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The Q-state Potts model on the Bethe lattice is investigated for Q < 2.
The magnetization of this model exhibits complicated behavior including
both period doubling bifurcation and chaos. The Lyapunov exponents
of the Potts–Bethe map are considered as order parameters. A scaling
behavior in the distribution of Lyapunov exponents in the fully developed
chaotic case is found. Using the canonical thermodynamic formalism
of dynamical systems, the nonanalytic behavior in the distribution of
Lyapunov exponents is investigated and the phase transition point on the
“chaotic free energy” is located.

1. Introduction

The Q-state Potts model is one generalization of the Ising model con-
structed for investigating phase transitions [1]. This model was initially
defined for an integer Q but has many applications for noninteger Q.
The exact solution of a two-dimensional Potts model for general Q has
been obtained only at the self-dual point by mapping it into a two-
dimensional inhomogeneous six vertex model [2].

One can obtain another exact solution of the Potts model for general
Q and coordination number on the Bethe lattice. It is interesting to note
that similar results have been found for the N ¥ N Hermitian matrix
model on random graphs in the N Æ 1 limit [3].

A rigorous treatment of the properties of ferromagnetic and antifer-
romagnetic Potts models in a magnetic field have been conducted on the
Bethe lattice by means of recursion relations [4].

The Q-state Potts model on the Bethe lattice was recently investigated
for Q < 2 [5]. Many physical processes can be formulated in terms of
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the Q-state Potts model when Q < 2, for example, the resistor network,
dilute spin glass, percolation, and self organizing critical systems [1,6–
8]. It was shown that when Q < 2 the Q-state Potts model exhibits
a large variety of phase transitions leading to specially modulated and
chaotic phases. These phases are similar to those obtained in the axial
next nearest Ising, chiral Potts, and three-site interacting Ising models.
It is interesting to note that contrary to these models the phases in the
Potts model with Q < 2 are obtained without frustrations [9–11].

In this paper we investigate the Q-state Potts model on the Bethe
lattice for Q < 2 using canonical thermodynamic formalism. The phase
transitions in this model take place in the chaotic regime because the at-
tractors of the Potts–Bethe mapping used for calculating average quan-
tities is a complicated function of the parameters of the Potts model.
Being one-dimensional the Potts–Bethe map exhibits a period doubling
cascade, chaos, and so forth. By using the canonical thermodynamic
formalism one can calculate the distribution of local Lyapunov expo-
nents of the Potts–Bethe map in the case of fully developed chaos. The
Lyapunov exponent is not only a good order parameter for the transi-
tion to chaos, but also completely characterizes the system in chaotic
states. The general aim of this paper is to find the scaling in the distribu-
tion of local Lyapunov exponents of the Potts–Bethe map. The fractal
approach allows one to map the computation of Lyapunov exponents
onto the thermodynamics of the one-dimensional spin model and inter-
pret the scaling in the distribution of Lyapunov exponents as a phase
transition in the one-dimensional spin model [13,15–17]. We obtain the
phase transition temperature by means of numerical calculations of the
free energy of this model.

This paper is organized as follows. The Potts model on the Bethe
lattice and its recursion relation is given in section 2. In section 3
we discuss the phase structure of the Potts model on the Bethe lattice.
In section 4 we investigate the Potts–Bethe map for the case of fully
developed chaos. By using the canonical thermodynamic formalism,
the distribution of the local Lyapunov exponents is obtained and the
phase transition is analyzed in terms of the one-dimensional spin model.
Finally, in section 5 we summarize our results and comment on their
implications for the study of other systems.

2. The Potts model on the Bethe lattice and its recursion relation

The Potts model in the magnetic field is defined by the Hamiltonian

H = -J‚Xi,j\ d(si,sj) -H‚
i

d(si, 1) (1)

where d(si,sj) = 1 for si = sj and 0 otherwise, si takes the values
1, 2, . . . , Q, the first sum is over the nearest-neighbor sites, and the
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second sum is simply over all sites on the lattice. Additionally, we use
the notation K = J/kT and h = H/kT.

The partition function and single site magnetization is given by

Z =‚
{s}

e-H/kT

M = Xd(s0, 1)\ = Z-1‚
{s}

d(s0, 1)e-H/kT (2)

where the summation goes over all configurations of the system.
When the Bethe lattice is cut apart at the central point, it is separated

into g identical branches. The partition function can be written as
follows:

Zn =‚
{s0}

exp 9hd(s0, 1)= [gn(s0)]g (3)

where s0 is the central spin and gn(s0) is the contribution of each lattice
branch. The latter is expressedthrough gn-1(s1), that is, the contribution
of the same branch containing n - 1 generations starting from the site
belonging to the first generation:

gn(s0) =‚
{s1}

exp 9Kd(s0,s1) - hd(s1, 1)= [gn-1(s1)]g-1. (4)

Introducing the notation

xn =
gn(s π 1)
gn(s = 1)

(5)

one can obtain the Potts–Bethe map

xn = f (xn-1, K, h)

f (x, K, h) =
eh + (eK +Q - 2)xg-1

eK+h + (Q - 1)xg-1
. (6)

The magnetization of the central site for the Bethe lattice with the nth
generation can be written as

Mn = Xd(s0, 1)\ = eh

eh + (Q - 1)xgn
. (7)

3. The phase structure of the Potts model

Let us consider the magnetization of the central site. In order to achieve
the thermodynamic limit we set the number of generations to infinity
(n Æ •). The recursion relation of equation (6) converges to stable
fixed points at every value of parameters h, K in a ferromagnetic case
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Figure 1. Plot of M (magnetization) versus h (external magnetic field). K = -0.5,
Q = 0.8, and g = 3.

(K > 0), and has only one doubling period in an antiferromagnetic
case (K < 0). This corresponds to a rise of antiferromagnetic order in
different sublattices for Q ≥ 2 [4]. The situation changes drastically for
Q < 2. For systems with Q < 2 and with antiferromagnetic interactions
or for systems with Q < 1 and with ferromagnetic interactions one
obtains bifurcation diagrams for M versus h within the full range of
period doubling cascade, chaos, and so forth [5]. Figure 1 shows plots
of M versus h for the antiferromagnetic case with K = -0.5, Q = 0.8,
and g = 3.

The Potts model has many specially modulated and chaotic phases
when Q < 2. The presence of phase transitions is in obvious con-
tradiction to the universality hypothesis. The transition to chaos is
provided by the Feigenbaum exponents and is well known to be a one-
dimensional map. It is interesting to note that a similar transition has
been found in the Ising model with three-site interaction [11, 18]. The
Potts model (Q < 2) and the three-site interacting Ising model have the
same universal Feigenbaum exponents.

As mentioned previously, the Lyapunov exponents are not only good
order parameters for the transition to chaos but also completely char-
acterize the system in chaotic states. In section 4 we calculate the
distribution of Lyapunov exponents by using the canonical thermody-
namic formalism. The recursion relations of critical phenomena of the
Potts model and those of dynamical systems are similar. The canoni-
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cal thermodynamic formalism connects the thermodynamical quantities
of a one-dimensional spin model and dynamical properties of strange
attractors [12,13,15–17].

4. Potts–Bethe map in the case of fully developed chaos

In this section we apply canonical thermodynamic formalism to the
Potts–Bethe mapping and impose two restrictions on the parameters
to achieve fully developed chaotic behavior. First, we consider only
odd coordination numbers g, as in this case the Potts–Bethe mapping
f (x, K, h) becomes an even function of x. Second, we place the following
condition on f (x):

f (0, K, h,g) = -f (f (0, K, h,g), K, h, g). (8)

This results in the following restriction on h and K:

exp(h) =
1 - exp(2K) + 2 exp(K) - exp(K)Q -Q

2 exp(gK)
. (9)

In this case the range of the function (Potts–Bethe mapping) f (x, K, h,g)
is [-e-K, e-K]. This is equal to the range of definition of x I : [-e-K, e-K].

These assumptions are made for the computational purpose of finding
such a possible set in the phase plane (h, K) where the Potts–Bethe map
exhibits fully developed chaotic behavior.

For a crisis map (equations (6) and (9)) we want to describe the scal-
ing properties of an attracting set for the sequences xn, which in this
case is the interval I : [-e-K, e-K] (Figure 2). For an index n, I is par-
titioned into 2n intervals or n-cylinders, these being the segments with
identical symbolic–dynamics sequences of length n taken with respect
to the maximum point (we follow [16]). The inverse function of equa-
tion (6), h = f-1, has two branches, h-1 and h1 as shown in Figure 2 and
the n-cylinders are all the nth-order preimages of I. The length of the
cylinders is denoted by le1,e2,...en

∫ he1 Î he2 Îµ Î hen (I) where e Œ {-1, 1}.
Let us consider a one-dimensional Ising-like model. The energy of the

given configuration e1, e2, . . . en is equal to | ln le1,e2,...en
|. The partition

function Z(b) is defined as [13,15–17]:

Zn(b) = ‚
e1,e2,...en

lbe1,e2,...en
= ‚
e1,e2,...en

e-b|ln le1,e2,...en
| (10)

where b Œ (-•,•) is a free parameter—the inverse “temperature.” In
the limit n Æ • the sum behaves as

Z(b) = e-nbF(b) (11)

which defines the free energy, F(b). The partition function Z(b) can be
alternatively written as [13]:

Z(b) = ‡ dlenS(l)-nlb. (12)
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Figure 2. A plot of the function of equation (6) for K = -0.5, Q = 0.8, h = 0.23,
and g = 3.

The entropy S(l) is the Legendre transform

S(l) = -bF(b) + lb (13)

where the relation between l and b is obtained from

l =
d
db

(bF(b))

b(l) = S¢(l). (14)

This means that in the limit n Æ •, enS(l) is the number of cylinders
with length l = e-nl or, in the same way, cylinders with local Lyapunov
exponent l. The Hausdorff dimension of the set of points in I having
local Lyapunov exponent l is S(l)/l.

We point out that this one-dimensional Ising-like model has no direct
physical meaning and is used here to compute the spectrum S(l) of the
local Lyapunov exponents l of the map (equations (6) and (9)).

Using equations (6) and (9) through (11) we numerically calculate
the free energy at the point K = -0.5, Q = 0.8, and g = 3 (Figure 3).
One can see in Figure 3 that the free energy has a nonanalytic behavior
around bc ª -1, that testifies to the existence of the first order phase
transition in this region of b.

Large deviations of the fluctuations of local Lyapunov exponents can
be described by means of S(l). To consider the given results in terms of
the entropy function S(l), we now discuss the general view of the entropy
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Figure 3. A plot of F(b) for K = -0.5, Q = 0.8, h = 0.23, and g = 3.

function. First of all, it should be positive in the interval [lmin,lmax].
The value l = ln 2 must be within this interval, as follows from the fact
that the sum of the lengths of all cylinders on a given level is 1. Second,
it is often found that the values of lmin and lmax are given by logarithms
of the slopes at the origin.

The precise form of the entropy function is not easy to obtain with
high accuracy. The existence of the first order phase transition implies
that there should be a straight line segment in S(l) with the slope of the
line equal to bc. This scenario is shown in Figure 4. The curve in the
figure corresponds to n = 13. Of course, with the finite-size data, it is
impossible to determine the straight line segment in S(l) and the straight
line will increase with n.

Note that by using Feigenbaum’s formulas [20] this scaling can also
be interpreted in terms of generalized dimensions of microcanonical
thermodynamic formalism [13–15].

5. Conclusion

In this paper we investigated the Q-state Potts model on the Bethe lattice
in an external magnetic field. A close relation to the results of the theory
of dynamical systems including chaos has been pointed out for Q < 2.

The local Lyapunov exponents are introduced as order parameters
for characterizing the large variety of phase transitions that occur in the
Potts model. For certain values of parameters a distribution of local
Lyapunov exponents are obtained by using the thermodynamic formal-
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Figure 4. A plot of S(l) corresponding to n = 13 for K = -0.5, Q = 0.8, h = 0.23,
and g = 3.

ism of multifractals. The scaling in the distribution of local Lyapunov
exponents is interpreted as a phase transition in the thermodynamics of
a one-dimensional Ising-like model. This phase transition is analyzed in
terms of “temperature” and local Lyapunov exponents l.

It is noteworthy that similar behavior has been found in the three-site
interacting Ising model in the Husimi three [18, 19].

Note that a dense Mandelbrot set of Fisher’s zeroes for the noninteger
valued Potts model can be obtained as the three-site antiferromagnetic
interaction Ising model [22]. The noninteger (Q < 1) valued Potts
model is connected to the gelatation and vulcanization of branched
polymers [21]. A few polymer monolayers are described by higher-
dimensional maps [23]. The thin films of branched polymers can be
regarded as the critical behavior of period p-tuplings in coupled one-
dimensional maps [24]. The investigation of modulated phases and
chaotic properties of polymers will be discussed in future publications.
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