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This paper characterizes a class of n-valued boolean functions, designated
as type hard-threshold, in terms of their action on the underlying space
graph.

| 1. Introduction

Boolean functions are discrete-valued functions that provide iterative
models in different areas of science. They appear in theoretical computer
science as automata networks, cellular, and threshold automata [2-4],
and also in biomathematics as input-output functions of perceptrons
and Hopfield networks [1, 5, 10]. We can also find them in physics as
discrete models for disordered matter such as the spin glass problem [6].

In this paper we consider a class of n#-valued boolean functions, des-
ignated hard-threshold, that represent the activity of discrete recurrent
neural network (NN) models.

Recurrent NNs are mathematical models consisting of a large number
of parallel-operating and interconnected processing units. Information
is encoded as a binary sequence (designated state vector) and is dis-
tributed among the units composing the network. This permits a high
speed more economical machine implementation and avoids the expen-
sive maintenance of a central database unit [12].

The activity of a network consists of an interchange of information
stored in the units composing the net. Based on the information flow and
the present state of each unit (input), the network makes a synchronous
update of its state vector, the new vector is designated an output.

Hard-threshold boolean functions represent the dynamics of net-
works that mimic specific brain activity such as associative memory [5].
Examples of such networks are those that associate to the picture of an
animal its name or to a picture of a car its model.

Given pairs of binary sequences (x,y), the action of an associative
memory network on a given input x should result in the corresponding
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output y. Moreover, given a corrupted or incomplete version of the
input, the network should still recover the expected output y.

Minsky and Papert introduced the positive normal form of a boolean
function (Theorem 1.5.1 in [7]). This is a decomposition of the function
into a linear combination of predicates, canonically defined. The set of
predicates involved depends intrinsically on the function considered. We
designate as hard-threshold a boolean function that is linear threshold in
each component, relative to a specific set of predicates [7]. We provide
a characterization of those boolean functions that are of type hard-
threshold. This characterization is based on the action of the map on
the vertices of its underlying graph.

In section 2 we present and motivate the notation and basic defini-
tions used throughout the paper, in section 3 we state and prove the
main result.

| 2. Basic definitions and notation

The basic structure of a Hopfield network with # units is shown in
Figure 1. Each unit or cell is connected to each of the other units com-
posing the net with a channel, that represents a real synapsis between
two neural cells. Each cell may also be connected to itself via a feed-
back connection. Signals passing through a network connection change
linearly by a multiplicative factor, called weight. The weight matrix
collects all of these multiplicative factors and is denoted by W.

The incoming signal to a given cell is just the sum of all linearly
altered signals sent from any cell connected to that specific one. As
soon as a signal reaches a cell, it is modified by an external input (i.e.,
the corresponding component of a constant vector ® = {6;},_; ,,) and
by a transfer function. The transfer function represents a cell response
to a signal. A cell may send a signal down its axon or remain passive,
depending on the intensity of the incoming signal. This is represented
by the function o that at each real number x assigns 1 if x = 0 and
0 otherwise. A state vector is a binary n-sequence whose components
represent the activation states of the network cells.

We now set notation to be followed throughout the paper. Boldface
lower case letters represent state vectors of the network which are ver-
tices of the unit hypercube [0, 1]". A point x is an #n-tuple of Os and 1s,
{x;}i21, with x; representing the activation state of cell i. The connecting
weight w;; is attached to the connection from cell j to cell i and is the
ij entry of the connecting matrix W. The action of W on some point
x is given by the standard matrix multiplication and denoted by W (x)
or just Wx. For simplicity of notation we define o-(x) to be the column
vector [O'(xl-)]l,. The map 7; represents the standard projection onto the
jth component.
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Figure 1. Hopfield network with 7 cells.

The set of all n-sequences of Os and 1s is denoted by V. A boolean
map is a transformation on V. Definition 2.1 introduces the concept of
a boolean map of type hard-threshold which is related to the definition
of threshold linearity introduced in [7]. More precisely, T is of type
hard-threshold if, for every i = 1, ..., n, n,(T) is threshold linear with
respect to the set of predicates ® = {n, 7y, ..., 7,}, where x; is the
projection on the ith component.

Definition 2.1. A boolean map T is of type hard-threshold if there exists
a matrix W and a constant n-vector ® such that

T(x) = c(Wx — 0).

Since V is a finite set, for a given matrix W, we can always choose ®
so that Wx — @ # 0 for all x € V. This assumption is made throughout
the paper.

Definition 2.2. (See [8]) Given x and y points in V, y is called an
immediate neighbor of x if and only if there exists i € N such that

x,=y, for k#i and x; #y,

For simplicity of notation and to emphasize the dependence on the ith
coordinate, we represent the immediate neighbor of x altered at site i
by x’. The set of all immediate neighbors of x is denoted by N, .

Definition 2.3. A subset S of V is called connected if and only if for
everyx andy in S there exists a sequence mS {x =x, x!, ..., X =y},
such that x* is an immediate neighbor of x*~

Associated to a boolean function T, we consider the following two
sets at level 4.

1. The positive set P; = {x € V : T(x), = 1}.
2. The negative set N; = {x € V : T(x); = 0}.
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We also denote the convex hull of #; and N,, in R”, by (P;) and (N)),
respectively.

| 3. The main result

Proposition 3.1. A boolean map T is of type hard-threshold if and only
if for every i, P; and N, are connected sets in V and (P;) N (N;) = Q.

We first prove Lemmas 3.1 and 3.2 that will be used in the proof
of Proposition 3.1. These lemmas are stated for a boolean function
T of type hard-threshold. Given a point x € V, we consider the set
P .={i:x;=1)}

Lemma 3.1. Ifx € P, y € N,, and y is an immediate neighbor of x,
thenw, >0ifke P, andw;, <0if k ¢ P,.
k

(

Proof. We assume that y = x* (using the notation described in Defini-

tion 2.2). We have that

o~ _f Sjep_ wj—wy, —6,<0 if keP,
T(.Y)i—zllwiiyi_gi_{ Yiep, Wy twy, =6, <0 if k&P,
= x

The statement in the lemma follows from the assumption that 3}, p_w
6;>0.m )
1

i

Given a subset S of V we denote by N the set of all points that are
immediate neighbors of some point in S. The backslash (\) that appears
in the statement of Lemma 3.2 represents the difference between two
sets.

Lemma 3.2. IfSisaconnectedsubsetof P; (or N;) suchthat No\S c N,
(or P,) then Nyos\S CN; (or P, respectively).

Proof. Let z € Nyos\ S,y € Ng\ S such that y* = z, and x € S

such that y = x’ (¢ # k). Therefore, we have that for i # k and i # ¢,
z, =y, =X, 2, # ¥, = X}, and z, = y, # x,. This implies that

“ YLiwpyitwy =0, if y,=0(= k&P,
Z‘“iizi_eiz rLwy —w, -0 if y,=1(= keP)
-1 j=1 "4 ik i Yk x/*
Moreover, y € N; and Lemma 3.1 imply that ¥*; w;z; — 6; < 0. The
second case stated in the lemma follows by similar arguments. m

Proof of Proposition 3.1. First, we assume T is of type hard-threshold
with P, and N; the positive and negative sets at level 7, respectively. If
#, is not connected then Lemma 3.2 applied to a connected component
leads to a contradiction. Similarly if A; is not connected. This shows
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that both #; and N, are connected. Furthermore, Definition 2.1 implies
that their convex hulls are disjoint.

Conversely, we assume that for every i, #; and N, are connected
with disjoint convex hulls. There are points x € (P;) and y € (N))
whose distance is the shortest possible, that is, d(x,y) = llx — yll =
d((P;), (N,)), where d represents the usual euclidean distance in R” and
IIl.Il the standard norm. Let @ = (x + y)/2, the middle point between x
and y. Now we show that x is unique, similar arguments prove that y
is also unique. Suppose there exists x, € (P,) different from x such that
lIx, — all = llx — all, then for 0 < A < 1 we have

Ix, + (1 = A)x — al® = A2lix, —al® + (1 - 1)?IIx - all?
+20(1 = A)(x —a, x; — ).

The expression (x — @, x; — @) refers to the usual inner product in R”.
Schwartz inequality (cf. [11]) implies that

=lx-al* if x-a=pux, —a)or
llAx, + (1 - )x - al? x| —a=pux-a
< lIx — all? otherwise.

Clearly lix, —all* < llx— @l cannot occur since d((P,), (N;)) = 2lix—«all.
If x—a=px;—a) orxy—a=px-a)thenuy =1 or -1. Both
cases are impossible. In fact, if 4 = 1 then x = x;, if u = -1 then
@ = (x+x,)/2 € (P;). By a shift of the coordinate system we assume
that the origin coincides with @ and we represent by X and y the vectors
ax and ay, respectively.

We define a linear transformation on R”:

f(z) =

For simplicity of notation we represent a vector az by z. We prove
that f is positive on (#;) and negative on (N;). The point x € P; and
f(x) = lixll > 0. If there exists a point z € P, such that f(z) = 0 then z is
orthogonal to x. Given 0 < A < 2lIxI%/(l1zlI> + lIxII?), we have that

Iz + (1 - )xI? < IxI?

(2, X)

Il

which implies that d((P;), (N;)) < llx —yll. Similar considerations show
that f is negative on N.,.

We define the hyperplane H = {z : f(z) = 0}. This hyperplane
separates the sets N; and P,. T is of type hard-threshold with connecting
weights given by w;; = (x; - ¥;)/2 and external input 6, = (x7 — y})/4. m

Example 1. Thisexample shows that the disjointness required in Propo-
sition 3.1 is in fact necessary. We consider a boolean map T defined on
{0, 1}3 such that

£, =1(0, 0, 1), (0, 1, 1), (0, 1, 0), (1, 1, 0)}
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and
Ny =10, 0,0), (1, 0, 0), (1, 0, 1), (1, 1, 1)}

We verify that this map is not of type hard-threshold. Suppose otherwise
that for every x, 7, (T(x)) = o( le wy;x; —0,). Since m,(T(0, 0, 0)) =0,
we havethat6, > 0. Furthermore,7,(T(1, 1, 1)) = O and 7,(T(1, 1, 0)) =
1 imply that w3 < 0 and m,;(T(0, 0, 1)) = O which contradicts that
(0,0, 1) € P,. It is easy to check that both £, and N, are connected
subsets of {0, 1}3 and that (1/2, 1/2, 1/2) € (P;) N (N,).

We now introduce a definition of a path between two points in V
and between two subsets of V.

Definition 3.1. Given two points in V, x and y, we define a path be-
tween them to be a finite sequence {z° = x, z', ..., z¢!, z* =y} such
that z' is an immediate neighbor of z'~!. A path between two sets is a
path between two points, one point in each set. The length of a path is

the number of elements in the sequence defining the path.

Proposition 3.2. For every i such that (P,) N (N,) = @, P, and N; are
connected.

Proof. We assume that P, is not connected, then it has at least two
connected components. We select two components of #;, C; and C,,
whose path between has the shortest possible length. We represent such
a path by the sequence

¢ (x!, x%, X3, ..., x*)

b

where x! € C, x* € C,, and ¥’ € N; (j # 1and k). We associate to this
path an injective sequence of indices {,, i,, ..., i,_4}, where i, is such
that

t t+1 t_ St :
X; # X and x;, = x;7, if p #i,.

We consider a new path between x! and x*,

1 =2 =3 k-1 _k
X, X7, X7, ..., X5, x5,

defined as:

The point X**! is such that X{*' # X/ and X{*' =X/, forj # i_,.

The points X2, ..., X*~! are in A, since ¢ is of shortest length. There-
fore (x! +x%)2 = X2+ Y2 e (P N (N;). This leads to a contra-
diction which proves the statement. m

Propositions 3.1 and 3.2 are summarized in Theorem 3.1.
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Theorem 3.1. A boolean map is of type hard-threshold if and only if
for every 7, (P;) N (N;) = Q.

Remark

If we assign 1 to an even integer and 0 otherwise, given a sequence of z in-
tegers we associate its corresponding binary sequence. The value of T on
a binary n-sequence, x = {x;},_; _, is given by T(x) = o (X, x; - 112).
The map T defines a partition of the vertices of the hypercube [0, 1]"
into two disjoint sets. The set N = {0},_; , and its complement P.
These two sets clearly satisfy the conditions of Theorem 3.1. Therefore
a NN with dynamics given by T is capable of deciding if a product of
integers is even or odd.
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