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All modern cryptography is based on secret keys. But such methods of
protecting information make no sense if the key can be quickly discovered
by an unauthorized person. This way of penetrating protected systems
was made possible by quantum computers due to results in [1, 2]. This
paper presents a method for protecting information in a database from a
spy which knows all about its control system and has a quantum computer.
Typically a database cannot distinguish between the operations of a spy
and a legal user.

Such a database with quantum mechanical memory plays the role of
a probabilistic oracle for some boolean function f . It returns the value
f (a) for query a in time O(N2 log3 n), afterwards its initial state is restored
also in the same time, where N is a cardinality of Dom f . Software of
the database is independent of a function f . A classical state of such a
database must contain a list of pairs (a, f (a)), a Œ Dom f , taken in some
order. Quantum mechanical principles allow mixing all these lists with
different orders and equal amplitudes into one quantum state. We call
such a state normal. All user operations extracting f (a) can be fulfilled
only in states of such a sort. Now if somebody S tries to learn f (b) for
b π a the normal state is ruined such that a legal user with high probability
will not obtain a pair of the form a, . . . and hence the presence of S will
be detected. It is proved that for a large N the probability that a spy S
learns f (b) does not exceed the probability of its exposure.

Here advantage is taken of relative diffusion transformations (RDT),
which make it possible to fulfill all operations in normal states. Such
transformations look like diffusion transforms used in [2] but RDT are
defined in a different manner. A classical database with this property does
not exist.

1. Main definitions

All known models of quantum computers: quantum Turing machines
[3, 4], quantum gate arrays [5], and quantum cellular automata [6] can
simulate each other with a polynomial slowdown and have the same
computational power as classical computers. It is unknown if it is pos-
sible to simulate absolute (without oracles) quantum computations by
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classical computers with a polynomial slowdown or not. Such a simu-
lation is known only with exponential slowdown [4]. As for relativized
(with oracles) computations, the classical simulation with a polynomial
slowdown is impossible [7]. There is much evidence that quantum
computers are substantially more effective than any classical device for
particular problems (e.g., [1, 2, 7, 8]). Nevertheless there are known
limits to the speed of quantum algorithms. For example, it has been
proved that the bulk of short classical computations cannot be sped up
by quantum computers [9, 10].

Another field for quantum computer applications is cryptography.
It is well known how the famous Shor’s result can be used to break
classical RSA codes [1]. In this paper we show how a quantum com-
puter can be used to lock a database. To create such a database we
use a natural quantum computer model with two parts: a classical part
which transforms by classical laws (e.g., as a Turing machine or cel-
lular automaton), and a quantum part which transforms by quantum
mechanical principles. We proceed with exact definitions.

A memory (quantum part) is a set E having elements that are called
qubits. E may be designed as a discrete lattice E Õ Zm, or as a tree, and
so forth. Each qubit takes values from the complex one-dimensional
sphere of radius 1: {z00+ z11 | z1, z2 Œ C, |z0|

2 + |z1|
2 = 1}. Here 0 and 1

are referred to as basic states of the qubit and form a basis of C2. It will
be convenient to divide E into registers of two neighboring qubits each
so that each register takes values from w = {0, 1, 2, 3}.

A basic state of the quantum part is a function of the form e : E Æ
{0, 1}. If we fix some order on E = {n1, n2, . . . , nr} (r even) then a ba-
sic state e may be encoded as |e(n1), e(n2), . . . , e(nr)\. Such a state can
naturally be identified with a corresponding word in alphabet w.

Let e0, e1, . . . , eK-1 be all basic states, taken in some fixed order, and let
H be the K-dimensional Hilbert space with orthonormal basis e0, e1, . . . ,
eK-1, 2r = K. This Hilbert space can be regarded as a tensor product
H1ƒH2ƒµƒHr of two-dimensional spaces, whereHi is generated by
the possible values of e(ni), Hi @ C

2. A (pure) state of the quantum part
is an element x Œ H such that |x| = 1. Thus, in contrast to classical de-
vices, a quantum device may be not only in basic states, but also in their
superpositions, and this imparts surprising properties to such devices.

PutK = {0, 1, . . . , K-1}. For elements x = ⁄sŒK lses, y = ⁄sŒK mses Œ
H their dot product⁄sŒK lsm̄s is denoted by Xx|y\, where m̄ means com-
plex conjugation of m Œ C, hence Xx|y\ = Xy|x\.

Let {1, . . . , r} = «
l
i=1 Ls

i , Ls
i » Ls

j = ∆ (i π j), and the unitary trans-
formations Us

i act on ƒjŒLs
i
ej. Then Us = ƒl

i=1 Us
i acts on H, s =

1, 2, . . . , M. We require that all Us
i belong to some finite set of trans-

formations independent of E which can be easily performed by physical
devices.
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A computation is a chain of such unitary transformations:

c0
U1

Æ c1
U2

Æ . . . UM

Æ cM.

The passages Us Æ Us+1 s = 1, . . . , M and the value M are deter-
mined by the classical algorithm which points to the partition «Li and
chooses the transformations Us

i sequentially for each s. This algorithm
is performed by the classical part of the computer.

Let c = ⁄sŒK lses be some fixed state of the computer, often c = cM.
If A Œ {0, 1}k is the list of possible values for the first k qubits, then
we put BA = {i | $ak+1, ak+2, . . . , ar Œ {0, 1} : ei = Aak+1ak+2 . . . ar}. A
(quantum) result of this observation is a new state cA = ⁄iŒBA

li/
0

paei,
where pA = ⁄iŒBA

l2
i . An observation of the first register in state c is

a procedure which gives a pair: Xclassical word A, quantum state cA\
with probability pA for any possible A Œ {0, 1}k. The only way to learn
the result of a quantum computation is to receive such words A.

2. Diffusion transformation

In this section we recall some notions and ideas from [2] and [11].
Every unitary transformation U : H Æ H can be represented by its

matrix U = (uij) where uij = XU(ej)|ei\. Thus for x = ⁄pŒK lpep, U(x) =⁄pŒK l
¢
pep we have l̄¢ = Ul̄, where l̄, l̄¢ are columns with elements

lp and l¢p respectively. The following significant diffusion transfor-
mation D (introduced in [2]) is defined by D = -WRW-1, where
W = U1ƒU2ƒµƒUr, each Ui acts on Hi and has the matrix

J = K 1/
0

2 1/
0

2
1/
0

2 -1/
0

2
O ,

and R is the phase inversion of e0. For every state x = ⁄pŒK lpep an
average amplitude is taken as xav = ⁄pŒK lp/K.

Proposition 1. (From [2].) For every state xXep|x\ - xav = xav - Xep|D(x)\. (1)

This means that D is an inversion about the average.
One step of Grover’s algorithm is the unitary transformation G =

DRt where Rt is a phase rotation of some target state et. Proposition 1
implies that the amplitude of et grows approximately on 1/

0
K after

application of G to the state x0 = (e0 + e1 +µ + eK-1)/
0

K.
The following two notes about this algorithm have been done in [11].

1. Given a set T of target states of cardinality |T| = K/4, then one step of the
corresponding transformation G makes all amplitudes of the states e /Œ T
equal to zero.
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2. Let W¢ be any unitary transformation satisfying W¢(e0) = 1/
0

K⁄iŒK ei.
Then Proposition 1 remains true if W¢ is taken instead of W in the
definition of D.

3. Relative diffusion transformations

In this section we introduce a generalization of diffusion transformation,
the relative diffusion transformation (RDT), which is the key notion in
the construction of the control system for our database.

In what follows, for the set C = {0, 1, . . . , N - 1}, N < K, C¢ denotes
{ei | 0 £ i £ N - 1}.

We use the notation cC = 1/
0

N⁄iŒC ei. Let M be some unitary
transformation of the form H Æ H such that M(e0) = cC. Such a
transform M is called C-mixing. We do not assume that a subspace
spanned by C¢ is M-invariant.

Definition 1. RDT(B) is the transformation DC = -MRM-1 where R is
defined as previously and M is C-mixing.

We now generalize Proposition 1.

Lemma 1. DC does not change an amplitude ms of es if s /Œ C and makes
it 2A/N - ms if s Œ C, where A = ⁄sŒC ms, N = |C|.

Proof. First note that for every s Œ K M-1(es) = ⁄iŒK a
i
sei, a

0
s = 1/

0
N

for any s Œ C and a0
s = 0 for other s. Indeed, a0

s = XM-1(es) | e0\ =Xes | M(e0)\ = 1/
0

N because M is unitary. Now for x = ⁄sŒK mses we
have the following equations:

DC(x) = -MR0

ÊÁÁÁÁÁ
Ë
‚
sŒK

ms‚
iŒK

ai
sei

ˆ̃̃
˜̃̃
¯

= -M
ÊÁÁÁÁÁ
Ë
‚
sŒK

ms‚
iŒK

ai
sei - 2‚

sŒC

e0/
0

N
ˆ̃̃
˜̃̃
¯

= -‚
sŒK

mses +
20
N
‚
sŒC

ms
10
N
‚
jŒC

ej

= -‚
s /ŒC

mses +‚
jŒC

ej K2A
N
- mjO .

Corollary 1. Let C Ã K, |C| = N, T Õ C, |T| = N/4, and M be C-
mixing. Then -MR0M-1RT(cC) = cT.

It is readily seen that applying DCRT for |T| = N/4 doubles amplitudes
of states of the form cC, whereas Grover’s algorithm increases them by
a constant O(1/

0
K). Note that generally speaking, RDT(C) cannot
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be implemented on a quantum computer for an arbitrary subset C Ã K
[12]. In section 4 we show how RDT can be implemented in our peculiar
case for databases.

4. Control system with relative diffusion transformation for
quantum databases

Let f be a function of the form {0, 1}n Æ {0, 1}n. A presentation of f is a
basic state of the form

a0, f (a0), a1, f (a1), . . . , aN-1, f (aN-1),g1,g2, . . . ,

where a0, a1, . . . , aN-1 are all different strings from {0, 1}n taken in some
order, N = 2n.

Values of the ancillary qubitsare g = (g1,g2, . . . ,g2nN). There are
M = N! forms of presentations which differ only in their ancillary
qubits, we denote them by P

g
0, P

g
1, . . . , P

g
M-1, where P0 corresponds to

the lexicographic order on {0, 1}n. We use the notation Pi = ai
0, f (ai

0), . . .,
and omit g = 0̄. A string Ba = (a, f (a)) is called a block. Put M =
{0, 1, . . . , M - 1}.

A control system for the database consists of the following two parts.

1. Preparation of the main state. This is a unitary transformation

P0 Æ
10
M
‚
iŒM

Pi
def= c0.

2. Extracting and restoring procedures. Given query a an extracting proce-
dure consists of two parts.

(a) The unitary transformation

Ex : c0 Æ ca
def=

10
(N - 1)!

‚
iŒz(a)

Pi

where z(a) = {i | ai
0 = a}.

(b) Observation of the first 2n qubits.

This gives required information a, f (a) with certainty and does not change
the observed state because ca has the form |a, f (a)\ƒc¢a. The restoring
procedure is (Ex)-1. It gives c0 and the database is ready for the following
query.

We only describe Ex because the main state can be prepared along
similar lines. If a = s1s2 . . .sn/2 is some query to the database and all

si Œ w, then Cj denotes the set of all basic states of the form Pj where a
j
0 =

s1s2 . . .sjdj+1dj+2 . . . dn/2, all dk Œ w, and n is even. Given some RDT(Cj):
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Dj, the sequential applications of DjRCj+1
for j = 1, 2, . . . , n/2 - 1 result

in ca by Corollary 1. Now to complete the construction of Ex it would
suffice to implement some Cj-mixing transformation Mj on a quantum
computer. We construct Mj in three steps. Note that we cannot apply the
Walsh–Hadamard transform here as in [2] because Pj does not exhaust
all basic states of H.

Step 1. Given e0 = P0 = B0, B1, . . . , BN-1, 0, 0, . . . , 0, we first create
the state x = |B0, . . . , BN-1\ƒcH0

ƒcHN-1
ƒcHN-2

ƒcH1
, where Hl =

{0, 1, . . . , l - 1} if l π 0 and H0 = {0, 1, . . . , 2n-2j}. This can be done
by independently applying the transformations |0\ Æ cHl

to the ancillary
registers which are built as in [13].

Given a pair of sequences ”̄ = i0, i1, . . . , iN-1 and r̄ = r0, r1, . . . , rN-1,
where rs Œ HN-s s = 1, . . . , N - 1, r0 Œ H0, we define the pair of
sequences k0, k1, . . . , ks and hs

s+1, . . . , hs
N-1 by induction on s, where ki

and hs
i depend on ”̄ and r̄.

Basis, s = 0: k0 = js, h0
1, . . . , h0

N-1 is obtained from ”̄ by a cancellation
of jr0

.
Step, s > 0: All k0, . . . , ks-1 are already defined. Put ks = hs-1

s+rs
, a new

sequence hs
s+1, . . . , hs

N-1 is obtained from hs-1
s , . . . , hs-1

N-1 by a cancellation
of ks. Denote 0, 1, . . . , N - 1 by 1̄ and 0, 0, . . . , 0 by 0̄.

Let T = 2n-2j, j1 < j2 < µ < jT and let Bj1
, bj2

, . . . , BjT
be all the

blocks from Cj.

Step 2. Perform a chain of classical transformations (with unitary ma-
trices containing only ones and zeroes): x Æ x0 Æµ xN-1, where

xs = Bk0
, Bk1

, . . . , Bks-1
, Bhs-1

s
, Bhs-1

N-1
, r0, . . . , rs-1, rs, . . . , rN-1.

(a) The passage x Æ x0 is the replacement of r0 by the number q such that
iq = jr0

, where ir0
= jt. This can be done because the mapping q Æ jq is

reversible.

(b) The passage xs Æ xs+1 with s = 0, 1, . . . , N - 2 finds the block Bks
and

establishes it immediately after Bks-1
, the order of all other blocks re-

mains unchanged. This can be done because of the definition of ks by
means of classical unitary transformations independent of the contents
of the blocks. The replacement rs Æ rs ensures reversibility, that is, this
transformation is unitary.

Step 3 (Optional). The transformation rs(”̄, r̄) Æ rs(”̄, r̄) - rs(1̄, 0̄) with
s = 0, 1, . . . , N - 1 results in zeroes in the ancillary qubits if an initial
state is P0. Applying these steps to P0 gives all states from Cj with the
same amplitudes, therefore it gives ca.

Detailed analysis shows that Steps 1 trough 3 take time O(N2 log2 N+
T(N)) on a quantum Turing machine where T(N) is the time required
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for Step 1 when a precision is fixed. Hence the procedure Ex takes time
O((N2 log2 N + T(N)) log N).

We have described the procedure for extracting a, f (a). The reverse
procedure restores the main state of the database. The main state c0
can be prepared along similar lines, which takes time O(N3 log3 N +
NT(N) log N).

Note that observation of the first block as described gives a, f (a) only
in an ideal case, that is, if the following effects can be neglected.

1. Precision of the transformations is not absolute, especially for the proce-
dures in Step 1.

2. The presence of noise, spontaneous transformations of the forms: 0 Æ
1, 0 Æ -0, which touch a sufficiently small part of each block Bi.

3. Unauthorized actions that are aimed at learning a value f (b) when the
control system works at a query a π b.

Section 5 deals with point 3 and in section 6 we briefly run through
point 2.

5. Protection of information against unauthorized actions

We presume that the aim of unauthorized actions is to learn f (b) for b π a
with high probability p. Suppose that some blocks g are inaccessible
for these actions. The first block, where the control system observes
the result, is among them. To learn f (b) would require dealing with Np
blocks of memory. This is because the value f (b) is distributed among
all of the blocks except the first with the same probability at any instant
of time.

We shall regard the following scenario. Let somebody S (say, spy)
be equipped with a quantum computer having its own memory. The
database is preparing to answer on a query a. When the database is in
state cCj

S does the following.

1. Observes any Np accessible blocks of the database at one instant of time.

2. Performs unitary transformations with an accessible part of the database
and the memory of the intruding computer with the aim of covering up
all traces of the observation.

After that the control system continues its work as usual. Denote by Pex
the probability that the control system observing the first block will not
receive a word of the form a, A, thus exposing S.

Theorem 1. There exists a function a(g, N) such that "∂ > 0$g :
a(g, N) > 1 - ∂, N = 1, 2, . . . with the following property. For every
choice of a block observed by S and the unitary transformations

Pex ≥ pa.
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Sketch of the proof. Memory of the computer used by S can be consid-
ered as an ancillary part of memory in the database.

We use ci, Ri instead of cCi
, RCi

. Denote by Q0 a state of the computer
after an unauthorized action with the state cj. Then the control system
performs the transformations Di+jRi+j+1, i = 1, 2, . . . , t-j-1, and t = n/2
sequentially. Denote by Qi+1 the results: Qi+1 = Di+jRi+j+1(Qi). Put
∂ = XQ0 | cj\. Because of the unitarity of all transformations at hand
"i = 1, . . . , t - j - 1 XQi | ci+j\ = ∂. Denote by Ssuc the set of basic states
with the first block of the form a, A for some A. For any final state
Qt-j-1 the probability to expose S is 1 -⁄eŒSsuc

|Xe | Qt-j-1\|2. We have

1 - Pex = pP1 + (1 - p)P2,

where P1 (P2) is the probability that the control system receives a, A on
condition that a block a, f (a) was observed by S (was not observed by S
respectively).

Case 1. A block a, f (a) was observed by S.
Let Li = (N - 1)!2t-(i+j) be the cardinality of Ci. Denote by qav

i the
average amplitude of all basic states from Ci+j when the database is
in state Qi. We thus have |qav

i | £ |∂|/
0

Li. Let dnorm and dS denote an
absolute growth of averageamplitudes of basic Ct-states in cases without
S and with S respectively. It follows from Lemma 1 that dnorm ≥ ∂dS
and in state Qt-j-1 all basic states from Ssuc with nonzero amplitudes
are contained in Ct. Therefore P1 £ |∂|

2.

Case 2. A block a, f (a) was not observed by S.
Here we roughly estimate P2 £ 1.

Joining these cases we conclude that 1- Pex ≥ p∂2 + 1-p. Finally, in
view of the assumed conditions, ∂ can be estimated as |∂| £ 2(1 - p)g .

6. Error correcting procedure for the database

Random errors in the database are transformations on the basic states
induced by changes of qubit values of the form 0 Æ 1 or vice versa and
changes of phases 0 Æ -0 or 1 Æ -1 that affect only a small number
of the qubits in each block of memory. Note that the phase errors
0 Æ -1, 1 Æ -1 can be reduced to the change of values as shown in
[14]. Error correcting code (ECC) is the conventional tool to correct
errors of such a sort. Let each block contain n qubits.

Encoding is an injection of the form E : {0, 1}n Æ {0, 1}n1 , where
n1 > n. If wn(A) = ⁄n

i=1 ai is the Hamming weight of the word
A = a1a2 . . . an Œ {0, 1}n, the distance between two such words A, B
is dn(A, B) = wn(A≈B) where ≈ denotes a bitwise addition modulo 2.
Put d(E) = minA,BŒ{0,1}n dn1

(E(A), E(B)).
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If for some A¢, B¢ Œ {0, 1}n1 B¢ Œ Im(E), dn1
(A¢, B¢) < d(E)/2 then

such B¢ are defined for A¢ uniquely and we obtain the partial functions
A¢ Æ B¢ Æ E-1(B¢) = A Œ {0, 1}n. Their superposition D : A¢ Æ A is
called a decoding procedure for encoding E. D corrects £ d(E)/2 errors
that occur in encoding words B¢. This procedure is essentially classical
because the mapping A¢ Æ B¢ is not reversible. But if we use additional
registers that consist of ancillary qubits and denote by g their contents
we can regard a reversible function A¢ Æ B¢, g(A¢) Æ E-1(B¢),g(A¢)
instead of the classical decoding and perform this procedure on a quan-
tum computer. Simple and convenient quantum linear codes are also
proposed in [14].

ECC can be used during computations to correct errors which occur
randomly as the result of noise. The size of the ancillary register thus
increases with longer computation times. In [15] error correcting pro-
cedures are presented which correct errors repeatedly with a constant
rate during the course of computation and requires a size of ancillary
registers polylogarithmical on the time of computation. This error cor-
recting procedure can be applied to our database which results in basic
states of the form E(ei),gi instead of ei considered previously, here all
properties of the database will remain unchanged.
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