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This paper presents a simple method for estimating the mean time at which
the best solution, or optimum allele, appears for the first time in the search
process of genetic algorithms. A set of equations modified from Eigen’s
evolution equation is used for calculating the mean first-passage time.
The essential point of the method is that the optimum allele is considered
as an absorbing state. It is shown that the theory can generally reproduce
numerical experiments on three types of fitness landscapes.

1. Introduction

One of the most important and serious problems in genetic algorithms
(GAs) is how to predict the performance of GAs when a task is specified.
For solving this problem, it is essential to understand the mechanism of
search processes in GAs. Holland’s schema theorem provides a good
description of the dynamics of GAs [1], and has been used most widely
in theoretical analysis. This theorem can predict the increase of the mean
fitness of a subpopulation from one generation to the next [2]. However,
it seems too simple to make quantitative analysis of the performance of
GAs. It is in general very difficult to predict the hardness of a problem
by using this method alone.

For evaluating the performance of GAs, one of the most important
measures is a first-passage time Ta at which the best solution appears
for the first time in a population. In this paper, we present a simple
method for estimating the mean first-passage time Ta in GAs by ex-
tending the method used in [3], which was based on the deterministic
theory of molecular evolution developed by Eigen and coworkers [4, 5].
In a previous paper [3], we presented the theory of GA dynamics by
applying Eigen’s model of evolution. The time dependent behavior of a
population is given by a set of ordinary differential equations which in-
cludes the effect of selection and mutation. The effect of crossover was
neglected. We found that the solution for the equations could reproduce
well the relative frequencies of alleles in GA calculations on three types
of fitness landscapes.
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Several methods of calculating the first-passage time in stochastic
processes have been reported [6]. There are, for example, the absorbing
boundary, adjoint equation and renewal approaches, and so on. Among
them, the absorbing boundary method is the most popular and has been
used in a variety of applications [7, 8]. In this paper, a method for
estimating Ta is obtained simply by introducing artificially an absorbing
state in Eigen’s evolution system. In our method, the absorbing state
corresponds to the optimum solution which we want to find. We em-
ployed this absorbing boundary condition in order to avoid counting
the probability flux, which reaches the optimum solution more than
twice. That is, we have to remove a part of probability flux from the
system when it arrives at the optimum. If we do not remove that part
of probability, it will reach the optimum later again and brings longer
Ta [6].

De Jong, Spears, and Gordon proposed a GA theory to compute mean
first-passage times within the framework of the Markov chain [9]. They
used the Markov model of GAs developed by Nix and Vose [10], and
their theory includes selection, mutation, and crossover. The Nix and
Vose model can calculate exact state transition probabilities, and thus
provides a method for estimating Ta on the firm foundation of stochastic
process theory. However, there is a serious shortcoming inherent in
their theory, which prevents its practical application to real world GAs.
The defect of their approach is that the number of states M in the
Markov process increases exponentially as the size of population and
string length increase. For example, the number M becomes more than
two million when population size is 6 and string length is 5. Since the
theory involves an M×M matrix, the analysis of the Markov processes
by means of such a rigorous theory would be practically impossible even
for a small system like this.

This suggests that it is inevitable for us to introduce some approxi-
mations into a stochastic theory when we perform GA analysis in more
realistic situations. Shapiro, Prügel-Bennet, and Rattray made another
approach for describing GA dynamics by the use of statistical mechanics
[11–13]. Their formalism takes into account only a few macroscopic
statistical parameters and the remaining microscopic degrees of free-
doms are averaged out. This approximation makes it possible for their
model to handle general classes of problems in GAs.

Flyvbjerg and Lautrup proposed another method treating the tempo-
ral aspect of evolution by means of the adaptive walk model [14]. In
their method, evolution is modeled as a stepwise optimization process of
a population, and the genetic variability of the population is neglected.
They derived analytical expressions for the average length and duration
of adaptive walks in a rugged landscape.

The method proposed here uses the deterministic theory of evolu-
tion introduced by Eigen [4, 5], which includes quite a few parameters.
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Therefore the method is tractable for us even if the system size is large.
The other side of this fact means that we can estimate only the average
of a stochastic variable. A more complete description would require
developing the stochastic theory of random variable Ta. Especially, the
variance of Ta is another important measure for evaluating the perfor-
mance of GAs. We hope that the present work serves as a first step
toward the comprehensive understanding of first-passage times in GAs.

2. Eigen’s evolution model

For describing the GA process, we have used a set of difference equations
based on the discrete time model of evolution. The method is essentially
the same one given by Eigen for describing the evolutionary process of
self-replicative macromolecules such as DNA or RNA, in the framework
of the continuous time model which uses a set of differential equations
[4, 5].

The application of Eigen’s continuous time model of evolution to
GAs was presented in [3]. In Eigen’s theory, the method for solving
the differential equations has already been developed by many groups
(e.g., [15–17]). However, since most GA applications use generational
GAs, it may be better to use the discrete time model for simulating real
GAs as discussed in [18]. Therefore we have adopted the discrete time
model of GA evolution represented by a set of difference equations. In
the following, we give a short description of the problem and describe
the method for solving the difference equations.

2.1 Discrete time model of evolution

We studied the behavior of a population composed of fixed length bi-
nary strings. The evolutionary process of GAs is treated within the
framework of a one-locus multiple-allele model. Hence there are n = 2l

alleles represented by binary strings of length l, Si (i = 0, . . . , n − 1).
As an evolutionary procedure, we used a simple genetic algorithm (SGA)
described in Goldberg’s textbook [2]. The SGA is a generational GA,
in which we utilize two nonoverlapping populations at each generation
with the birth of offspring and the entire replacement of parents.

We take into account the effect of selection and mutation, while ne-
glecting crossover. The role of crossover in first-passage time problems
will be discussed in forthcoming papers. As a selection scheme, we ap-
plied proportionate reproduction, and used the roulette wheel selection
in numerical experiments.

The size of the population is N which is assumed to be fixed through-
out the GA evolution, and the number of the ith allele is Ni (i =
0, . . . , n − 1) with N = N0 + · · · + Nn−1. Since we wanted to develop
an infinite population model for GA evolution, we used the relative
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frequency xi(t) at generation t instead of Ni,

xi(t) = Ni/N (i = 0, . . . , n − 1).

For xi(t), the condition of N0 + · · · + Nn−1 = N is represented by

x0(t) + · · · + xn−1(t) = 1.

We will sometimes use the vector representation of xi(t);

x(t) = (x0(t), x1(t), . . . , xn−1(t))T ,

where T stands for transpose.
In proportionate selection, the relative frequencies at generation t+1

are given in terms of the relative frequencies at generation t as

xi(t + 1) =
fi

f̄ (t)
xi(t) (i = 0, . . . , n − 1), (2.1)

f̄ (t) =
n−1∑

i=0

fixi(t). (2.2)

Here fi is the fitness of string Si and f̄ (t) stands for the mean fitness of
the population at generation t. We assume that the fitness values fi are
all positive. It is not difficult to find the solution for the equations as
given in [18]:

xi(t) =
f t
i xi(0)∑
j f t

j xj(0)
(i = 0, . . . , n − 1).

In the mutation process, frequencies at the next generation t + 1 are
given by

xi(t + 1) =
n−1∑

j=0

Mijxj(t) (i = 0, . . . , n − 1), (2.3)

where Mij is an element of the mutation matrix M representing the rate
of transition Sj → Si by mutation. The mutation matrix M can be
described as

Mij = (1 − p)l−d(i,j)pd(i,j), (2.4)

where d(i, j) is the Hamming distance between strings Si and Sj, and we
assume that the strings are reproduced with mutation rate p per bit per
generation. The following relation is important for solving the Eigen
equation

n−1∑

i=0

Mij = 1, (2.5)

and will be used in section 2.2.
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The equations of evolution with selection and mutation are obtained
by combining equations (2.1) and (2.3)

xi(t + 1) =
1

f̄ (t)

n−1∑

j=0

Mijfjxj(t)

=
1

f̄ (t)

n−1∑

j=0

Aijxj(t) (i = 0, . . . , n − 1). (2.6)

Here Aij = Mijfj is an element of the selection-mutation matrix A. We
call this set of difference equations the discrete time Eigen equation.

2.2 Solution for the Eigen equation

We can calculate the frequencies x(t) by applying the discrete time Eigen
equation (2.6) t times to the initial distribution x(0). However, there
is also an analytical method for solving this set of difference equations.
In the following, the procedure given by Nimwegen, Crutchfield, and
Mitchell is presented [19].

New variables are introduced

y(t) = (y0(t), . . . , yn−1(t))T ,

which satisfy a system of difference equations

yi(t + 1) =
n−1∑

j=0

Aijyj(t) (i = 0, . . . , n − 1), (2.7)

assuming the initial distribution y(0) = x(0).
The solution of this system has the form

y(t) = Aty(0) = Atx(0). (2.8)

We can obtain the explicit form of this solution by solving an eigenvalue
equation Av = αv. It is shown in [3] that the eigenvalues of the matrix
A are all real. Furthermore, remembering the assumption that all fitness
values fi are positive, and using the Perron–Frobenius theorem, we can
verify that the eigenvalue of the largest magnitude is nondegenerate and
positive from the fact that all matrix elements of A are positive when
the mutation rate is nonzero. Rumschitzki gives detailed discussions on
the properties of the spectrum of selection-mutation matrix A in [17].

We can choose n linearly independent eigenvectors of A with their
eigenvalues αi

Av(i) = αiv(i) (i = 0, . . . , n − 1).
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For convenience of representation, we choose the normalization of v(i)

as
n−1∑

j=0

v(i)
j = 1 (i = 0, . . . , n − 1). (2.9)

We can construct a solution for the modified equation (2.7) as

y(t) =
n−1∑

i=0

biαi
tv(i), (2.10)

where the constants {bi} are determined from the initial condition

y(0) = x(0) =
n−1∑

i=0

biv(i).

To calculate {bi}, we define the transformation matrix G in terms of the
eigenvectors v( j)

Gij ≡ v( j)
i (i, j = 0, . . . , n − 1). (2.11)

Using the inverse matrix of G, the constants {bi} are given by

bi =
n−1∑

j=0

G−1
ij xj(0) (i = 0, . . . , n − 1). (2.12)

Finally, equation (2.6) is solved. We can show that the solution x(t)
is given in terms of y(t)

xi(t) =
yi(t)∑
j yj(t)

(i = 0, . . . , n − 1). (2.13)

This equation can be proven inductively. First there is a relation

yi(1)∑
j yj(1)

=

∑
j Aijyj(0)

∑
j,k Ajkyk(0)

=

∑
j Aijxj(0)

∑
k fkxk(0)

=
1

f̄ (0)

∑

j

Aijxj(0) = xi(1).

Equation (2.5) is used to show
∑

j

Ajk =
∑

j

Mjkfk = fk.

Second, equation (2.13) is assumed, and then

yi(t + 1)∑
j yj(t + 1)

=

∑
j Aijyj(t)∑

j,k Ajkyk(t)
=

∑
j Aijyj(t)∑
k fkyk(t)

=

∑
j Aijxj(t)∑
k fkxk(t)

=
1

f̄ (t)

∑

j

Aijxj(t) = xi(t + 1)
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is demonstrated. Thus we can prove that equation (2.13) also holds at
t + 1.

3. Mean first-passage time in genetic algorithms

By generalizing equation (2.6), we obtained a simple method to evaluate
the mean number of generations until the optimum allele is introduced
in the population of size N. The essential point of this method is the
assumption that the optimum allele behaves as an absorbing state [6].

Let the allele S0 be the best solution for a given problem, or equiv-
alently f0 > fi (i %= 0). It is easy to extend the method to landscapes
where more than one allele has the maximum fitness value. We consider
the situation that, when the optimum allele S0 appears in a GA calcula-
tion, it is removed from the population. By assuming this, we can treat
the optimum allele S0 as an absorbing state. Therefore, in the discrete
time model, the evolution equation (2.6) is modified to

x0(t + 1) = 1 −
n−1∑

j=1

xj(t + 1), (3.1)

xi(t + 1) =
1

ḡ(t)

n−1∑

j=1

Aijxj(t) (i %= 0), (3.2)

where ḡ(t) stands for the average fitness of the nonoptimum alleles

ḡ(t) =

∑n−1
j=1 fjxj(t)

∑n−1
j=1 xj(t)

=

∑n−1
j=1 fjxj(t)

1 − x0(t)
.

The calculation starts under the normalization condition
n−1∑

j=0

xj(0) = 1,

which will be satisfied at all generations.
The equations for the nonoptimum alleles (3.2) can be obtained by

setting x0(t) = 0 in equation (2.6). At first glance, the system of equa-
tions (3.2) seems to be independent of x0(t). However, it is to be
noted that the reduction of xi(t) through mutation xi(t) − Miixi(t) =
{1− (1 − p)l}xi(t) includes a component that decays into the absorbing
state s0.

From equation (2.5), we find

n−1∑

i=1

Aij =
n−1∑

i=1

Mijfj =
n−1∑

i=0

Mijfj − M0jfj = fj − M0jfj,
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and from equation (3.2), we have

n−1∑

i=1

xi(t + 1) =
1

ḡ(t)

n−1∑

i=1

n−1∑

j=1

Aijxj(t) =
1

ḡ(t)

n−1∑

j=1

xj(t)
n−1∑

i=1

Aij

=
1

ḡ(t)

n−1∑

j=1

xj(t)fj(1 − M0j) = 1 − x0(t) − 1
ḡ(t)

n−1∑

j=1

M0jfjxj(t).

Then an alternative expression for x0(t + 1) is obtained from equa-
tion (3.1)

x0(t + 1) = x0(t) +
1

ḡ(t)

n−1∑

j=1

M0jfjxj(t).

Since all fi are positive as we have assumed, the increment of x0(t) at
one generation step is

∆x0(t) ≡ x0(t + 1) − x0(t) =
1

ḡ(t)

n−1∑

j=1

M0jfjxj(t) > 0.

Therefore the frequency x0(t) is a monotonically increasing function of
time t.

When the frequency of the optimum allele x0(t) becomes some fixed
value P, what is the distribution of the number of the optimum allele
N0? The discussion in the Appendix answers that N0 has a binomial
distribution with the mean NP. We define an estimate of Ta as a function
of the population size N

T̂a(N) = min
i≥0

{
x0(i) ≥ 1

N

}
= min

i≥0
{N0(i) ≥ 1}, (3.3)

where N0(t) = x0(t)N. This definition implies that we choose P = 1/N.
Hence at t = T̂a(N), the expected value of N0 is 1. In other words,
equation (3.3) means that we use the estimate of the first-passage time
at which N0 becomes 1 for estimating Ta. Therefore this definition of
T̂a(N) is not a direct estimate for Ta. However, as we will show in
section 4, T̂a(N) works quite well in many cases of GA applications.

It is to be noted that T̂a(N) takes an integer value while the value Ta
is in general a real number. Therefore this method essentially has an
error within a maximum of one generation. However one may not care
about this degree of error in the real situation of GA applications.

4. Numerical experiments

In this section the results of numerical experiments in mean first-passage
times of GAs on three types of fitness landscapes are reported. The main
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aim of the experiments was to study how well the estimate T̂a(N) defined
by equation (3.3) can quantitatively predict mean first-passage times of
GAs. We examine the flat, multiplicative, and deceptive landscapes.

4.1 Flat landscape

The first example is the flat landscape represented by the constant fitness
function fi ≡ 1. On this landscape, the discrete time Eigen equation
reduces to the equation for the system without selection as given by
equation (2.3) for the mutation process

xi(t + 1) =
1

f̄ (t)

n−1∑

j=0

Mijfjxj(t)

=
n−1∑

j=0

Mijxj(t) (i = 0, . . . , n − 1),

since f̄ (t) =
∑n−1

i=0 fixi(t) =
∑

xi(t) = 1. Although the selection op-
erator with a constant fitness function, which is equivalent to random
sampling, seems to have no effect on the distribution of a population,
the selection (sampling) process actually causes genetic drift on it. The
effects of random sampling are discussed in the following.

Figures 1 and 2 show the mean first-passage time Ta as a function of
the population size N in GAs on the flat landscape with the mutation

Figure 1. The mean first-passage time in GAs on the flat landscape with p = 0.02.
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Figure 2. The mean first-passage time in GAs on the flat landscape with p = 0.05.

rate p = 0.02 and 0.05, respectively. The length of the strings is l =
8. In these calculations, we used the evolutionary process of SGA [2]
described in section 3. In both figures, the initial condition is such that all
members of the population start from one string xn−1(0) = (1, 1, . . . , 1);
that is, bits of the string are all 1. We assumed that the optimum
allele is the string (0, 0, . . . , 0), which actually is not the best solution
in this case. The closed circles correspond to the mean values of Ta
in each 100 runs of the GA calculations on the flat landscape. The
open circles represent the mean values of each 100 runs of the GA
with mutation alone. Since one of the purposes of the experiment was
to study the effects of sampling on Ta, we included these calculations
for comparison. The mutation-only calculations were performed in the
framework of the SGA [2] while omitting the selection procedure. The
solid lines in these figures show the theoretical prediction T̂a(N) defined
by equation (3.3). As reported earlier, the infinite population model
predicted the same result for the GA on the flat landscape plus mutation
and for the GA with mutation alone.

The theory agrees almost completely with experiments on the flat
landscape in the region of large population size N. At smaller N, how-
ever, some discrepancies between theory and experiment were observed.
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For example, at the point of N = 15 in Figure 1, a large amount of dis-
crepancy can be seen between them. The experimental Ta was 253.3
while the theory predicted T̂a(N) = 195. It can also be seen by compar-
ing both figures that experiments with strong mutation showed better
agreement with the theoretical prediction than those with weak muta-
tion.

The results of GA experiments on the flat landscape and those without
sampling show some differences in the region of small N. In general the
results of GA without sampling can be reproduced well by T̂a, while the
experimental values of Ta with sampling plus mutation are larger than
the theoretical estimation at small N. This fact suggests that random
sampling has the effect of increasing Ta.

For comparison, we have shown the distributions of Ta in the flat
landscape and in the absence of sampling in Figure 3. The parameters
in these calculations are p = 0.02 and N = 15, which give maximum
differences between Ta in Figures 1 and 2. We carried out 10,000 GA
runs repeatedly in each case. The inclusion of sampling causes longer Ta
and a broader distribution of Ta in Figure 3(a) than 3(b). We obtained
Ta = 253.3 and the standard deviation of Ta σ = 203.3 in Figure 3(a)
while Ta = 186.9 and σ = 135.6 in Figure 3(b).

Intuitively, random sampling on the flat landscape seems to have
no effect on Ta. However, it is well known in population genetics
that sampling has a side effect on the population distribution. For
example, Derrida and Peliti give a discussion on the evolution of a finite
population in the flat landscape [20], see also [21]. Since the infinite
population model used here neglects the stochastic effects of random
sampling, it seems quite natural that the theory underestimates Ta when
sampling is present.

To show the effect of random sampling, we performed GA experi-
ments without the absorbing boundary condition, which means that a
calculation does not stop even if the optimum allele appears in the popu-
lation. Figure 4 illustrates the time dependent behavior of the mean and
variance of the Hamming distance from the optimum allele (0, 0, . . . , 0).
In this figure it can be seen that while the sampling has a negligible effect
on the behavior of the mean value, it drastically reduces the variance of
the Hamming distance when the population size N is small. The reason
for this change may be understood from the following consideration.
Since a parent of each individual can be chosen at random from the
previous generation in the sampling process, there is a probability 1/N
that two individuals have the same parent [20, 21].

On the other hand, in the mutation-only process, each individual
evolves independently. Therefore the variance of the Hamming distance
becomes small when sampling is present. Also note in Figure 4 that
this effect of sampling is small when the population has large N. The
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(a)

(b)

Figure 3. The distribution of the first-passage time Ta in GA on the flat landscape
with p = 0.02 and N = 15; (a) GA with random sampling, (b) mutation-only
process. The bin size is 20 generations.
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Figure 4. The mean and variance of the Hamming distance from the optimum
allele in the GA on the flat landscape with l = 8; (a) p = 0.02 and N = 15,
with sampling (solid lines) and without sampling (dotted lines), (b) p = 0.05
and N = 15, and (c) p = 0.05 and N = 100. The data were obtained by taking
the averages of the mean and variance of the population over 100 runs.
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Figure 4. (continued).

larger variance of the Hamming distance means that the members in the
mutation-only process can reach the optimum allele more rapidly than
those in the GA process with sampling. The present study suggests that
it is important to take into account the variation within a population.

4.2 Multiplicative landscape

The second example we give is the multiplicative landscape defined as

fi = (1 − s)|i| (i = 0, . . . , n − 1),

where s is a parameter representing the strength of selection, and |i| ≡
d(0, i) is the Hamming distance between the optimum allele S0 and an
allele Si. Here we use the standard binary representation of nonnegative
integer i. The time dependent behavior of allele frequencies on this
landscape without an absorbing state has been studied previously in [3],
and it was demonstrated that Eigen’s model can reproduce the results
of GA calculations of frequencies xi(t) well.

Figure 5 shows the distribution of Ta in GA on the multiplicative
landscape. The GA experiment was carried out 10,000 times. The initial
distribution of strings is the same used in section 4.1. By comparing this
figure with Figures 3 and 4, we can observe a drastic shortening of Ta
(Ta = 42.2) and realize the remarkable effect of the selection operator.
It can also be seen in this figure that the distribution peak becomes very
sharp. This property is desirable for the practical application of GAs.
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Figure 5. The distribution of the first-passage time Ta on the multiplicative
landscape with l = 8, p = 0.02, N = 15, and the selection strength s = 0.2.
Bin size is 5 generations.

Figures 6 and 7 demonstrate the comparison between the theory and
experiments with parameters l = 8, s = 0.2, and p = 0.02 and 0.05,
respectively. The dotted lines are theoretical estimations on the flat land-
scape, which are added for the comparison of the two landscapes. As
mentioned previously, the result with a strong mutation calculation in
Figure 7 shows better agreement with the theory than that of the weak
mutation in Figure 6. The theoretical prediction in general underesti-
mates experimental Ta in both figures. Also note that the agreement of
the theory and experiments is good in large N, while some discrepancies
are observed in small N. This tendency is just like the one observed in
section 4.1.

4.3 Deceptive landscape

There have been many reports on the deceptiveness of fitness functions
[2, 22]. Deceptiveness is usually defined as the structure of a fitness
landscape which misleads the evolutionary path by indicating the wrong
direction to the selection operator. As an example of deceptive land-
scapes, we studied a class of fitness functions discussed in [22].
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and dotted lines represent the theoretical estimation T̂a. Calculations were
carried out 100 times at each point.
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Figure 7. The mean first-passage time in GAs on the multiplicative landscape as
in Figure 6 with p = 0.05.
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Figure 8. The fitness of the deceptive landscape as a function of the Hamming
distance |i|.

The result of using the fitness function of the following form, referred
to as a trap function in [22], defined in terms of |i| = d(0, i) is

fi =
{

6 − |i| (|i| ≤ 5)
|i|− 4 (|i| > 5).

Figure 8 illustrates the shape of this landscape.
The initial condition is the same as that used previously. That is, the

calculation starts from the initial point |i| = 8 and the population moves
to the direction of the target point |i| = 0. Therefore GA operators,
especially mutation in this case, have to drive some members of the
population to the intermediate point |i| = 5 against the unfavorable
slope in the fitness function.

One can easily expect that Ta of this example would be rather longer
than Ta of easy problems like the GA on the multiplicative landscape.
Figures 9 and 10 illustrate that this is really true. Since, in many GA
runs, the calculations did not produce the optimum string within the
appropriate computational time when we used the mutation rates of
p = 0.02 and 0.05, the mutation rate p is increased to 0.07 in Figure 9
and 0.10 in Figure 10, respectively.

The theoretical estimate T̂a for this problem deviated from experi-
mental values when the weaker mutation rate of 0.07 was used. Further-
more, in small N regions, the theory underestimated the experimental
Ta. These are the same tendencies observed in other landscapes.
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Figure 9. The mean first-passage time in GAs on the deceptive landscape as in
Figure 6 with p = 0.07.

Figure 10. The mean first-passage time in GAs on the deceptive landscape as in
Figure 6 with p = 0.10.
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Landscape p N Ta σ Median T̂a

Flat 0.02 15 253.3 203.3 193 195
200 58.7 23.0 55 57

0.05 15 92.1 72.2 70 82
200 22.4 8.1 21 23

Multiplicative 0.02 15 42.2 15.3 40 25
200 17.6 3.5 18 15

0.05 15 24.0 10.1 22 18
200 10.3 2.1 10 10

Deceptive 0.07 15 34.6 17.4 31 23
200 14.5 3.9 14 14

0.10 15 21.5 9.4 20 18
200 9.5 2.3 9 10

Table 1. Statistical quantities of Ta. Experimental values Ta, σ (standard devia-
tion) and Med. (median) of Ta are obtained in 10,000 runs.

4.4 Other properties of Ta

In this section we briefly discuss some other statistical properties of
Ta. Table 1 lists Ta for the three landscapes together with the standard
deviation and median of Ta obtained in 10,000 GA runs. The theoretical
estimation T̂a is also included for comparison.

As we have pointed out, the agreement between the theory and ex-
periment becomes poor when both p and N are small. In such a case,
the median also deviates from the mean and the distribution has a quite
asymmetrical shape. For example, the large Ta region has a very long
tail in Figure 3. Since the theoretical T̂a is actually the estimate for the
first-passage time of N0 = 1, the estimation may deteriorate when the
distribution is not symmetrical. On the contrary, when both p and N are
large, the theoretical estimation agrees quite well with the experiment
and the mean and median of Ta are almost identical. As an example,
the distribution of Ta for the multiplicative landscape with p = 0.05
and N = 200 are shown in Figure 11. One can observe the almost
symmetrical shape of the distribution in this figure. In this case Ta, the
median of Ta and T̂a, almost coincide with each other.

5. Discussion

This paper has presented a simple method for estimating the mean
first-passage time Ta in GAs. The method is based on the theory of
macromolecular evolution developed by Eigen and coworkers [4, 5].
There are several reports on the applications of Eigen’s theory to genetics
and population genetics (e.g., [23–26]). Since the GA theory has an
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Figure 11. The distribution of the first-passage time Ta on the multiplicative
landscape with l = 8, p = 0.05, N = 200, and the selection strength s = 0.2.

aspect of one field of genetics, we thought that the theory of Eigen
might be also useful in GAs [3]. In practice, we have applied Eigen’s
theory to GAs for describing the time dependence of allele frequencies.
We showed that the system of ordinary differential equations with the
selection-mutation matrix A reproduced the GA experiments with large
population size excellently.

Since GAs are a class of stochastic algorithms, it is necessary to
develop a stochastic theory if we want to describeGA processesprecisely.
Several methods based on the finite population model for analyzing
GAs [9, 10] have been proposed. These methods use the theory of the
Markov chain and can provide a precise description of GA processes.
However, as we have stated, these methods are too rigid for us to apply
to GAs in realistic environments. On the contrary, the method proposed
here is an extension of Eigen’s theory which assumes an infinitely large
population and does not include stochastic effects caused by random
sampling. However, these shortcomings make this method very easy to
use and applicable in a wide range of situations.

Although this method estimates Ta only indirectly, the GA simulation
in general shows good agreement between theory and experiment. The
theory performs very well in large N regions for all examined landscapes.
This result seems quite natural because it depends on the infinite popula-
tion model. The agreement is insufficient in the regions of very small N
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where the diffusion caused by the random sampling may become signif-
icant. Another important observation is that GAs with strong mutation
evolve faster than those with weak mutation. In this respect, we need
further study to draw a definite conclusion.

Many articles in population genetics have a close connection with the
evolution of GA processes studied in this work, and some of them treat
finite population models. For example, Kimura gave some analytical
results on the neutral evolution of a finite population [27], and there are
several papers studying evolution in the flat landscape [20, 21]. Since
the system in the flat landscape has a very simple structure, we think
that there is a possibility to construct more quantitative methods for the
first-passage time analysis in the near future.

There are also several papers treating the evolutionary processes on
the multiplicative landscape [23, 28–30]. These papers give some an-
alytical formulae representing the allele distribution of evolving pop-
ulations. For example, Higgs and Woodcock obtained equations for
describing the evolution of the moments of the allele distribution [29]
and the exact expression for the allele frequencies in the stationary state
[30]. Therefore, it is interesting to extend their results to the analysis of
the first-passage time problems in a finite population.

On the deceptive landscape, Barton and Rouhani studied the fre-
quency of shifts between alternative equilibrium states in a finite pop-
ulation model [31, 32]. They discuss the transition of the population
from lower to higher fitness peaks through the fitness valley which must
be overcome by random drift. The situation of their landscape is very
similar to the deceptive landscape presented in section 4, and therefore
their study may provide valuable insight into the mechanism of gene
flow through the valley separating fitness peaks.

It may be true that only a theory which takes into account the ran-
dom sampling of a population can give the complete description of Ta,
the probability distribution P(Ta). Even though the present method is
deterministic, we expect that this work will become the first step toward
the complete theory of the first-passage time problem in GAs.
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Appendix. Distribution of N0

We considered a system of N×M strings evolving through selection and
mutation. Here M was the number of populations, and N is the size of
each population. We assumed that M was very large and that the system
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consisted of an infinitely large number of strings. Therefore it was rea-
sonable to assume that the evolution of the system could be described by
the discrete time Eigen equation which is independent of the population
size N. If we removed the optimum strings whenever they appeared in
the population, the system may follow equations (3.1) and (3.2).

When the relative frequency of the optimum allele x0 becomes P,
what is the distribution of N0 in the M populations? The answer is
given by considering the following example. Let m1 and m2 = m − m1
be the numbers of red and black balls in an urn, respectively. If we
randomly take out r balls from the urn, the probability of having k red
balls is given in the form of the hypergeometric distribution [33]

qk =
1(m
r

)
(

m1

k

)(
m − m1

r − k

)
=

1( m
m1

)
(

r
k

)(
m − r

m1 − k

)
.

Then we have the inequality [33]
(

r
k

)(
P − k

m

)k (
Q − r − k

m

)r−k

< qk <

(
r
k

)
PkQr−k

(
1 − r

m

)−r
,

where P = m1/m and Q = 1 − P. As m → ∞ with fixed P, we can
derive the probability of the binomial distribution from the inequality

qk =
(

r
k

)
PkQr−k.

By substituting m = N × M, m1 = N × M × P, r = N, and k = N0, we
obtain the answer to the previous question about the distribution of N0:

qN0 =
(

N
N0

)
PN0 (1 − P)N−N0 . (5.1)

The mean of N0 is given by

N0 = NP. (5.2)

We have the probability of the case where there is no optimum string

q0 = (1 − P)N . (5.3)
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