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The phase transition with respect to the intensity of a d-correlated noise
source has been studied in a coupled map lattice that simulates the ex-
citability of field-type neural tissues [7]. The entropy of lattice states
versus this control parameter undergoes a qualitative change at the phase
transition point. Its behavior is linear on one side of this point and it
transforms to a cubic-root form on the other side. An enormously in-
creasing susceptibility to external perturbation in the vicinity of the phase
transition point leads to an observed existence of stochastic resonance in
this region. Complexity induced by the external subthreshold periodic
signal reaches a maximum at the phase transition point.

1. Introduction

Complexity, emerging from system pattern formations, has attracted the
close attention of researchers for a long time [3, 5, 6, 15, 29, 34]. Such
investigations are closely related to studies of phase transition phenom-
ena [1, 16, 24]. Fluctuations that grow enormously in the vicinity of
a phase transition point become the sources of new phase nucleating
centers. Intrinsic system noise is a powerful mutagenic factor providing
reproduction of complexity [19–22, 25, 26]. If noise intensity is a con-
trol parameter then an emergence of complex patterns can be expected
in the vicinity of phase transitions with respect to this parameter [10].

In this paper phase transition in a two-dimensional coupled map
lattice with a d-correlated additive noise source is studied. Lattice pa-
rameters are specified so that a point attractor j0 = 0 exists in the
absence of noise (Figure 1). There is a threshold jthr that separates the
basin of the attractor from the rest of the phase space, where chaotic
bursts emerge. Noise sometimes pushes the system out from the attrac-
tor basin. Such an excursion to the burst region induces traveling waves
which can propagate for long distances if the coupling strength of the
lattice sites is large enough.
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Figure 1. Piecewise-linear map. (a) The map depicted at parameters chosen from
a region pointed to by the white arrow in the right graph. (b) The Lyapunov
exponent of the piecewise-linear map, parameters qi and qe are explained in the
text. The black arrow points to the Pomeau–Manneville bifurcation boundary,
that is, the boundary where two fixed points j0 and jthr (see the left graph) are
annihilated [28].

As known from phase transition physics, system susceptibility to
external perturbation increases dramatically as the control parameter
nears the phase transition point. Let the perturbation be a periodic
subthreshold signal A0 cos[W ◊ t] applied to the system being studied.
Such a statement of the problem has culminated in the investigations
of stochastic resonance (SR) [32], that are widely presented in the lit-
erature (for a review see [12]). Noise enhanced spatiotemporal pattern
formation representing, in fact, spatiotemporal SR has been recently
studied as well [22, 25, 26]. In the present work this problem is studied
with respect to phenomena that occur at nonequilibrium phase transi-
tions.

This paper is organized as follows. The two-dimensional coupled
map lattice (CML) is described in section 2, as well as properties of
the single-site map (Figure 1). In section 3 the noise induced phase
transition in two-dimensional CML is discussed. It is found that the
Shannon entropy undergoes a change in behavior as the noise intensity
passes through the phase transition point. Section 4 deals with SR that
causes entropy excess in the vicinity of the phase transition point. This
excess is assumed to be an indicator of complexity [1, 5, 24] reproduced
by the external subthreshold input. In section 5 we summarize the
results and cast a glance at information processing of nervous systems
through these findings.

Complex Systems, 11 (1997) 309–321



Noise Induced Phase Transition 311

2. Two-dimensional coupled map lattice

The two-dimensional CML under consideration in this paper is

jt+1
n,m = (1 - g)(jt

n,m + zD
t
n,m)

+ qeS[jt
n,m + zD

t
n,m - ve] - qiq[j

t
n,m - vi]

+ xtn,m + A0
n,m cos[W ◊ t]. (1)

Here the sigmoid function S[x] is represented by its piecewise-linear
version [4, 6, 35]

S[x] =
1
2
+

1
4
Kƒƒƒƒƒƒx2 + 1

ƒƒƒƒƒƒ - ƒƒƒƒƒƒx2 - 1
ƒƒƒƒƒƒO , (2)

and q[x] is the Heaviside step function. Thresholds ve and vi in these
functions are expressed via the parameters qe and qi in the following
manner [7, 30]:

vs = ln[qs + exp[-qs]], s = e, i. (3)

Due to this restriction [11], a number of the system parameters can be
reduced.

The diffusion term Dt
n,m in equation (1) has the form

Dt
n,m = ∑

t
n,m - j

t
n,m. (4)

Here

∑t
n,m =

⁄j,kvn+j,m+k ◊ j
t
n+j,m+k⁄j,kvn+j,m+k

, (5)

j, k = -1, 0, 1, and vn+j,m+k is a projection operator

vn+j,m+k = d|j|+|k|,1 ◊ q[n + j] ¥ q[m + k]

¥ q[N + 1 - (n + j)] ¥ q[N + 1 - (m + k)], (6)

providing free boundary conditions [31]. Here d|j|+|k|,1 is the Kronecker
delta function.

The external periodic signal A0
n,m cos[W ◊ t] is applied to the central

part of the lattice of size N2 = 64 ¥ 64:

A0
n,m = ;A0, n, m Ã [24; 40]

0, n, m ê Ã [24; 40].
(7)

The noise values xtn,m at every lattice site (n, m) and at every time t =
1, 2, . . . are generated by the Box–Muller algorithm [23]

x = s(-2 ln[r1])1/2 cos[2pr2] (8)
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Figure 2. (a) Record of jt
n,m showing a burst together with a suppressed tail.

Snapshots of traveling waves emerged under a small periodic signal (A0 = 0.012,
TW = 2p/W = 120) and at different noise amplitudes s: (b) ln[s] = -2.3 (near
onset of SR), target waves emerge predominantly within the driven (central) area
and propagate outside; (c) ln[s] = -1.8 (large noise amplitude), target waves
are emerging everywhere in the lattice; (d) clockwise spiral wave, ln[s] = -2.1;
(e) counterclockwise spiral wave, ln[s] = -1.6. The 16 ¥ 16 squares drawn in
the central parts of the 64 ¥ 64 lattice space show areas wherein the periodic
signal from equation (7) is applied with qi = 20, qe = 10, g = 0.07, and z = 0.8.

from two uniformly distributed random numbers (on the unit interval)
r1 and r2. For this reason, the internal noise xtn,m is the gaussian d-
correlated noise with intensity s2 [9]Xxtn,m\ = 0, Xxtn,mx

t
k,l\ = s2 ◊ dn,kdm,ldt,t. (9)

The system parameters qi, qe, and g Ü 1 are set to qi = 20, qe = 10,
and g = 0.07, so that the steady state jt

n,m = 0, "n, m, t occurs in the
absence of the external signal and noise. In essence, jt

n,m = 0 is a point
attractor of the system separated from a region of bursting activity by
the threshold (see Figure 1)

jthr =
ve - 2

1 - 4g/qe
. (10)

Given qe = 10 and g = 0.07 we estimate jthr ª 0.311. Obviously,
the amplitude of an input signal A0 should be small enough to keep
the response below the threshold jthr in the absence of noise. Here
A0 is equal to 0.012. With the internal noise xtn,m the threshold jthr
is sometimes crossed at some site and a burst results from this event
(Figure 2 (a)). The bursting is longer with larger coupling strength z.
Given z = 0.8 for the present work, the burst duration is about 10 time
steps. In the wake of the burst a prolonged suppressed pause lasting
about 60 time steps takes place. During this pause susceptibility of
lattice sites to noise shocks is suppressed.
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Bursts trigger traveling waves that propagate throughout the lattice
until they pass away on the lattice boundary or are annihilated by virtue
of wave collision. These waves are mostly target types (Figure 2, b and
c). Their lifetime, beginning with the burst triggering and ending with
disappearing on the lattice boundary, is about 100 time steps. Spiral
waves [30, 31] can occasionally emerge as well, predominantly at large
noise intensities (Figure 2, d and e). Revolution of the spiral waves takes
around 90 time steps. They occupy the lattice space via rotation of their
arms and hamper the noise creation of new bursts.

3. Phase transition with respect to the parameter s

Lattice response is represented through variables [31]

Zt
n,m =

1
2

(jt
n,m + ∑

t
n,m), Jt

n,m =
1
2

(jt
n,m - ∑

t
n,m), (11)

projected on the plane (Z, J) for a visual representation. Figure 3 demon-
strates a snapshot of a typical suprathreshold response projected onto
the plane (Z, J) at the instant a traveling wave occupies a wide lattice
space.

A box with maximum permissible sizes B = {(Zmin, Zmax), (Jmin, Jmax)}
covering the given area is called the support [8] of the variable set
{Zt

n,m, Jt
n,m}. Let an array

R = array[i = 1..192, j = 1..256] (12)

be a finite partition [2] of the support B. This array divides the support
into 192¥256 cells [31] with finite dimensions DZ = (Zmax -Zmin)/192,
DJ = (Jmax - Jmin)/256 each. The variable set {Zt

n,m, Jt
n,m} induces in the

sample set R at every instant t a dynamic distribution density ri,j[t] [2]

‚
i,j

ri,j[t] = 1, (13)

where the summation runs over the sample set R of equation (12).
The time-averaged Shannon entropy from this sample set is

S = - lim
TÆ•

1
T

T‚
t=1

‚
i,j

ri,j[t] ln[ri,j[t]]. (14)

Figure 4 shows the entropy calculated in the absence of an external
signal for various values of the noise amplitude s. Two regions, 1 and
2, are seen wherein two different laws of entropy are followed; namely,
in region 1

S1 = a1 + ln[s], (15)
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Figure 3. Snapshot of a suprathreshold response of the CML from equation (1)
projected onto the plane (Z, J). The lattice parameters are the same as in
Figure 2. The support {(Zmin, Zmax), (Jmin, Jmax)} is closed to {(-36.0, 13.0),
(-29.0, 33.0)}.

Figure 4. Phase transition seen as breakdown of entropy behavior in the vicinity
of the point ln[s] ª -2.24. Magnitudes of the entropy from equation (14)
and the quantity of equation (17) are depicted by open squares and crosses,
respectively.

and in region 2

S2 = a2 K ln[s*] - ln[s]
ln[s*]

O0.333

, (16)

are disclosed. They are traced by solid lines at the fitted parameters
a1 ª 3.44, a2 ª 6.14, and ln[s*] ª -2.26. Intersection of the relations
S1 and S2 determines the phase transition point ln[sc] ª -2.243 # sc ª
0.106.

In the same figure the relation

S¥ = S1 + a3KZJ (17)
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is depicted by crosses. Here support S1 is the linear relation of equa-
tion (15), the term

KZJ = lim
TÆ•

1
T

T‚
t=1

1
N2 ‚

n,m

Zt
n,mJt

n,m (18)

is the time-averaged functional [31] represented by the scalar product
of two system state vectors

”
Z[t] = {Zt

n,m} and
”
J[t] = {Jt

n,m}, and the fitted
parameter a3 ª 2.1. The scalar product of these vectors represents, with
an accuracy of factor, an entropy production [31]. Since the system
resides, predominantly for region 1, in the basin of the point attractor
Z = J = 0, the entropy production in region 1 is equal to zero [29].
One can see that KZJ is close to zero in this region as well. S1 from
equation (15) is solely responsible for the entropy increment in this
region due to the productive function of the noise source equation (9).
The quantity KZJ becomes nonzero in region 2. Here traveling waves
are continuously sustained by the noise source [19]. The quantity KZJ
is seen to be an order parameter for this transition.

4. Stochastic resonance

Examination of system response to external perturbation gives impor-
tant information about processes that take place in the vicinity of the
phase transition point. The perturbation used in the present work is a
small periodic signal A0

n,m cos[W ◊ t]. Examination of system response
in this fashion is essentially associated with SR investigation in the
CML [32].

Residence time distribution is an important characteristic of SR [12,
17]. Let us first examine the residence time of equation (1) in the
subthreshold state, jt

n,m < jthr for all n and m at the same time; that is,
the residence time in the basin of the point attractor. Figure 5 shows
different residence time distribution histograms N[T] for selected noise
amplitudess and an external signal with the driving period TW = 2p/W =
240. Peaks seen in the lower histogram are centered at multiples T/TW =
(2n - 1)/2, n = 1, 2, . . . . The height of the first peak Pn=1 characterizes
selective response of the system to the external signal [12], as illustrated
in the inset. As can be seen, there is an optimal range of the noise
amplitude (-2.5 < ln[s] < -2.1) where system selective response to the
external signal increases due to the noise influence.

The responses to external signals for several periods TW = 120, 240,
and 480, manifesting themselves by passage of the first peak P1 over the
maximum apex as s passes along the optimal noise range, are shown
in the left column in Figure 6. The right column in Figure 6 presents
the Shannon entropy (equation (14)) calculated at the same conditions
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Figure 5. Residence time distribution histogram N[T] for various noise ampli-
tudes s and fixed parameters of the driving input (A0 = 0.012, TW = 240). Inset
shows height of the first peak P1 of N[T] versus ln[s]. The numbers 1, 2, and 3
(in both figures and inset) correspond to ln[s] values of -2.5, -2.3, and -2.1,
respectively.

(depicted by open squares). Solid lines depict equations (15) and (16)
representing a background for the entropy calculated in the presence of
the external signal. Against this background the entropy increment is
clearly visible in the transition region. The quantities S¥ undergo similar
increments as well, through increments of KZJ from equation (15). They
are depicted by crosses in this figure. Excesses of these quantities,
DS = S -

Ù
S and DK = KZJ -

Ù
KZJ, with respect to the background

Ù
S andÙ

KZJ (see Figure 4) refer to the information capacity [24] of the SR. These
excesses for different periods TW are shown in Figure 7. Apexes of these
excesses can be seen arranged in the vicinity of the phase transition point
ln[sc] ª -2.243. The maximum apex, in so doing, is at TW > 160∏180.
Thereafter, the height of the apex decreases smoothly as TW increases.
In fact, enhancement of SR taking place near TW ª 160 is induced by
coincidence of the external signal frequency with the internal rhythm of
the system, that is, the resonance relation TW

.= 2 T is valid for traveling
waves, the lifetime of which is T ª 80.
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Figure 6. SR phenomenon with respect tos. The left column shows the height of
the first peak P1 of the residence time histogram N[T]. The right column shows
the Shannon entropy from equation (14) and the quantity of equation (17)
(depicted by open squares and crosses, respectively) calculated with various
driving periods TW for the external signal: (a) TW = 120; (b) TW = 240; (c) TW =
480. The lines in the right-hand graphs are drawn according to equations (15)
and (16).

5. Conclusions

The noise induced phase transition studied in the two-dimensional cou-
pled map lattice (CML) of equation (1) is a transition from sporadic
suprathreshold excursions provoked by small noise intensity to noise
enhanced traveling waves as the noise intensity becomes large enough.
The Shannon entropy and entropy production are shown to undergo
qualitative changes in the phase transition point with respect to the
noise intensity. Susceptibility of the system to an external subthreshold
perturbation increases enormously in the vicinity of this point. The
phase transition region is a region where stochastic resonance (SR) can
be realized due to an increasing susceptibility to external subthreshold
signals. SR manifests itself in phase locking [27] between the periodic
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Figure 7. SR complexity emerging in the transition region. Families of excesses
DS (a) and DK (b) are shown for various TW = 60, 80, 100, 120, 140, 160, 180,
as well as for 240, 480, and 960.

drive added in the central part of the lattice and lattice site burstings
that trigger the traveling waves.

Detection of events near the threshold of perception and, possibly,
below it, for disclosing a danger or finding food in time of scarcity, is
essential for the survival of living beings in the environment. For this
reason, SR can play a significant role for signal transmission in neural
information processing [22, 25, 26]. SR was recently demonstrated by
Gluckman and others [13] in slices of the rat hippocampal. It is known
from experience that the hippocampus is a structure that has a low
seizure threshold [14]. In essence, this structure acts on the edge of loss
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of stability and epileptic seizures can be readily provoked there [7, 18,
33]. As a consequence, its perceptibility of external signals in this active
region is high enough.
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[26] M. Löcher, D. Cigna, and E. R. Hunt, “Noise Sustained Propagation of a
Signal in Coupled Bistable Electronic Elements,” Physical Review Letters,
80 (1998) 5212–5215.

[27] A. Neiman, A. Silchenko, V. Anishchenko, and L. Schimansky-Geier,
“Stochastic Resonance: Noise-enhanced Phase Coherence,” Physical Re-
view E, 58 (1998) 7118–7125.

[28] Y. Pomeau and P. Manneville, “Intermittent Transition to Turbulence
in Dissipative Dynamical Systems,” Communications in Mathematical
Physics, 74 (1980) 189.

[29] I. Prigogine, From Being to Becoming: Time and Complexity in the Phys-
ical Sciences (W. H. Freeman and Company, San Francisco, 1980).

[30] V. I. Sbitnev, “Checkerboard Spiral Waves in a 2D Coupled Map Lattice,”
International Journal of Bifurcation and Chaos, 7 (1997) 2569–2575.

[31] V. I. Sbitnev, “Chaos Structure and Spiral Wave Self-organization in 2D
Coupled Map Lattice,” International Journal of Bifurcation and Chaos,
8 (1998) 2341–2352.

[32] V. I. Sbitnev and M. A. Pustovoit, “Stochastic Resonance in 2D Coupled
Map Lattice Model of Field-like Neural Tissue,” International Journal of
Bifurcation and Chaos, (submitted to press).

[33] K. L. Smith, C. L. Lee, and J. W. Swann, “Local Circuit Abnormalities in
Chronically Epileptic Rats After Intrahippocampal Tetanus Toxin Injec-
tion in Infancy,” Journal of Neurophysiology, 79 (1998) 106–116.

[34] S. Wolfram, “Universality and Complexity in Cellular Automata,” Physica
D, 10 (1984) 1–35.

[35] T. Yang and L. O. Chua, “Control of Chaos Using Sampled-data Feedback
Control,” International Journal of Bifurcation and Chaos, 8 (1998) 2433–
2438.

Complex Systems, 11 (1997) 309–321


