simplicity, we assume that this does not happen. In short:

(G,A, {Pi})ô D(dynamical system).

4. The formulation also does not assume any particular linguistic the-
ory, learning algorithm, or distribution with which sentences are drawn.
Of course, we have implicitly assumed a learning model, that is, posi-
tive examples are drawn in i.i.d. fashion and presented to the learner.
Our dynamical systems formalization follows as a logical consequence
of this learning framework. One can conceivably imagine other learn-
ing frameworks—these would potentially give rise to other kinds of
dynamical systems—but we do not formalize them here.

In previous works [15–19] we investigated the problem of learnability
within parametric systems. In particular, we showed that the behavior
of any memoryless algorithm can be modeled as a Markov chain. This
analysis allows us to solve equations (1) and (2), and thus obtain the
update equations for the associated dynamical system. Let us now show
how to derive such models in detail. We first provide the particular
G,A, {Pi} triple, and then give the update rule.

The learning system triple
G: Assume there are n parameters, this leads to a space G with 2n different

grammars.

A: Let us imagine that the child learner follows some memoryless (incremen-
tal) algorithm to set parameters. For the most part, we will assume that
the algorithm is the TLA (the single step, gradient-ascent algorithm of
[5]) or one of the variants discussed in [18, 19].

{Pi}: Let speakers of the ith language Li in the population produce sentences
according to the distribution Pi. For the most part we will assume in our
simulations that this distribution is uniform on degree-0 (unembedded)
sentences, exactly as in the learnability analysis of [5] or [18, 19].
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The update rule

We can now compute the update rule associated with this triple. Sup-
pose the state of the parental population is Ppop,n on G. Then one can
obtain the distribution P on the sentences of S* according to which
sentences will be presented to the learner. Once such a distribution is
obtained, then given the Markov equivalence established earlier, we can
compute the transition matrix T according to which the learner updates
its hypotheses with each new sentence. From T one can finally compute
the following quantities, one for the finite sample case and one for the
limiting sample case:

Prob[Learner’s hypothesis = hi Œ G after m examples]

= {
1
2n (1, . . . , 1)¢Tm}[i].

Similary, making use of the limiting distributions of Markov chains
(Resnick, 1992) one can obtain the following (where ONE is a 1/2n¥1/2n

matrix with all ones).

Prob[Learner’s hypothesis = hi“in the limit”]
= (1, . . . , 1)¢(I - T +ONE)-1.

These expressions allow us to compute the linguistic composition of the
population from one generation to the next according to our analysis of
the previous section.

Remark
The limiting distribution case is more complex than the finite sample
case and requires some careful explanation. There are two possibilities.
If there is just a single target grammar, then, by definition, the learners
all identify the target correctly in the limit, and there is no further change
in the linguistic composition from generation to generation. This case is
essentially uninteresting. If there are two or more target grammars, then
recalling our analysis of learnability [18, 19], there can be no absorbing
states in the Markov chain corresponding to the parametric grammar
family. In this situation, a single learner will oscillate between some set
of states in the limit. In this sense, learners will not converge to any
single, correct target grammar. However, there is a sense in which we
can characterize limiting behavior for learners: although a given learner
will visit each of these states infinitely often in the limit, it will visit some
more often than others. The exact percentage the learner will be in a
particular state is given by equation (2). Therefore, since we know the
fraction of the time the learner spends in each grammatical state in the
limit, we assume that this is the probability with which it internalizes
the grammar corresponding to that state in the Markov chain.

The following summarizes the basic computational framework for
modeling language change.
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1. Let p1 be the initial population mix, that is, the percentage of differ-
ent language speakers in the community. Assuming that the ith group
of speakers produces sentences with probability Pi, we can obtain the
probability P with which sentences in S* occur for the next generation of
learners.

2. From P we can obtain the transition matrix T for the Markov learning
model and the limiting distribution of the linguistic composition p2 for
the next generation.

3. The second generation now has a population mix of p2. We repeat step 1
and obtain p3. Continuing in this fashion, in general we can obtain pi+1
from pi.

This completes the abstract formulation of the dynamical system
model. Next, we choose three specific linguistic theories and learning
paradigms to model particular kinds of language changes, with the goal
of answering the following questions.

Can we really compute all the relevant quantities to specify the dynamical
system?

Can we evaluate the behavior (phase-space characteristics) of the resulting
dynamical system?

Does the dynamical system model, the formalization, shed light on di-
achronic models and linguistic theories generally?

In the remainder of this paper we give some concrete answers to these
questions within the principles and parameters theory of modern linguis-
tic theory. We turn first to the simplest possible mathematical case, that
of two languages (grammars) fixed by a single binary parameter. We
then analyze a possibly more relevant, and more complex system, with
three binary parameters. Finally, to tackle a more realistic historical
problem, we consider a five-parameter system that has actually been
used in other contexts to account for language change.

3. One-parameter models of language change

Consider the following simple scenario.

G: Assume that there are only two possible grammars (parameterized by one
boolean valued parameter) associated with two languages in the world,
L1 and L2. (This might in fact be true in some limited linguistic contexts.)

P: Suppose that speakers who have internalized grammar g1 produce sen-
tences with a probability distribution P1 (on the sentences of L1). Sim-
ilarly, assume that speakers who have internalized grammar g2 produce
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sentences with P2 (on sentences of L2).
One can now define

a = P1[L1 » L2]; 1 - a = P1[L1 î L2]

and similarly

b = P2[L1 » L2]; 1 - b = P2[L2 î L1].

A: Assume that the learner uses a one-step, greedy, hill climbing approach to
setting target parameters. The TLA described earlier is one such example.

N: Let the learner receive just two example sentences before maturation
occurs, that is, after two example sentences, the current grammatical
hypothesis of the learner will be retained for the rest of its life.

Given this framework, the learnability question for this parametric
system can be easily formulated and analyzed. Specifically, given a
particular target grammar (gi Œ G), and given example sentences drawn
according to Pi and presented to the learnerA, one can ask whether the
hypothesis of the learner will converge to the target.

Now it is possible to characterize the behavior of the individual
learner by a Markov chain with two states, one corresponding to each
grammar (see section 2 and [18, 19]). With each example the learner
moves from state to state according to the transition probabilities of the
chain. The transition probabilities can be calculated and depend upon
the distribution with which sentences are drawn and the relative overlap
between the languages L1 and L2. In particular, if received sentences
follow distribution P1, the transition matrix is T1. This would be the
case if the target grammar were g1. If the target grammar is g2 and
sentences received according to distribution P2, the transition matrix
would be T2 as shown:

T1 = C 1 0
1 - a a G

T2 = C b 1 - b
0 1 G .

Let us examine T1 in order to understand the behavior of the learner
when g1 is the target grammar. If the learner starts out in state 1
(initial hypothesis g1), then it remains there forever. This is because
every sentence that it receives can be analyzed and the learner will never
have to entertain an alternative hypothesis. Therefore the transition
(1 Æ 1) has probability 1 and the transition (1 Æ 2) has probability 0.
If the learner starts out in state 2, then after one example sentence, the
learner will remain there with probability a—the probability that the
learner will receive a sentence that it can analyze, that is, a sentence in
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L1«L2. Correspondingly, with probability 1-a, the learner will receive
a sentence that it cannot analyze and will have to change its hypothesis.
Thus, the transition (2 Æ 2) has probability a and the transition (2 Æ 1)
has probability 1 - a.

T1 characterizes the behavior of the learner after one example. In
general, Tk

1 characterizes the behavior of the learner after k examples.
It may be easily seen that as long as a < 1, the learner converges to
the grammar g1 in the limit irrespective of its starting state. Thus the
grammar g1 is Gold-learnable.

A similar analysis can be carried out for the case when the target
grammar is g2. In this case, T2 describes the corresponding behavior of
the learner, and g2 is Gold-learnable if b < 1. In short, the entire system
is Gold-learnable if a, b < 1, crucially assuming that maturation occurs
and the learner fixes a hypothesis forever after some N examples, with
N given in advance. Clearly, if N is very large, then the learner will,
with high probability, acquire the unique target grammar, whatever that
grammar might be. At the same time, there is a finite probability that
the learner will misconverge and this will have consequences for the
linguistic composition of the population as discussed in section 2. For
the analysis that follows, we will assume that N = 2.

3.1 One-parameter systems: The linguistic population

Continuing with our one-parameter model, we next analyze distribu-
tions over speakers. At any given point in time, the population consists
only of speakers of L1 and L2. Consequently, the linguistic composition
can be represented by a single variable, p: this will denote the fraction
of the population speaking L1. Clearly 1 - p will speak L2. Therefore
this community of language composition over time can be explicitly
computed as follows.

Theorem 1. The linguistic composition in the n+1th (pn+1) generation
is provided by the following transformation on the linguistic composi-
tion of nth generation (pn):

pn+1 = Ap2
n + Bpn + C

where A = 1/2((1 - b)2 - (1 - a)2), B = b(1 - b) + (1 - a), and C = b2/2.

Proof. This is a simple specialization of the formula given in section 2.
Details are left to the reader.

Remarks
1. When a = b, the system has exponential growth. When a π b

the dynamical system is a quadratic map (which can be reduced by a
transformation of variables to the logistic, and shares the dynamical
properties of the logistic). See Figure 2.
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Figure 2. Evolution of linguistic populations whose speakers differ only in a
single, “verb second” parameter value, speaking two languages L1 and L2.
This reduces to a one-parameter model as discussed in the text. As we vary
the probabilities that speakers of the two languages produce sentences in the
intersection of L1 and L2, a and b respectively, we get differently shaped curves.
When a = b the growth is exponential, with different shapes for different values
of a and b (less than 1.0). When a is not equal to b the system has a qualitatively
different shape, a logistic growth.

2. The scenario a π b, that the distributions for L1 and L2 differ, is
much more likely to occur in the real world. Consequently, we are more
likely to see logistic growth rather than exponential. Indeed, various
parametric shifts observed historically seem to follow an S-shaped curve.
Models of these shifts have typically assumed the logistic growth [10].
Crucially, in this simple case, the logistic form has now been derived
as a conseqence of specific assumptions about how learning occurs at
the individual level, rather than assumed, as in all previous models for
language change that we are aware of.

3. We get a class of dynamical systems. The quadratic nature of our
map comes from the fact that N = 2. If we choose other values for N
we would get cubic and higher order maps. In other words, there are
already an infinite number of maps in the simple one-parameter case.
For larger parametric systems the mathematical situation is significantly
more complex.

4. Logistic maps are known to be chaotic. In our system, it is possible
to show the following.

Theorem 2. Due to the fact that a, b £ 1, the dynamical system never
enters a chaotic regime.
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This observation naturally raises the question of whether nonchaotic
behavior holds for all grammatical dynamical systems, specifically the
linguistically “natural” cases. Or are there linguistic systems where
chaos will manifest itself? It would obviously be quite interesting if
all the natural grammatical spaces were nonchaotic. We leave these as
open questions.

We next turn to more linguistically plausible applications of the dy-
namical systems model. We begin with a simple three-parameter system
as our first example, considering variations on the learning algorithm,
sentence distributions, and sample size available for learning. We then
consider a different, five-parameter system already presented in the lit-
erature [3] as one intended to partially characterize the change from old
French to modern French.

4. A three-parameter system

In section 3 we developed the necessary mathematical and computa-
tional tools to completely specify the dynamical systems corresponding
to memoryless algorithms operating on finite parameter spaces. In this
section we investigate the behavior of these dynamical systems. Recall
that every choice of (G,A, {Pi}) gives rise to a unique dynamical system.
We start by making specific choices for these three elements as follows.

G: This is a three-parameter syntactic subsystem described in [5]. Thus G
has exactly eight grammars, generating languages from L1 through L8,
as shown in the appendix of this paper (taken from [10]).

A: The memoryless algorithms we consider are the TLA, and variants by
dropping either or both of the single-valued and greediness constraints.

{Pi}: For the most part, we assume sentences are produced according to a
uniform distribution on the degree-0 sentences of the relevant language,
that is, Pi is uniform on (degree-0 sentences of) Li.

Ideally of course, a complete investigation of diachronic possibilities
would involve varying G, A, and P and characterizing the resulting
dynamical systems by their phase-space plots. Rather than explore this
entire space, we first consider only systems evolving from homogeneous
initial populations, under four basic variants of the learning algorithm
A. This will give us an initial grasp of how linguistic populations can
change. Indeed, linguistic change has been studied before; even the dy-
namical system metaphor itself has been invoked. Our computational
paradigm lets us say much more than these previous descriptions: We
can say precisely what the rates of change will be and we can deter-
mine what diachronic population curve changes will look like, without
stipulating in advance that they must be S-shaped (sigmoid) or not, and
without curve fitting to a predefined functional form.
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4.1 Homogeneous initial populations

First we consider the case of a homogeneous population, that is, without
noise or confounding factors like foreign target languages. How stable
are the languages in the three-parameter system in this case? To deter-
mine this, we begin with a finite-sample analysis with n = 128 example
sentences (recall by the analysis of [15–19] that learners converge to tar-
get languages in the three-parameter system with high probability after
hearing this many sentences). Some small proportion of the children
misconverge; the goal is to see whether this small proportion can drive
language change—and if so, in what direction. To give the reader some
idea of the possible outcomes, let us consider the four possible variations
in the learning algorithm (±Single Step, ±Greedy) keeping the sentence
distributions and learning sample fixed.

4.1.1 Variation 1: A = TLA (+Single Step, +Greedy); Pi =Uniform;
Finite Sample = 128

Suppose the learning algorithm is the TLA. Table 1 shows the language
mix after 30 generations. Languages are numbered from 1 to 8. Recall
that +V2 refers to a language that has the verb second property, and
-V2 one that does not.

Observations
Some striking patterns regarding the resulting population mixes can be
noted.

1. All the +V2 languages are relatively stable, that is, the linguistic
composition did not vary significantly over 30 generations. This means
that every succeeding generation acquired the target parameter settings
and no parameter drifts were observed over time.

Initial Language Change to Language?
(-V2) 1 2 (0.85), 6 (0.1)
(+V2) 2 2 (0.98); stable
(-V2) 3 6 (0.48), 8(0.38)
(+V2) 4 4 (0.86); stable
(-V2) 5 2 (0.97)
(+V2) 6 6 (0.92); stable
(-V2) 7 2 (0.54), 4(0.35)
(+V2) 8 8 (0.97); stable

Table 1. Language change driven by misconvergence from a homogeneous initial
linguistic population. A finite-sample analysis was conducted allowing each
child learner 128 examples to internalize its grammar. After 30 generations,
initial populations drifted (or not, as shown in the table) to different final
linguistic compositions.
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2. In contrast, populations speaking -V2 languages all drift to +V2
languages. Thus a population speaking L1 winds up speaking mostly
L2 (85%). A population speaking language L7 gradually shifts to a
population with 54 percent speaking L2 and 35 percent speaking L4
(with a smattering of other speakers) and apparently remains basically
stable in this mix thereafter. Note that the relative stability of +V2
languages and the tendency of -V2 languages to drift to +V2 is exactly
contrary to evidence in the linguistic literature. For example, in [11] it
is claimed that the tendency to lose V2 dominates the reverse tendency
in languages of the world. Certainly, both English and French lost the
V2 parameter setting, an empirically observed phenomenon that needs
to be explained. Immediately then, we see that our dynamical system
does not evolve in the expected manner. The reason could be due to any
of the assumptions behind the model: the parameter space, the learning
algorithm, the initial conditions, or the distributional assumptions about
sentences presented to learners. Exactly which is in error remains to be
seen, but nonetheless our example shows concretely how assumptions
about a grammatical theory and learning theory can make evolutionary,
diachronic predictions—in this case, incorrect predictions that falsify
the assumptions.

• • • • • •
•

•

•

•

•

•

•
•

• • • • • •

Figure 3. Percentage of a population speaking languages L1 and L2, measured
on the y-axis, as the population evolves over some number of generations,
measured on the x-axis. The plot has been shown only up to 20 generations, as
the proportions of L1 and L2 speakers do not vary significantly thereafter. Note
that this curve is S-shaped. In [7] such a shape is imposed using models from
population biology, while we derive this shape as an emergent property of our
dynamical model. L1 and L2 differ only in the V2 parameter setting.
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Figure 4. Percentage of the population speaking languages L5 and L2 as the
population evolves over a number of generations. Note that a complete shift
from L5 to L2 occurs after just four generations.

3. The rates at which the linguistic composition changes vary signif-
icantly from language to language. Consider for example the change of
L1 to L2. Figure 3 shows the gradual decrease in speakers of L1 over
successive generations along with the increase in L2 speakers. We see
that over the first six or seven generations very little change occurs, but
over the next six or seven generations the population changes at a much
faster rate. Note that in this particular case the two languages differ
only in the V2 parameter, so the curves essentially plot the gain of V2.
In contrast, consider Figure 4 which shows the decrease of L5 speak-
ers and the shift to L2. Here we note a sudden change: over a space
of just four generations, the population shifts completely. Analysis of
the time course of language change has been given some attention in
linguistic analyses of diachronic syntax change, and we return to this
issue later.

4. We see that in many cases a homogeneous population splits up into
different linguistic groups, and seems to remain stable in that mix. In
other words, certain combinations of language speakers seem to asymp-
tote towards equilibrium (at least through 30 generations). For example,
a population of L7 speakers shifts over five or six generations to one
with 54 percent speaking L2 and 35 percent speaking L4 and remains
that way with no shifts in the distribution of speakers. Of course, we
do not know for certain whether this is really a stable mixture. It could
be that the population mix could suddenly shift after another 100 gen-
erations. What we really need to do is characterize the stable points or
“limit cycles” of these dynamical systems. Other linguistic mixes can be
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inherently unstable; they might drift systematically to stable situations,
or might shift dramatically (as with language L1).

5. It seems that the observed instability and drifts are to a large
extent an artifact of the learning algorithm. Remember that the TLA
suffers from the problem of local maxima. We regard local maxima of
a language Li to be alternative absorbing states (sinks) in the Markov
chain for that target language. This formulation differs slightly from
the conception of local maxima in [5], a matter discussed at some length
in [15]. Thus, according to our definition, L4 is not a local maxima for
L5 and consequently no shift is observed. We note that those languages
whose acquisition is not impeded by local maxima (the +V2 languages)
are stable over time. Languages that have local maxima are unstable; in
particular they drift to the local maxima over time. Now consider L7. If
this is the target language, then there are two local maxima (L2 and L4)
and these are precisely the states to which the system drifts over time.
The same is true for languages L5 and L3. In this respect, the behavior
of L1 is quite unusual since it actually does not have any local maxima,
yet it tends to flip the V2 parameter over time.

Now let us consider a learning algorithm different from the TLA
that does not suffer from local maxima problems, to see whether this
changes the dynamical system results.

4.1.2 Variation 2: A = +Greedy, -Single Value; Pi = Uniform;
Finite Sample = 128

Consider a simple variant of the TLA obtained by dropping the single-
valued constraint. This implies that the learner is no longer constrained
to change just one parameter at a time: on being presented with a
sentence it cannot analyze, it chooses any of the alternative grammars
and attempts to analyze the sentence with it. Greediness is retained; thus
the learner retains its original hypothesis if the new one is also not able to
analyze the sentence. Given this new learning algorithm, and retaining
all the other original assumptions, Table 2 shows the distribution of
speakers after 30 generations.

Observations
In this situation there are no local maxima, and the evolutionary pattern
takes on a very different nature. There are two distinct observations to
be made.

1. All homogeneous populations eventually drift to a strikingly simi-
lar population mix, irrespective of what language they start from. What
is unique about this mix? Is it a stable point (or attractor)? Further
simulations and theoretical analyses are needed to resolve this question.

2. All homogeneous populations drift to a population mix of only
+V2 languages. Thus, the V2 parameter is gradually set over succeed-
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Initial Language Change to Language?
-V2 1 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)
+V2 2 2 (0.42), 4 (0.19), 6 (0.17), 8 (0.12)
-V2 3 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
+V2 4 2 (0.41), 4 (0.19), 6 (0.18), 8 (0.13)
-V2 5 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
+V2 6 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
-V2 7 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)
+V2 8 2 (0.40), 4 (0.19), 6 (0.18), 8 (0.13)

Table 2. Language change driven by misconvergence. A finite-sample analysis
was conducted allowing each child learner (following the TLA with single-value
dropped) 128 examples to internalize its grammar. Initial populations were
linguistically homogeneous, and they drifted to different linguistic compositions.
The major language groups after 30 generations have been listed in this table.
Note how all initially homogeneous populations tend to the same composition.

ing generations by all people in the community (irrespective of which
language they speak). In other words, as before, there is a tendency to
gain V2 rather than lose V2, contrary to the empirical facts.

As an example, Figure 5 shows the changing percentage of the pop-
ulation speaking the different languages starting from a homogeneous
population speaking L5. As before, learners who have not converged to
the target in 128 examples are the driving force for change here. Note
again the time evolution of the grammars. For about five generations

Figure 5. Time evolution of grammars using a greedy learning algorithm with
no single value constraint in place.
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there is only a slight decrease in the percentage of speakers of L5. Then
the linguistic patterns switch rapidly over the next seven generations to
a relatively stable mix.

4.1.3 Variations 3 & 4: -Greedy, ±Single Value constraint; Pi = Uniform;
Finite Sample = 128

Having dropped the single-value constraint, we consider the next ob-
vious variation in the learning algorithm: dropping greediness while
varying the single-value constraint. Again, our goal is to see whether
this makes any difference in the resulting dynamical system. This gives
rise to the following two different learning algorithms.

1. Allow the learning algorithm to pick any new grammar at most one
parameter value away from its current hypothesis (retaining the single
value constraint, but without greediness, i.e., the new grammar does not
have to be able to parse the current input sentence).

2. Allow the learning algorithm to pick any new grammar at each step (no
matter how far away from its current hypothesis).

In both cases, the population mix after 30 generations is the same ir-
respective of the initial language of the homogeneous population. These
results are shown in Table 3.

Observations
1. Both algorithms yield dynamical systems that arrive at the same

population mix after 30 generations. The path by which they arrive at
this mix is, however, not the same (see Figure 6).

2. The final population mix contains all languages in significant pro-
portion. This is in distinct contrast to the previous situations, where we
saw that -V2 languages were eliminated over time.

Initial Language Change to Language?
Any Language 1 (0.11), 2 (0.16), 3 (0.10), 4 (0.14)
(Homogeneous) 5 (0.12), 6 (0.14), 7 (0.10), 8 (0.13)

Table 3. Language change driven by misconvergence, using two different ac-
quisition algorithms that do not obey a local gradient-ascent rule (a greediness
constraint). A finite-sample analysis was conducted with the learning algorithm
following a random-step algorithm or else a single-step algorithm, along with
128 examples to internalize its grammar. Initial populations were linguistically
homogeneous, and they drifted to different linguistic compositions. The major
language groups after 30 generations have been listed in this table. Note that
all initially homogeneous populations converge to the same final composition.
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Figure 6. Time evolution of linguistic composition for the situations where
the learning algorithm is -Greedy, +Single Value constraint (dotted line), and
-Greedy, -Single Value (solid line). Only the percentage of people speaking L1

(-V2) and L2 (+V2) are shown. The initial population is homogeneous and
speaks L1. The percentage of L1 speakers gradually decreases to about 11 per-
cent. The percentage of L2 speakers rises to about 16 percent from 0 percent.
The two dynamical systems converge to the same population mix; however,
their trajectories are not the same—the rates of change are different, as shown
in this plot.

4.2 Modeling diachronic trajectories

With a basic notion of how diachronic systems can evolve given different
learning algorithms, we turn next to the question of population trajec-
tories. While we can already see that some evolutionary trajectories have
a “linguistically classical” S-shape, their smoothness can vary. However,
our formalization allows us to say much more than this. Unlike the
previous work in diachronic linguistics that we are familiar with, we can
explore the space of possible trajectories, examining factors that affect
their evolutionary time course, without assuming an a priori S-shape.

For example, in Bailey (1973) a “wave” model of linguistic change is
proposed: linguistic replacements follow an S-shaped curve over time.
In Bailey’s own words (from [10]):

A given change begins quite gradually; after reaching a certain
point (say, twenty percent), it picks up momentum and proceeds
at a much faster rate; and finally tails off slowly before reaching
completion. The result is an S-curve: the statistical differences
among isolects in the middle relative times of the change will be
greater than the statistical differences among the early and late
isolects.
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The idea that linguistic changes follow an S-curve has also been
proposed in [20, 22]. More specific logistic forms have been advanced
in [4, 8, 9]. Here, the idea of a logistic functional form is borrowed from
population biology where it is demonstrable that the logistic governs the
replacement of organisms and of genetic alleles that differ in darwinian
fitness. However, it is conceded in [9] that “unlike in the population
biology case, no mechanism of change has been proposed from which
the logistic form can be deduced.”

Crucially, in our case, we suggest a specific mechanism of change: an
acquisition-based model where the combination of grammatical theory,
learning algorithms, and distributional assumptions on sentences drive
change. The specific form might or might not be S-shaped, and might
have varying rates of change. Of course, we do not mean to say that we
can simulate any possible trajectory—that would make the formalism
empty. Rather, we are exploring the initial space of possible trajectories,
given some example initial conditions that have been already advanced
in the literature. Because the mathematics for dynamical systems is in
general quite complex, at present we cannot make general statements
of the form, “under these particular initial conditions the trajectory will
be sigmoidal, and under these other conditions it will not be.” We
have conducted only very preliminary investigations demonstrating that
potentially at least, reasonable, distinct initial conditions can lead to
demonstrably different trajectories.

Among the other factors that affect evolutionary trajectories are mat-
uration time, that is, the number of sentences available to the learner
before it internalizes its adult grammar, and the distributions with which
sentences are presented to the learner. We examine these in turn.

4.2.1 The effect of maturation time or sample size

One obvious factor influencing the evolutionary trajectories is the mat-
urational time, that is, the number N of sentences the child is allowed
to hear before forming its mature hypothesis. This was fixed at 128 in
all the systems shown so far (based in part on our explicit computation
for the Markov convergence time in this situation). Figure 7 shows the
effect of varying N on the evolutionary trajectories. As usual, we plot
only a subspace of the population. In particular, we plot the percentage
of L2 speakers in the population with each succeeding generation. The
initial composition of the population was homogeneous (with people
speaking L1).

Observations
1. The initial rate of change of the population is highest when the

maturation time is smallest, that is, the learner is allowed the least
amount of time to develop its mature hypothesis. This is not surprising.
If the learner were allowed access to a lot of examples to make its mature
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Figure 7. Time evolution of linguistic composition when varying maturation time
(sample size). The learning algorithm used is the +Greedy, -Single Value. Only
the percentage of people speaking L2 (+V2) is shown. The initial population is
homogeneous and speaks L1. The maturation time was varied through 8, 16,
32, 64, 128, and 256, giving rise to the six curves shown. The curve with the
highest initial rate of change corresponds to eight examples for maturation time.
The initial rate of change decreases as the maturation time N increases. The
value at which these curves asymptote also seems to vary with the maturation
time, and increases monotonically with it.

hypothesis, most learners would reach the target grammar. Very few
would misconverge, and the linguistic composition would change little
over the next generation. On the other hand, if the learner were allowed
very few examples to develop its hypothesis, many would misconverge,
possibly causing great change over one generation.

2. The “stable” linguistic compositions seem to depend upon matu-
ration time. For example, if learners are allowed only eight examples,
the percentage of L2 speakers rises quickly to about 0.26. On the other
hand, if learners are allowed 128 examples, the percentage of L2 speak-
ers eventually rises to about 0.41.

3. Note that the trajectories do not have an S-shaped curve in contrast
to the results in [9].

4. The maturation time is related to the order of the dynamical system.

4.2.2 The effect of sentence distributions (Pi)

Another important factor influencing evolutionary trajectories is the
distribution Pi with which sentences of the ith language Li are presented
to the learner. In a certain sense, the grammatical space and the learning
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algorithm jointly determine the order of the dynamical system. On the
other hand, sentence distributions are much like the parameters of the
dynamical system (see section 4.3.2). Clearly the sentence distributions
affect rates of convergence within one generation. Further, by putting
greater weight on certain word forms rather than others, they might
influence systemic evolution in certain directions. While this is again an
obvious point, the model lets us consider the alternatives precisely.

To illustrate the idea, consider as an example the interaction between
L1 and L2 speakers in the community as the sentence distributions
with which these speakers produce sentences changes. Recall that so
far we have assumed that all speakers produce sentences with uniform
distributions on degree-0 sentences of their respective languages. Now
we consider alternative distributions, parameterized by a value p as
follows.

1. Let L1,2 = L1 » L2.

2. P1: Speakers of L1 produce sentences so that all degree-0 sentences of
L1,2 are equally likely and their total probability is p. Further, sentences
of L1 î L1,2 are also equally likely, but their total proability is 1 - p.

3. P2: Speakers of L2 produce sentences so that all degree-0 sentences of
L1,2 are equally likely and their total probability is p. Further, sentences
of L2 î L1,2 are also equally likely, but their total proability is 1 - p.

4. Other Pi are all uniform over degree-0 sentences.

The parameter p determines the weight on the sentence patterns in
common between the languages L1 and L2. Figure 8 shows the evolution
of the L2 speakers as p varies. Here the learning algorithm is +Greedy,
+Single Value (TLA, or local gradient ascent) and the initial population
is homogeneous, 100 percent L1 and zero percent L2. Note that the
system moves in different ways as p varies. When p is very small (0.05),
that is, sentences common to L1 and L2 occur infrequently, in the long
run the percentage of L2 speakers does not increase; the population
stays put with L1. However, as p grows, more strings of L2 occur,
and the dynamical system changes so that the long-term percentage
of L1 speakers decreases and that of L2 speakers increases. When p
reaches 0.75 the initial population evolves into a completely L2 speaking
community. After this, as p increases further, we notice that the L2
speakers increase but can never rise to 100 percent of the population
(see p = 0.95); there is still a residual L1 speaking component. This is to
be expected, because for such high values of p, many strings common to
L1 and L2 occur frequently. This means that a learner could sometimes
converge to L1 just as well as L2, and some learners indeed begin to do
so, increasing the number of the L1 speakers.

This example shows us that if we wanted a homogeneous L1 speak-
ing population to move to a homogeneous L2 speaking population, by
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Figure 8. The evolution of L2 speakers in the community for various values of
p (a parameter related to the sentence distributions Pi, see text). The algorithm
used was the TLA, the initial population was homogeneous, speaking only L1.
The curves for p = 0.05, 0.75, and 0.95 have been plotted as solid lines.

choosing our distributions appropriately, we could drive the grammat-
ical dynamical system in the appropriate direction. It suggests another
important application of the dynamical system approach: one can work
backwards, and examine the conditions needed to generate a change
of a certain kind. By checking whether such conditions could have
possibly existed historically, we can falsify a grammatical theory or a
learning paradigm. Note that this example showed the effect of sentence
distributions, and how to alter them to obtain desired evolutionary en-
velopes. One could, in principle, alter the grammatical theory or the
learning algorithm in the same fashion—leading to a tool to aid the
search for an adequate linguistic theory. Again, we stress that we obvi-
ously do not want so weak a theory that we can arrive at any possible
initial conditions simply by carrying out reasonable changes to the sen-
tence distributions. This may, of course, be possible; we have not yet
examined the general case.

4.3 Nonhomogeneous populations: Phase-space plots

For our three-parameter system we have been able to characterize the
update rules for the dynamical systems corresponding to a variety of
learning algorithms. Each dynamical system has a specific update pro-
cedure according to which the states evolve from some homogeneous
initial population. A more complete characterization of the dynamical
system would be achieved by obtaining phase-space plots of this sys-
tem. Such phase-space plots are pictures of the state-space S filled with
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trajectories obtained by letting the system evolve from various initial
points (states) in the state space.

4.3.1 Phase-space plots: Grammatical trajectories

We described earlier the relationship between the state of the popu-
lation in one generation and the next. In our case, let P denote an
eight-dimensional vector variable (state variable). Specifically, P =
(p1, . . . ,p8)¢ (with ⁄8

i=1 pi) as discussed before. The following schema re-
iterates the chain of dependencies involved in the update rule governing
system evolution. The state of the population at time t (in generations),
allows us to compute the transition matrix T for the Markov chain asso-
ciated with the memoryless learner. Now, depending upon whether we
want (1) an asymptotic analysis or (2) a finite sample analysis, we com-
pute (1) the limiting behavior of Tm as m (the number of examples) goes
to infinity (for an asymptotic analysis), or (2) the value of TN (where N
is the number of examples after which maturation occurs). This allows
us to compute the next state of the population. Thus P(t + 1) = g(P(t))
where g is a complex nonlinear relation:

P(t)î P on S* î T î Tm îP(t + 1).

If we choose a certain initial condition P1, the system will evolve ac-
cording to the above relation and one can obtain a trajectory of P in
the eight-dimensional space over time. Each initial condition yields
a unique trajectory and one can then plot these trajectories obtain-
ing a phase-space plot. Each such trajectory corresponds to a line in
the eight-dimensional plane given by ⁄8

i=1 pi = 1. One cannot directly
display such a high dimensional object, but we plot in Figure 9 the pro-
jection of a particular trajectory onto a two-dimensional subspace given
by (p1(t),p2(t)) (the proportion of speakers of L1 and L2) at different
points in time.

As mentioned earlier, with a different initial condition we get a dif-
ferent grammatical trajectory. The complete state-space picture is thus
filled with all the different trajectories corresponding to different initial
conditions. Figure 10 shows this.

4.3.2 Stability issues

The phase-space plots show that many initial conditions yield trajec-
tories that seem to converge to a single point in the state space. In
the dynamical systems terminology, this corresponds to a fixed point
of the system—a population mix that stays at the same composition.
Many natural questions arise at this stage. What are the conditions for
stability? How many fixed points are there in a given system? How
can we solve for them? These are interesting questions but detailed
answers are not within the scope of the current paper. In lieu of a more
complete analysis we merely state here the equations that allow one to
characterize the stable population mixes.
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Figure 9. Subspace of a phase-space plot. The plot shows (p1(t),p2(t)) as t
varies, that is, the proportion of speakers speaking languages L1 and L2 in the
population. The initial state of the population was homogeneous (speaking
language L1). The algorithm used was +Greedy, -Single Value.

Figure 10. Subspace of a phase-space plot. The plot shows (p1(t),p2(t)) as t varies
for different nonhomogeneous initial populationconditions. The algorithm used
was +Greedy, -Single Value.

First, some notational preliminaries. As before, let Pi be the distribu-
tion on the sentences of the ith language Li. From Pi, we can construct
Ti, the transition matrix whose elements are given by the explicit proce-
dure documented in [15–19]. The matrix Ti models a +Greedy, -Single
Value learner if the target language is Li (with sentences from the tar-
get produced with Pi). Similarly, one can obtain the matrices for other
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learning variants. Note that fixing the Pi fixes the Ti and in doing so
the Pi are a different sort of “parameter” that characterize how the dy-
namical system evolves. There are thus two distinct kinds of parameters
in our model: first, parameters that define the 2n languages and define
the state-space of the system; and second, the Pi that characterize the
way in which the system evolves and are therefore the parameters of
the complete grammatical dynamical system. If the state of the parent
population at time t is P(t), then it is possible to show that the (true)
transition matrix for ±Greedy,±Single Value learners is T = ⁄8

i=1 pi(t)Ti.
For the finite case analysis, the following holds.

Statement 1 (finite case)
A fixed point of the grammatical dynamical system (obtained by a
±Greedy, ±Single Value learner operating on the eight-parameter space
with k examples to choose its final hypothesis) is a solution of the fol-
lowing equation:

P¢ = (p1, . . . ,p8) = (1, . . . , 1)¢
ÊÁÁÁÁÁ
Ë

8‚
i=1

piTi

ˆ̃̃
˜̃̃
¯

k

.

This equation is obtained simply by setting P(t + 1) = P(t). Note
however, that this is an example of a nonlinear multidimensional iterated
function map. The analysis of such dynamical systems is nontrivial and
beyond the scope of the current paper.

Similarly, for the limiting (asymptotic) case, the following holds.

Statement 2 (limiting or asymptotic analysis)

A fixed point of the grammatical dynamical system (obtained by a
±Greedy, ±Single Value learner operating on the eight-parameter space
(given infinite examples to choose its mature hypothesis) is a solution of
the following equation:

P¢ = (p1, . . . ,p8) = (1, . . . , 1)¢
ÊÁÁÁÁÁ
Ë
I -

8‚
i=1

piTi +ONE
ˆ̃̃
˜̃̃
¯

-1

,

where ONE is the 8 ¥ 8 matrix with all its entries equal to 1.
Again this is trivially obtained by setting P(t + 1) = P(t). The ex-

pression on the right provides an analytical expression for the update
equation in the asymptotic case. See [21] for details. All the caveats
mentioned before in the finite case statement apply here as well.

Remark
We have just touched the surface as far as the theoretical characteriza-
tion of these grammatical dynamical systems are concerned. The main
purpose of this paper is to show that these dynamical systems exist as
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a logical consequence of assumptions about the grammatical space and
an acquisition theory. We have exhibited only some preliminary sim-
ulations with these systems. From a theoretical perspective, it would
be much more valuable to have complete characterizations of such sys-
tems. In Strogatz (1993) it is suggested that nonlinear multidimensional
mappings with greater than three dimensions are likely to be chaotic. It
is also interesting to note that iterated function maps define fractal sets.
Such investigations are beyond the scope of this paper, and might well
be a fruitful area for further research.

5. From old French to modern French: An analysis revisited

So far, our examples have been based on a three-parameter linguistic
theory for which we derived several different dynamical systems. Our
goal was to concretely instantiate our philosophical arguments, sketch-
ing the factors that influence evolutionary trajectories. In this section,
we briefly consider a different parametric linguistic system studied in
[3]. The historical context in which Clark and Roberts advanced their
linguistic proposal is the evolution of modern French from old French.
Their parameters are intended to capture some, but of course not all, of
this change. They too use a learning algorithm—in their case, a genetic
algorithm—to account for historical change but do not analyze their
model from the dynamical systems viewpoint. Here we adopt their pa-
rameterization, with all its strengths and weaknesses, but consider an
alternative learning paradigm and the dynamical systems approach.

Extensive simulations in section 4 reveal that while the learnability
problem of the three-parameter space can be solved by stochastic hill
climbing algorithms, the long-term evolution of these algorithms have a
behavior that is at variance with the diachronic change actually observed
in historical linguistics. In particular, we saw how there was a tendency
to gain rather than lose the V2 parameter setting. While this could well
be an artifact of the class of learning algorithms considered, a more
likely explanation is that loss of V2 (observed in many languages of the
world such as French, English, and so forth) is due to an interaction of
parameters and triggers other than those considered in section 4. We
investigate this possibility and begin by first reviewing the alternative
parametric theory in [2].

5.1 The parametric subspace and data

We now consider a syntactic space involving five (boolean-valued) pa-
rameters. We do not attempt to describe these parameters. The inter-
ested reader should consult [3, 6] for details.

p1: Case assignment under agreement (p1 = 1) or not (p1 = 0).

p2: Case assignment under government (p2 = 1) or not (p2 = 0). Relevant
triggers for this parameter include “Adv V S” and “S V O.”
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p3: Nominative clitics.

p4: Null Subject. Here relevant triggers would include “wh V S O.”

p5: Verb-second V2. Triggers include “Adv V S” and “S V O.”

These five parameters define a 32-grammar space. Each grammar in
this parametrized system can be represented by a string of five bits de-
pending upon the values of p1, . . . , p5, for instance, the first bit position
corresponds to case assignment under agreement. We can now look at
the surface strings (sentences) generated by each such grammar. For the
purpose of explaining how old French changed to modern French, the
following key sentences are considered in [2]. The parameter settings
required to generate each sentence are provided in brackets; an asterisk
is a “does not matter” value and an “X” means any phrase.

The relevant data
adv V S [*1**1]
SVO [*1**1] or [1***0]
wh V S O [*1***]
wh V S O [**1**]
X (pro) V O [*1*11] or [1**10]
X V s [**1*1]
X s V [**1*0]
X S V [1***0]
(S) V Y [*1*11]

The parameter settings provided in brackets set the grammars which
generate the sentence. For example, the sentence form “adv V S” (cor-
responding to quickly ran John, an incorrect word order in English), is
generated by all grammars that have case assignment under government
(the second element of the array set to 1, p2 = 1) and verb second move-
ment (p5 = 1). The other parameters can be set to any value. Clearly
there are eight different grammars that can generate (alternatively parse)
this sentence. Similarly there are 16 grammars that generate the form
S V O (eight corresponding to parameter settings of [*1**1] and eight
corresponding to parameter settings of [1***0]) and four grammars
that generate (S) V Y.

Remark
Note that the sentence set considered in [2] is only a subset of the
total number of degree-0 sentences generated by the 32 grammars in
question. In order to directly compare their model with ours, we have
not attempted to expand the data set or fill out the space any further.
As a result, all the grammars do not have unique extensional properties,
that is, some generate the same set of sentences.
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5.2 The case of diachronic syntax change in French

Continuing with the analysis from [2], within this parameter space, it
is historically observed that the language spoken in France underwent
a parametric change from the twelfth century to modern times. In
particular, they point out that both V2 and prodrop are lost, illustrated
by examples similar to the following.

Loss of null subjects: pro-drop

1. (old French; +pro drop)
Si firent (pro) grant joie la nuit
‘thus (they) made great joy the night’

2. (modern French; -pro drop)
* Ainsi s’amusaient bien cette nuit
‘thus (they) had fun that night’

Loss of V2

3. (old French; +V2)
Lors oirent ils venir un escoiz de tonoire
‘then they heard come a clap of thunder’

4. (modern French; -V2)
* Puis entendirent-ils un coup de tonerre
‘then they heard a clap of thunder’

In [2] it is observed that it has been argued this transition was brought
about by the introduction of new word orders during the fifteenth and
sixteenth centuries resulting in generations of children acquiring slightly
different grammars and eventually culminating in the grammar of mod-
ern French. A brief reconstruction of the historical process (after [3])
runs as follows.

Old French; setting [11011]

The language spoken in the twelfth and thirteenth centuries had verb-
second movement and null subjects, both of which were dropped by the
twentieth century. The sentences generated by the parameter settings
corresponding to old French are the following.

Old French
adv V S - [*1**1]
S V O - [*1**1] or [1***0]
wh V S O [*1***]
X (pro) V O [*1*11] or [1**10]

Note that from this data set it appears that both the case agreement
and nominative clitics parameters remain ambiguous. In particular, old
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French is in a subset-superset relation with another language (generated
by the parameter settings of 11111). In this case, possibly some kind
of subset principle [1] could be used by the learner; otherwise it is
not clear how the data would allow the learner to converge to the old
French grammar in the first place. None of the ±Greedy, ±Single Value
algorithms would converge uniquely to the grammar of old French.

The string (X)VS occurs with a frequency of 58 percent and SV(X)
occurs with 34 percent in old French texts. It is argued that this fre-
quency of (X)VS is high enough to cause the V2 parameter to trigger to
+V2.

Middle French
In middle French, the data is not consistent with any of the 32 target
grammars (equivalent to a heterogenous population). Analysis of texts
from that period reveal that some old forms (such as adv V S) decreased
in frequency and new forms (like adv S V) increased. It is argued in
[3] that such a frequency shift causes “erosion” of V2, brings about
parameter instability, and ultimately convergence to the grammar of
modern French. In this transition period (i.e., when middle French was
spoken and written) the data is of the following form:

adv V S [*1**1]; SVO [*1**1] or [1***0]; wh V S O [*1***];
wh V s O [**1**]; X (pro)V O [*1*11] or [1**10]; X V s [**1*1];
X s V [**1*0]; X S V [1***0]; (s)VY [*1*11]

Thus, we have old sentence patterns like adv V S (though it decreases
in frequency and becomes only 10%), SVO, X (pro)V O, and wh V S O.
The new sentence patterns which emerge at this stage are adv S V
(increases in frequency to become 60%), X subjclitic V, V subjclitic
(pro)V Y (null subjects), and wh V subjclitic O.

Modern French [10100]
By the eighteenth century, French had lost both the V2 parameter setting
as well as the null subject parameter setting. The sentence patterns
consistent with modern French parameter settings are SVO [*1**1]
or [1***0], X S V [1***0], and V s O [**1**]. Note that this data,
though consistent with modern French, will not trigger all the parameter
settings. In this sense, modern French (just like old French) is not
uniquely learnable from data. However, as before, we shall not concern
ourselves overly with this, for the relevant parameters (V2 and null
subject) are uniquely set by the data here.

5.3 Some dynamical system simulations

We can obtain dynamical systems for this parametric space, for a TLA
(or TLA-like) algorithm in a straightforward fashion. We show the
results of two simulations conducted with such dynamical systems.
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Figure 11. Evolution of speakers of different languages in a population starting
off with speakers only of old French.

5.3.1 Homogeneous populations [initial–old French]

We conducted a simulation on this new parameter space using the TLA.
Recall that the relevant Markov chain in this case has 32 states. We start
the simulation with a homogeneous population speaking old French
(parameter setting = 11011). Our goal is to see if misconvergence alone
could drive old French to modern French.

Just as before, we can observe the linguistic composition of the pop-
ulation over several generations. It is observed that in one generation,
15 percent of the children converge to grammar 01011; 18 percent to
grammar 01111; 33 percent to grammar 11011 (target) and 26 percent
to grammar 11111 with very few having converged to other gram-
mars. Thereafter, the population consists mostly of speakers of these
four languages, with one important difference: 15 percent of the speak-
ers eventually lose V2. In particular, they have acquired the grammar
11110. In Figure 11 the percentage of the population speaking the four
languages mentioned above as they evolve over 20 generations is shown.
Notice that in the space of a few generations the speakers of 11011 and
01011 have dropped out altogether. Most of the population now speaks
language 1111 (46%) and 01111 (27%). Fifteen percent of the popu-
lation speaks 11110 and there is a smattering of other speakers. The
population remains roughly stable in this configuration thereafter.

Observations
1. On examining the four languages to which the system converges

after one generation, we notice that they share the same settings for
the principles: [case assignment under government], [pro drop], and
[V2]. These correspond to the three parameters which are uniquely set
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by data from old French. The other two parameters can take on any
value. Consequently, four languages are generated, all of which satisfy
the data from old French.

2. Recall our earlier remark that, due to insufficient data, there were
equivalent grammars in the parameter system. It turns out that in this
particular case, the grammars (01011) and (11011) are identical as far as
their extensional properties are concerned; as are the grammars (11111)
and (01111).

3. There is subset relation between the two sets described in 2. The
grammar (11011) is in a subset relation with (11111). This explains
why after a few generations most of the population switches to either
(11111) or (01111) (the superset grammars).

4. An interesting feature of the simulation is that 15 percent of the
population eventually acquires the grammar (11110), that is, they have
lost the V2 parameter setting. This is the first sign of instability of V2
that we have seen in our simulations so far (for greedy algorithms which
are psychologically preferred). Recall that for such algorithms, the V2
parameter was very stable in our previous example.

5.3.2 Heterogenous populations (mixtures)

Section 5.3.1 showed that with no new (foreign) sentence patterns the
grammatical system starting out with only old French speakers showed
some tendency to lose V2. However, the grammatical trajectory did not
terminate in modern French. In order to more closely duplicate this his-
torically observed trajectory, we examine alternative initial conditions.
We start our simulations with an initial condition which is a mixture
of two sources; data from old French and data from new French (re-
producing in this sense, data similar to that obtained from the middle
French period). Thus, children in the next generation observe new sur-
face forms. Most of the surface forms observed in middle French are
covered by this mixture.

Observations
1. On performing the simulations using the TLA as a learning al-

gorithm on this parameter space, an interesting pattern is observed.
Suppose the learner is exposed to sentences with 90 percent generated
by old French grammar (11011) and 10 percent by modern French
grammar (10100), within one generation 22 percent of the learners
have converged to the grammar (11110) and 78 percent to the grammar
(11111). Thus, the learners set each of the parameter values to 1 except
the V2 parameter setting. Now, modern French is a nonV2 language;
and 10 percent of data from modern French is sufficient to cause 22 per-
cent of the speakers to lose V2. This is the behavior over one generation.
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Figure 12. Tendency to lose V2 as a result of new word orders introduced by
modern French source in our Markov model.

The new population (consisting of 78% speaking grammar (11111) and
22% speaking grammar (11110)) remains stable forever.

2. Figure 12 shows the proportion of speakers who have lost V2
after one generation as a function of the proportion of sentences from
the modern French source. The shape of the curve is interesting. For
small values of the proportion of the modern French source the slope of
the curve is greater than 1. Thus, there is a greater tendency of speakers
to lose V2 than to retain it. This results in 10 percent of novel sentences
from the modern French source causing 20 percent of the population to
lose V2; similarly 20 percent of novel sentences from the modern French
source causes 40 percent of the speakers to lose V2. This effect wears
off later. This seems to capture computationally the intuitive notion of
many linguists that a small change in inputs provided to children could
drive the system towards larger change.

3. Unfortunately, there are several shortcomings in this particular
simulation. First, we notice that mixing old and modern French sources
does not cause the desired (historically observed) grammatical trajectory
from old to modern French (corresponding in our system to movement
from state (11011) to state (10100) in our Markov chain). Although
we find that a small injection of sentences from modern French causes
a larger percentage of the population to lose V2 and gain subject clitics
(which are historically observed phenomena), nevertheless, the entire
population retains the null subject setting and case assignment under
government. It should be mentioned that it is argued in [3] that the
change in case assignment under government is the driving force which
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allows alternate parse-trees to be formed and causes the parametric loss
of V2 and null subject. In this sense, it is a more fundamental change.

4. If the dynamical system is allowed to evolve, it ends up in either
of the two states (11111) or (11110). This is essentially due to the
subset relations these states (languages) have with other languages in
the system. Another complication in the system is the equivalence of
several different grammars (with respect to their surface extensions),
for example, given the data we are considering, the grammars (01011)
and (11011) (old French) generate the same sentences. This leads to
multiplicity of paths, convergence to more than one target grammar,
and general inelegance of the state-space description.

Future Directions
There are several possibilities to consider here.

1. Using more data and filling out the state-space might yield greater
insight. Note that studies in the development of other languages such
as Italian or Spanish within this framework might also be useful.

2. TLA-like hill climbing algorithms do not pay attention to the subset
principle explicitly. It would be interesting to explicitly program this
into the learning algorithm and observe the evolution thereafter.

3. There are often cases when several different grammars generate
the same sentences or at least fit the data equally well. Algorithms that
look only at surface strings are unable then to distinguish between them
resulting in convergence to all of them with different probabilities in
our stochastic setting. We showed an example of this for convergence
to four states earlier. An elegance criterion is suggested in [3] that looks
at the parse-trees to decide between these grammars. This difference
between strong generative capacity and weak generative capacity can
easily be incorporated into the Markov model as well. The transition
probabilites, now, will not depend upon the surface properties of the
grammars alone, but also upon the elegance of derivation for each
surface string.

4. Rather than the evolution of the population, one could look at the
evolution of the distribution of words. One can also obtain bounds on
frequencies with which the new data in the middle French period must
occur so that the correct drift is observed.

6. Conclusions and directions for future research

In this paper, we have argued that any combination of a grammatical
theory and a learning paradigm leads to a model of grammatical evo-
lution and diachronic change. A learning theory (paradigm) attempts
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to account for how children (the individual child) solve the problem of
language acquisition. By considering a population of such “child learn-
ers,” we have arrived at a model of the emergent, global, population
behavior. The key point is that such a model is a logical consequence of
grammatical and learning theories. Consequently, whenever a linguist
suggests a new grammatical, or learning theory, they are also suggesting
a particular evolutionary theory—and the consequences of this need to
be examined.

6.1 Historical linguistics and diachronic criteria

From a programmatic persepective, this paper has two important conse-
quences. First, it allows one to take a formal, analytic view of historical
linguistics. Most accounts of language change have tended to be de-
scriptive in nature. In contrast, we place the study of historical or
diachronic linguistics in a formal framework. In this sense, our concep-
tion of historical linguistics is closest in spirit to evolutionary theory and
population biology. Indeed, most previous attempts to model language
change, such as [3, 10] have been influenced by the evolutionary models.

Second, this approach allows us to formally pose a diachronic cri-
terion for the adequacy of grammatical theories. A significant body of
work in learning theory has already sharpened the learnability criterion
for grammatical theories, in other words, the class of grammarsG must
be learnable by some psychologically plausible algorithm from primary
linguistic data. Now we can go one step further. The class of grammars
G (along with a proposed learning algorithmA) can be reduced to a dy-
namical system whose evolution must match that of the true evolution
of human languages (as reconstructed from historical data).

We have attempted to lay the framework for the development of re-
search tools to study historical phenomena. To concretely demonstrate
that the grammatical dynamical systems need not be impossibly diffi-
cult to compute (or simulate), we explicitly showed how to transform
parametrized theories, and memoryless learning algorithms to dynami-
cal systems. The specific simulations of this paper are far too incomplete
to have any long term linguistic implications, though, we hope, it cer-
tainly forms a starting point for research in this direction. Nevertheless,
certain interesting results were obtained.

1. It was shown that the V2 parameter was more stable in the three-
parameter case than it was in the five-parameter case. This suggests
that the loss of V2 (actually observed in history) might have more to
do with the choice of parametrizations than learning algorithms, or
primary linguistic data (though we must suggest great caution before
drawing strong conclusions on the basis of this study).

2. Some light was shed on the time course of evolution. In particular,
it was shown how this was a derivative of more fundamental assump-
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tions about initial population conditions, sentence distributions, and
learning algorithms.

3. Notions of system stability were formally developed. Thus, certain
parameters could change with time, others might remain stable. This
can now be measured, and the conditions for stability or change can be
investigated.

4. It was demonstrated that one could manipulate the system (by
changing the algorithm, sentence distributions, or maturational time)
to allow evolution in certain directions. These logical possibilities sug-
gest the kinds of changes needed in linguistics for greater explanatory
adequacy.

6.2 Further research

This has been our first attempt to define the boundaries of the language
change problem as a dynamical system, there are several directions for
further research.

1. From a linguistic perspective, one could examine alternative param-
etrized theories, and track the change of certain languages in the context
of these theories (much like our attempt to track the change of French
in this paper). Some worthwhile attempts could include: (a) The study
of parametric stress systems [7]—and in particular, the evolution of
modern Greek stress patterns from proto-Indo European. (b) The in-
vestigation of the possibility that creoles correspond to fixed points in
parametric dynamical systems, a possibility which might explain the
striking fact that all creoles (irrespective of the linguistic origin, i.e.,
initial linguistic composition of the population) have the same gram-
mar. (c) The evolution of modern Urdu, with Hindi syntax, and Persian
vocabulary; a cross-comparison of so-called “phylogenetic” descriptive
methods currently used to trace back the development of an early, com-
mon, proto-language.

2. From a mathematical perspective, one could take this research in
many directions including: (a) The formalization of the update rule for
other grammatical theories and learning algorithms, and the characteri-
zation of the dynamical systems implied. (b) A better characterization of
stability issues and phase-space plots. (c) The possibility of true chaotic
behavior—recall that our dynamical systems are multidimensional non-
linear iterated function mappings.

It is our hope that research in this line will mature to make useful
contributions, both to linguistics, and in view of the unusual nature of
the dynamical systems involved, to the study of such systems from a
mathematical perspective.
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Appendix

A. The three-parameter system of Gibson and Wexler

The three-parameter system discussed in [5] includes two parameters
from X-bar theory. Specifically, they relate to specifier-head relations,
and head-complement relations in phrase structure. The following
parametrized production rules denote this:

XP Æ SpecX¢(p1 = 0) or X¢Spec(p1 = 1)
X¢ Æ CompX¢(p2 = 0) or X¢Comp(p2 = 1)
X¢ Æ X.

A third parameter is related to verb movement. In German, and
Dutch root declarative clauses, it is observed that the verb occupies
exactly the second position. This verb-second phenomenon might or
might not be present in languages of the world, and this variation is
captured by means of the V2 parameter.

Table 4 provides the unembedded (degree-0) sentences from each of
the eight grammars (languages) obtained by setting the three parameters
of section 4 to different values. The languages are referred to as L1
through L8.
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