
Distributed Self-regulation in Ecological and
Economic Systems

V. V. Gafiychuk∗

Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine,
3b Naukova str., Lviv, 290601, Ukraine

I. A. Lubashevsky†

Institute of General Physics,
Academy of Science of Russian Federation,
Vavilova street, 38, Moscow, 117942, Russia

R. E. Ulanowicz‡

University of Maryland Chesapeake Biological Laboratory,
Solomons, MD, 20688, USA

We consider an ecological system governed by Lotka–Volterra dynamics
and an example of an economic system as a mesomarket with perfect com-
petition. We propose a mechanism for cooperative self-regulation that
enables the system under consideration to respond properly to changes
in the environment. This mechanism is based on (1) active individual
behavior of the system elements at each hierarchical level and (2) self-
processing of information caused by the hierarchical organization. It is
shown how the proposed mechanism suppresses nonlocal interaction of
elements belonging to a particular level as mediated by higher levels.

1. Introduction

A great number of natural systems are organized hierarchically. Their
hierarchical organization allows that such a system can be divided into
a collection of subsystems (which will be called levels) involving many
elements that are similar in their properties. The elements of the var-
ious levels differ substantially, however, in their characteristics. The
subsystems can be ordered according to their mutual interactions: The
behavior of an element at each level is determined by the aggregated
state of a certain large group of elements belonging to the nearest lower
level, while each element of a lower level is directly governed by a given
element of the higher level.
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Such hierarchical organization is inherent in many ecological and
economic systems. For example, we encounter a huge number of goods
in an economic market in contrast to relatively few types of raw materi-
als. Hence, the network of products and trade that transforms natural
materials into a wide variety of goods will be a highly branching system.
Suppose firms of a given type of activity that are approximately equal
in power make up a certain level. The market then involves several
such levels, from lower ones consisting of retailing companies up to the
highest one that deals with the production of raw materials. In this
case, the prices of products of firms dealing in wholesale trade are the
direct averages of the prices of goods at the terminal retail points that
are supplied by these firms.

Hierarchical organization is encountered frequently in ecological sys-
tems as well. Ecological systems often form trophic food chains or pyra-
mids. Levels of such an ecosystem are made up of animals comparable
in size and playing much the same role in the prey–predator relation-
ships. Energy usually flows from smaller organisms via consumption
to larger predators. The linkages from the small organisms generally
vary over smaller scales. The larger animals that dominate these smaller
organisms do so over larger scales of space and time. That is, because of
their wider ambits, predators control larger regions of space for longer
times. From this perspective, the hierarchical levels of most pelagic
trophic networks are defined according to particle size [16]. It becomes
possible to regard the populations at each level as being continuously
distributed across their particular segment of space. This representation
of the trophic hierarchy is depicted in Figure 1.

In a similar manner we can represent economic systems wherein firms
producing raw materials are at the top of the scheme, and retail trade
shops appear at the bottom.

The characteristic feature of hierarchical systems is the nonlocal in-
terference among elements at the same level, as mediated by the higher
levels. The term nonlocal means that the state of some elements depends
on the state of some surrounding neighbors. Higher levels in their turn
feel only the averaged state of the proceeding levels. Thus, local varia-
tions in the behaviors of elements belonging to lower levels reflect the
states of elements at higher levels over larger scales. The larger com-
ponent then changes the state of elements at the lower level in a region
whose domain substantially exceeds the size of the initial perturbation.
Such nonlocal interaction is not reliable, because it does not stem from
the local laws of element interaction between neighboring levels that
control the life of the system.

These characteristics make such hierarchical systems fragile with re-
spect to perturbations in the environment. In order for systems to
remain alive, there must be some mechanism of self-regulation that can
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Figure 1. Trophic level representation, where: 0 phytoplankton, 1 small organ-
isms, 2 organisms belonging to different classes, and 3 large predators.

maintain system stability and suppress (at least, to some extent) nonlocal
interactions among elements at the same level.

We now briefly explain the terms we will use and the types of mech-
anisms we will consider. To begin, we consider the system to be dis-
tributed in space and consisting of different subsystems. These subsys-
tems are represented by horizontal lines on Figure 1. Each subsystem
will be characterized by some characteristic length in space li (Figure 1),
and the total size L of the system will be represented as the set of the
embedded diffusion lengths, li. Each diffusion length characterizes the
domain of its corresponding distinct subsystem. Elements belonging
to subsystem i can be characterized by domains which have the size of
order li. The number of elements belonging to each subsystem can be
estimated as the quotient L/li. The larger the characteristic length of
subsystem elements, the higher is the position of that subsystem in the
hierarchy of relations. All the subsystems are connected to each other
by material flows, as shown in Figure 1.

The first property the system under consideration should possess is the
absence of nonlocal interaction between the elements of any subsystem
at the same hierarchical level. That is, if in one of the subsystems
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elements (say i) there arises some perturbation, then this perturbation
will not lead to a perturbation in any other element that is far removed
from i. In other words, nonlocal influence of one element on another
should be depressed.

In order to restrain nonlocal influence, some mechanism for self-
regulation should be inherent in the organization of the systems under
consideration. That is, the system should have an adaptive property that
limits changes in the environment at a particular location to that region
alone. But all the subsystems are connected via the upper hierarchical
levels, so the question arises: What organization of the system will
restrict changes to their region of impact?

For different elements to fulfill their individual functions indepen-
dently of one another on the same level, the network connecting the
different subsystems through hierarchical organization should, at least
in the ideal case, have the capacity to control its bottom states at each
point. This requirement is equivalent to the local control of material
flow through the system. Hence, the independence of material flow at
any level from flows of the same element at other points becomes a
desirable property, which is referred to as self-regulation.

Now consider the bottom level of the system. In this type of system
only the material flow at a given point determines the state of the system
at that point. If the material flow at one point reacted substantially to
the material flow at other points, then the elements of the same level
would interfere with one another, and the system would lose its adaptive
capacity. However, in trying to describe how this self-regulation might
be implemented, that is, its particular mechanism, we encounter the
fundamental problem that none of these subsystems can individually
control the distribution of material flow through the distributed network
of the system. For a large natural system it is unlikely that any one of its
elements or subsystems would possess all the information required to
govern the perfect response to changes in the environment, and this is
true in particular of the life activities at the bottom level. This is because
such control requires the processing of a great amount of information
necessary to characterize the state at all spatial scales (i.e., at all levels
of the supply network).

The foregoing leads us to assume that self-regulation can be imple-
mented through cooperative mechanisms [13, 14]. In this scenario, each
subsystem in the framework of material transfer receives a small piece
of the information about the state of the bottom level of the system,
and its reaction to this information gives rise to the desired redistribu-
tion of the mass flow over the distributed network. In other words, the
subsystems vary in a self-consistent way that enables them to provide,
for example, an additional biomass or material flow to those subsystem
elements which need more, without disturbing material flow at other
points of the system.
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However, before the cooperative mechanism of self-regulation can
come into being, a certain self-processing of the information must occur
to enable the elements (hierarchically connected subsystems) to react
adequately, according to where they are in the hierarchical network.
Secondly, the physical properties of the network should give rise to
a cooperative effect among variations in that particular branch of the
material flow that will lead to its redistribution while gaining the desired
results.

We now suggest a possible mechanism for such self-regulation. In
section 2 we insert that mechanism into a particular set of model ecosys-
tems governed by Lotka–Volterra dynamics. Certainly, the dynamics of
real ecosystemsare far more sophisticated, however, models with Lotka–
Volterra dynamics typify many ecosystem characteristics and highlight
the nonlocal fragility in a most pronounced way.

As already mentioned, a cooperative mechanism for self-regulation
whereby the hierarchical system as a whole can react perfectly has been
developed in [13, 14]. This mechanism consists in the response by each
individual element to an available small piece of the information on the
state of the whole system. The conservation of medium flowing through
the supplying network gives rise to an ensuing processing of information
that results in self-consistent behavior of the elements that culminates
in perfect self-regulation.

2. An ecosystem model with distributed self-regulation

We begin by considering a simple mathematical model of a pelagic
marine ecosystem involving N levels in which is found a large number
of animal species. At the bottom of this system is phytoplankton (level
0) and at the top (level N) stands the population of large predatory fish.
The characteristic features that distinguish each level, for example level
i, are the body size of the individual organisms and the spatial size "i of
the domain that is controlled by each individual fish at this level.

The flow of biomass in this trophic system is assumed to be gov-
erned by the Lotka–Volterra model, which describes hierarchical level i
in terms of the spatial distribution of the biomass ci(r, t) and treats the
interaction between different levels as feeding relations, where the larger
species play the role of predators and the smaller, those of prey. Ac-
cording to the discussion in section 1, we assume that the characteristic
lengths {"i} of the control by individuals meet the following inequalities:

"1 ! "2 ! · · · ! "N. (1)

This assumption may be justified on allometric grounds, that is, most
physiological processes scale as an algebraic power of body size. Here
we are extending the allometric notion to include the ambits of the
organisms in question [3, 21].
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The dimensionless distribution ci(r, t) is governed by the equation

τi
∂ci

∂t
= (cici−1 − cici+1 + ciαδi1 − βici) − "i∇Ji (2)

where τi, βi are given constants, and the term αδi1 (δi1 is the Kron-
ecker symbol) describes the input of biomass through the first level
(phytoplankton). Equation (2) is an example of the standard form of
the Lotka–Volterra dynamics as applied to a linear trophic chain (with
the exception of the last term on the right-hand side). The final term
describes the dynamics of nonuniformities in the spatial distribution
of species i, where Ji is the movement of its members through space.
Usually, the relationship between the Ji and nonuniformities in their
distributions ci(r, t) is written in the form [20]:

Ji = −"i∇ci. (3)

Equation (3) actually corresponds to the passive behavior of animals
undergoing random motion in space, independent both of other mem-
bers of the same species and of their predators and prey. In this paper
we account for the active behavior of animals at every hierarchical level.
This means that each animal attempts (1) to avoid any region where the
concentration of members of the same species is large, in order to de-
crease the competition for feed resources; (2) to prefer to visit domains
containing high concentrations of prey; and (3) to avoid regions with
many predators. Such active behavior is described by the following
expression:

Ji = "i

[
−(1 + ωi,ici)∇ci − ωi,i+1ci∇ci+1 + ωi,i−1ci∇〈ci−1〉"i−1

]
(4)

where ωi,i, ωi,i+1, and ωi,i−1 are positive constants and 〈ci−1〉"i−1
is the

concentration of prey averaged over the domain of their individual life-
spans. We specify the value of 〈ci〉"i

by the expression

〈ci〉"i
(r) =

∫
dr′A exp

{
(r − r′)2

2π"2
i

}
ci(r) (5)

where A is a normalization constant. The nonlinear terms in equa-
tion (4) are those responsible for the self-regulation. It should be noted
that a similar expression for Ji has been used in [1] and [12] to describe
the active behavior of zooplankton.

Let us justify the assumptions on active behavior by analyzing a
steady-state small perturbation in the uniform distribution {c0

i } of the
given species in space under the constraints. For this purpose let us
consider, for simplicity, that the number of trophic levels is even (N =
2n). This allows us to assume that sources in equation (2) are stipulated
solely by the biomasses that transfer medium through the network and
to write the solution in the very simple form:

c0
i−1 − c0

i+1 + αδi1 − βi = 0.
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If the number of levels is odd (N = 2n + 1), we must include Verhulst
terms in equation (1) (see [6]). This complicates the homogeneous
solutions slightly, but does not change our overall conclusions.

Linearizing equations (2) and (4) with respect to steady-state pertur-
bation δci ∝ exp(ikr), we get for i ≥ 2

−k2"2
i [(1 + ωi,ic0

i )δci/c0
i + ωi,i+1δci+1

−F(k"i−1)ωi,i−1δci−1] + δci−1 − δci+1 = 0 (6)

where F(k"i) = exp
{
− 1

2k2"2
i
}

is the Fourier transform of the kernel of
integral operator (5).

We now analyze how a perturbation occurring initially at a lower
level propagates through the trophic system to its highest levels and the
opposite case, that is, a perturbation moving from top to bottom. In
the first case it is useful to introduce the quantities [7]

fi =
δci/c0

i

δci−1/c0
i−1

that relate the relative values of perturbation at one level with those at
the nearest neighboring levels. This allows us to rewrite equation (6) in
the form

k2"2
i (1 + ωi,ic0

i ) + (1 + k2"2
i ωi,i+1)c0

i+1fi+1

= (1 + k2"2
i F(k"i−1)ωi,i−1)c0

i−1f−1
i . (7)

In order to analyze the propagation of the perturbation in the chosen
direction we may set δc2n = 0 [7], that is, f2n = 0. So for i = 2n − 1

f2n−1 =
(1 + k2"2

i F(k"i−1)ωi,i−1)c0
i−1

k2"2
i (1 + ωi,ic0

i )

∣∣∣∣∣
i=2N−1

(8)

and for 1 < i < 2n − 1

fi =
(1 + k2"2

i F(k"i−1)ωi,i−1)c0
i−1

k2"2
i (1 + ωi,ic0

i ) + (1 + k2"2
i ωi,i+1)c0

i+1fi+1
. (9)

The stability of the system is associated with the various feedbacks. If
positive feedback is sufficiently large, the system will become unstable,
and a different set of self-organizational dynamics will come to domi-
nate the system. Negative feedback is responsible for the recovery of
the system back to the stable state. Diffusion processes usually increase
system stability, but if cross diffusion is inherent in the system the situ-
ation could become more complex. It is commonly assumed that cross
diffusion serves to destabilize Lotka–Volterra systems [15]. In this case,
depending on the sign and magnitude of the terms, cross diffusion can
play the role of either positive or negative feedback. But the existence
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of positive feedback leads to instability only when the value of positive
feedback is sufficiently large. In equation (9) the terms k2"2

i (1 + ωi,ic0
i )

and (k2"2
i ωi,i+1)c0

i+1, induced by diffusion, are responsible for the neg-
ative feedback, while the term k2"2

i F(k"i−1)ωi,i−1c0
i−1 generates positive

feedback. We will show that the introduced cross diffusional terms re-
sponsible for positive feedback are never so great as to lead to system
instability. It should be noted that the cross diffusion terms in the equa-
tions were proposed in 1959 by Kerner [11] and Jorne in 1977 [10] and
are still being intensively studied [4, 18].

Consider the situation when k = 0 [7]. Then

fi+1 =
c0

i−1

c0
i+1fi

. (10)

If a small perturbation were applied to level i∗ of the system and if fi∗ !
1, this perturbation would spread to the top of the system organization.
Therefore, in the case corresponding to the passive behavior of animals,
the quantities fi∗+1, fi∗+3, . . . are large. This last condition means that
the relative variations of the concentrations δc2/c2, δc4/c4, . . . , can be
large in comparison with the perturbation δc1/c1 occurring at the bottom
of the trophic system. In other words, the passive ecosystem is fragile.

In order to analyze the behavior of the quantities fi as the level i
changes and k (= 0, we fix the wave number k such that k"i∗ ! 1,
whereas k"i∗+1 ) 1 for a particular level i∗ (e.g., k = ("i∗"i∗+1)−1/2).

As follows from equation (9), for i < i∗ the values fi and fi+1 are
related by equation (10) and the value fi has behavior similar to that
considered previously.

If ωi∗+1,i∗, ωi∗−1,i∗ = 0, for i > i∗, and k = ("i∗"i∗+1)−1/2 the value
of fi

fi =
c0

i−1

"2
i /"i∗"i∗+1 + c0

i+1fi+1
! 1

for any level i > i∗. So because of diffusion (negative feedback) the
perturbation will decrease in amplitude as it spreads to the top of the
system.

For ωi+1,ic0
i+1, ωi−1,ic0

i−1 ≤ 1, and k = ("i∗"i∗+1)−1/2 we see that the
magnitude of the quantity fi depends substantially on the parameters
ωi+1,i, ωi−1,i:

fi =
F(k"i−1)ωi,i−1c0

i−1

(1 + ωi,ic0
i ) + ωi,i+1c0

i+1fi+1
, (11)

with fi ≤ 1. When the animals exhibit active behavior, however, all the
values fi for i > i∗ are of order unity, so that a small perturbation at
the bottom of the ecosystem cannot lead to substantial perturbations
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at other levels. The perturbations of each level are comparable to the
perturbation at the initial level. This is the essence of the proposed
mechanism for self-regulation.

It should be noted that perturbations of lower levels lead to responses
with consistently the same signs going up the food chain toward top
carnivores (big animals). This agrees with the results obtained in [7].
Indeed, stock changes in the ecosystems under consideration can be
represented as ([+], s, s, . . . s), signifying that changes in stocks of the
producer (the bracketed term) lead to stock changes at successively
higher levels that have the same sign as that of the perturbed lower
compartment (here s means the perturbation has the same sign).

We now consider characteristics of the propagation of perturbations
from the top to the bottom. In this case it makes sense to consider only
perturbations characterized by a spatial scale comparable to the size
"2n of the domain controlled by the largest predators. That is, we may
assume that k"i ! 1 for practically all levels. Under such conditions
we may set δc1 = 0 [7], and it is useful to introduce the quantities {fi}
specified by the expression

fi =
δci/c0

i

δci+1/c0
i+1

,

which allows us to rewrite equation (6) as

k2"2
i (1 + ωi,ic0

i ) + c0
i+1f−1

i = c0
i−1fi−1. (12)

In a similar way we get

f1 = 0,

f2 = −
c0

i+1

k2"2
i (1 + ωi,ic0

i )

∣∣∣∣∣
j=2,

(13)

and for i > 2,

fi =
c0

i+1

c0
i−1fi−1 − k2"2

i (1 + ωi,ic0
i )

. (14)

Whence it follows that the changes in stocks can be represented as
(. . . o, s, o, [+]), where an increase in the stocks of the top carnivores
alternates the sign of the perturbations going down the chain. (0 means
that the perturbation has the opposite sign.) In addition, the values
fi alternate between small and large as we pass through the levels. In
other words, ecosystems configured as trophic chains cannot effectively
regulate themselves with respect to perturbations in populations of the
large predators. This difficulty does not pertain, however, to our postu-
lated mechanism of self-regulation, which suppresses nonlocal interac-
tion of lower level elements as mediated by the higher levels. In general,
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our results accord with the consensus among ecologists that bottom-up
control tends to be stabilizing, whereas top-down influences are usually
destabilizing.

It should be noted that different mechanisms have been proposed
recently that serve to increase the stability of ecosystems distributed
heterogeneously in space. For example, in [17] a mechanism was pro-
posed whereby prey can find refuge from predation, which dampens
oscillations in the populations, smooths the distribution in body sizes
(via the relative magnitudes of trophic interactive strengths), augments
the resilience, and increases the probability of local stability in the linear
chain model [9].

Of course, in nature there could exist an active flow from larger
organisms to smaller organisms via the coexistence of competing para-
sites [8], and, more generally, passive flows through the microbial loop.
While these circumstances influence the behavior of systems, clearly in
nature there are no storehouses of top-predator carcasses. Top preda-
tor biomass gets recycled as does all the rest. None of this, however,
changes the essential mechanism considered in the framework of this pa-
per. Our ideas are similar to Cousins’ ecosystem trophic module concept
[3]. The assumptions made in the framework of this article serve not
only to enhance the stability of the system, but also to perfect its func-
tioning whenever local changes at the bottom lead (in such a way that
no nonlocal interaction occurs there) to observable changes at the top.

3. Self-regulation in a market with perfect competition

In this section we create a simple, distributed model of a market in which
the price of each type of goods does not depend on the demand for goods
of other types. In other words, in such a market there is no nonlocal
interaction of the flows of different goods, which is due to the mecha-
nism of self-regulation to be considered. In this context it is reasonable
to confine ourselves to a mesomarket of goods made primarily from the
same raw material. Hence, this market will involve a single network
that joins the ultimate consumers with all types of producers, includ-
ing the firms producing the raw material, those producing particular
types of goods, and the wholesale sellers. That is, this market supplies
consumers in different districts with practically the same set of goods.

The latter assumption allows us to treat the given market as a col-
lection of levels made up of firms with similar activities. Furthermore,
we can specify the density of each level of identical firms (e.g., level i)
by ρi(r) and the material flow through one firm by xi(r). The levels are
ordered according to the power of the firms and the higher the level,
the fewer the total number of firms at that level. Each firm buys the
product of firms at the level just above it and sells its own product to
firms in the next lower level. The highest level consists of the firm that
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extracts the raw material, and the lowest one is made up of retail sellers.
Therefore, each level i also contains micromarkets of products made by
those firms and, thus, should be characterized by a spatial distribution
of prices pi(r).

The firms are linked with one another by selling-buying processes; the
output of firms belonging to higher ranks is input to firms of lower rank.
The direction of the flows of material is opposite to that of the biomass
flows considered in the previous section. At the bottom level (level
1) the firms are connected directly with consumers (level 0) supplying
them with goods of various types. In other words, inputs and outputs
of different firms form a schema of material flows xi going from the top
(raw material) trunk to the consumer medium.

It should be noted that the selling-buying interaction engenders a
certain type of economic system that, on one hand, involves a large
number of participants, and exhibits a behavior typical of all markets,
while, on the other, is but a small part of the whole market society
producing goods of a certain type. For example, the steel, food, and
clothing industries may be regarded as such a microeconomic market.

Particular interconnections between different firms can come and go
during the formation and evolution of the market under consideration,
where interaction is governed by trade. This latter process stimulates
money flow in the market network in the direction opposite to the ma-
terial flow, that is, in the direction from the consumers to the producers
of raw materials. The arrows in Figure 1 identify these selling-buying
interactions and indicate the flow of money from the bottom to the top.
The conservation of money as it passes between the firms at different
levels enables the firms to play the role of aggregated information on
the state of the consumer medium as well as the status of the firms’
activities. In fact, for a particular firm i to be able to supply firms of
lower rank, with which they are directly linked with the inputs they
require, it is necessary and sufficient that the supplying firm possess
information that characterizes the state of the consumer in the whole
region controlled by the given firms. Such information is embedded in
the price of its output [5].

Under the framework of a market with perfect competition we show
that a certain hierarchical distribution in spatial structures may arise
spontaneously to supply consumers with the needed goods. This implies
that, to a first approximation, change in the demand at one point of the
consumer medium does not directly cause variations in the flow of goods
at other points, even though the material flowing along various branches
visits all the hierarchical levels.

The conservation of materials at each level allows us to write

xi(r)ρi(r) =
∫

Q

dr′Gi,i−1
r,r′ xi−1(r′)ρi−1(r′). (15)
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368 V. V. Gafiychuk, I. A. Lubashevsky, and R. E. Ulanowicz

Here Gi,i−1
r,r′ is the function that specifies the trade interaction between

firms at levels i and i−1 that is localized in the domain controlled by the
individual firms at level i, and Q is the domain of size L. In particular,

∫

Q
dr′Gi,i−1

r,r′ = 1.

It should be noted that equation (15) reflects the fact that the higher
the level, the larger the domain of control exerted on firms below it. At
the lowest level (level 1, the retail sellers) the flow of goods obeys the
equality

x1(r)ρ1(r) = S(p1(r) | r), (16)

where S(p1(r) | r) is a given function of the consumer demands. Change
in consumer demand leads to variation in the material flow through the
market network. The latter in turn causes the firm’s profit to vary and,
thus, induces these firms either to increase or decrease their activities.

The activity of each firm results in the profit [19]

πi(r) = [pi(r) − pi+1(r)] xi(r) − ti (r | xi(r)) , (17)

where the function ti(r | xi) quantifies the total cost of the production
activity of firms at level i that are localized in the region r. For the
highest level (N), pN+1(r) = 0. The cost ti(r | x) is a convex function of
its argument x, that is, the curve ti(r | xi) slopes upward, and

∂ti

∂x
> 0,

∂2ti

∂x2 > 0. (18)

The function also takes into account the fixed cost, that is

ti(r | 0) > 0. (19)

The interaction of trade between different levels will be specified
by an equilibrium in the supply-demand relations such that each firm
maximizes its own profit,

∂πi

∂xi
= 0, (20)

and the market is assumed to be characterized by perfect competition,

πi = 0. (21)

Equation (21) implies that there is no barrier to any firm entering or
leaving the market. In particular, there are no barriers to the entry of
new firms. With respect to the short-run profits being made in the given
market, competition gravitates to the industry where the profits are
occurring, and some existing firms will expand or contract accordingly.
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Competition eventually causes the average profit at each branch to be
maintained at zero. Of course this requirement is not mandatory in our
case. The results do not essentially change if we take constant profits
into account (i.e., πi = π0

i = const for each hierarchical level). This
circumstance merely complicates our formula slightly.

Equations (20) and (21) constitute the essence of the proposed model
for self-regulation of such an hierarchically organized market. We now
show that, under the given assumptions, the price of any one type of
goods does not depend on the demand for other goods.

As follows from equations (17) through (19), there is a unique
solution of the system of equations (20) and (21): x∗

i (r), ∆pi(r) def=
[pi(r) − pi+1(r)] meeting the conditions [5]

∂ ln [ti(r | x)]
∂ ln x

∣∣∣∣
x=x∗

i (r)
= 1, (22)

∆pi(r) =
∂ti(r | x)

∂x

∣∣∣∣
x=x∗

i (r).
(23)

The value x∗
i (r) and the corresponding value ∆pi(r) depend solely on

the properties of the function ti(r | xi), which reflects the efficiency of
production. Therefore, because firms at the highest level extract the
raw material rather than buy it (pN+1(r) = 0), all prices at each level
in such a perfect market are specified by the efficiencies of their techno-
logical processes and not by their demands. The demand by ultimate
consumers for goods at the lowest level determines the total flow of
products through the levels. It follows in this case from equations (15)
and (16) that the demand alone determines the density of firms at each
level. Therefore, variations in consumer demand for one type of goods
has no effect on the price and flow of goods of another type.

4. Closing remarks

We realize that the models for ecological and economic systems that we
have considered are quite simplistic and cannot be applied directly to
real systems. Rather, our goal here has been to elaborate the mechanism
of self-regulation, which, we believe, is inherent in every natural system.
Such a mechanism is required by all natural living systems because of
their complex organization and the necessity that at each level they adapt
to changes in the environment. Indeed, the very complex organization
of ecological or economic systems implies that none of their elements
can possess all the necessary information on how the system must adapt
to changes in the environment. Indeed, if each element were to interact
with every other one, it either would take an infinite time for the system
to adapt or the system as a whole would be unstable. One of the
ways available for such a system to avoid this problem is to organize
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itself in hierarchical fashion. Unfortunately, such organization might
also cause the system to acquire undesirable nonlocal interactions that
are mediated through higher levels. To suppress such interaction there
must be some cooperative mechanism for system self-regulation. In our
opinion, this self-regulation is implemented by the active behavior of
elements at each level. Each element acts according to only its own
goal, responding to only the small amount of information it receives.
However, the law of material conservation acting across the hierarchical
organization leads to the self-processing of information. Thus, the
small amount of information available to each element informs it in an
aggregated and implicit way about the state of the system as a whole.
Through such a cooperative way the individual behavior of different
elements is made consistent across levels and enables the system to
respond properly to changes in the environment [13, 14].

We hypothesize that this mechanism for self-regulation arises in
ecosystems from the preference of animals to move in the direction
of increasing prey density and to avoid regions with an increasing num-
ber of predators. The latter response dampens variations in the species
population which otherwise could become critical, because the higher
the population of one prey, the greater the extent its predators will
specialize in hunting them to the exclusion of others.

In economic systems, each firm attempts to maximize its own profit,
so if the total profit increases in the neighboring region (either of space
or type of goods), firms will tend to relocate (or retool) into this region.
Such active behavior gives rise to variations in the density of firms. We
have related this active behavior to the condition that the total profit be
zero, due to the presence of perfect competition.
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