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A model of a hard optimization problem suggested in the literature is
considered. The dynamics of a genetic algorithm (GA) using ranking
selection, mutation, and uniform crossover are completely modeled on
this problem and generalized to any symmetrical concave function of uni-
tation. Full finite population effects are taken into account allowing a
novel analytical comparison of roulette wheel and stochastic universal
sampling. Closed form expressions are derived for the equilibrium popu-
lation distribution of this model. The first passage time to move from a
local to a global minimum in a two-potential well landscape is calculated.
A comparison is made with a stochastic hill climber and a GA without
crossover. The GA with crossover is shown to perform orders of mag-
nitude faster giving some insights into the nature of GA search and the
crossover operator.

1. Introduction

Much of the theoretical modeling of genetic algorithms (GAs) has nec-
essarily been performed on simple models of the GA on a simple fitness
landscape. Examples of these are functions of unitation such as one-
max [7, 8, 9, 14] and the royal road functions of Mitchell, Holland,
and Forest [6]. Whilst giving some insights into the behavior of the
GA, they are not representative of the sort of optimization problems to
which GA are often applied. GA are shown to perform poorly on these
model landscapes compared to other optimization techniques such as
stochastic hill climbing, whilst there remains a body of empirical evi-
dence that GA often out perform or at least perform comparatively well
with other optimization methods, on real-world problems.

In order to gain some insight into the performance of GA on real-
world optimization problems, it is necessary to consider harder problem
spaces. Characterizing the hardness of a problem has been an active
area of research and has led to measures of problem difficulty such as
Fitness Distance Correlation [5] and Epistasis Variance [4]. There is
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however much debate as to the interpretation of these measures and
their applicability to real-world fitness landscapes.

Despite these arguments, there is some consensus as to what features
make a problem space hard to search. There may be many local minima.
These local minima may be separated by a potential barrier from better
solutions, resulting in the need for nonlocal search steps. If these local
minima occupy the majority of the search space it may take a long time
to generate the moves necessary to fall into the basin of attraction of the
global minimum.

In this paper we analyze a previously published model of a hard
optimization problem [12] which addresses the last two instances. The
problem is known as the “Basin with a Barrier” fitness landscape and is a
function of unitation. It has some of the features of a hard optimization
problem but is still amenable to analysis.

The landscape consists of a large local minimum separated from the
global minimum by a potential barrier. We consider a series of L spins
whose value may be 1 or "1 and consider the total magnetization M of
the string,

M #
L!

i#1

Si. (1)

The potential or fitness, which we are trying to minimize, is a function
of this magnetization and is given generically as,

V $M% # " #M " Ml$2 & Vl if M ' Mb
0 if M > Mb.

(2)

The entropy of the system S is such that the number of states in the
global minimum is much smaller than that in the local minimum whilst
the maximum entropy state is some distance from both the local and
global minima. Figure 1 shows the landscape schematically.

We propose that whilst being a toy problem, this model holds some
of the features seen in combinatorial optimization problems such as the
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Figure 1. Diagram of potential and entropy for the Basin with a Barrier fitness
landscape.
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traveling salesman. We expect random search to produce poor solu-
tions most of the time and we expect these poor solutions to occupy the
majority of the problem space. We expect good solutions to be near
one another in problem space but they may be separated by nonlocal
moves.

Shapiro and Prügel-Bennett [12] analyzed this landscape using a sta-
tistical mechanics formalism of a GA under Boltzmann selection and
uniform crossover. They showed that in the infinite population limit
there is a phase in which the population will move from the local mini-
mum to the global minimum from any initial configuration. The analysis
suggests that this can occur orders of magnitude faster than a stochastic
hill climber can find the global minimum. In order to obtain qualitative
results, much of the complexities of modeling the dynamics of the GA
were omitted and the fit between theoretical and simulation results was
poor.

In this paper we extend the analysis and consider the aspect not
touched on by the earlier paper, the time required for a GA to find one
solution in the global minimum, or the first passage time. We extend
the formalism used in the earlier paper to ranking selection as opposed
to Boltzmann selection. Apart from its more common use in real GA,
the use of ranking selection leads to significant gains. We can solve
the dynamics of ranking selection on the one-max fitness landscape by
considering just the mean and variance of the population distribution.
As the ranking of population members for selection removes the need to
know the exact structure of the population and the fitness landscape, we
can extend this analysis of selection to any symmetrical concave function
of unitation. By considering finite population effects on selection, we
are able to analytically compare and model the two most common selec-
tion strategies, roulette wheel and stochastic universal sampling (SUS),
or Baker selection [2]. Finally, by considering the correlation of the
population through selection, the effect of crossover can be accurately
modeled.

The result of this is an accurate model of the dynamics of the GA on
any symmetrical concave function of unitation. We are able to use this
to predict the first passage time to find a solution in the global minimum
of the Basin with a Barrier fitness landscape. This time is shown to be
orders of magnitude faster than that for a stochastic hill climber and
that of the GA without crossover. This finding gives some insight into
the search power of crossover.

In section 2 we present the model GA and in section 3 discuss the
formalism used to model the dynamics. Section 4 details the effect of
ranking selection including finite population effects and a comparison
between roulette wheel selection and SUS. Section 5 details the model-
ing of the other genetic operators, mutation and crossover. Section 6
reviews the accuracy of the model compared to simulation results and
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section 7 discusses the calculation of first passage time for the GA and a
stochastic hill climber on the Basin with a Barrier problem. The results
are discussed in section 8. In the Appendix we present, for completeness,
the analysis of the effect of crossover and mutation operators.

2. The model genetic algorithm

The model GA consists of a population of P individuals. Each indi-
vidual consists of a string of L bits whose value may be 1 or "1. The
magnetization of any individual Μ is given by the sum of its bits,

MΜ #
L!

i#1

SΜ
i where SΜ

i # )"1, 1*. (3)

The potential which we are trying to minimize is given by the generic
expression from section 1. The population is initialized with random
strings.

We consider a generational GA and use ranking selection [1] to select
the mating pool from the initial population. The mutation operator is
then applied whereby each bit has a small probability of mutation,

SΜ
i + "SΜ

i with probability Γ. (4)

We then apply the crossover operator to the mating pool to produce
the next generation. Population members are randomly paired and
uniform crossover [13] applied whereby bits are randomly drawn from
each parent,

SΜ
i # ΧΜ

i SΑ
i & #1 " ΧΜ

i $ SΒ
i , (5)

where

ΧΜ
i # " 1 with probability 1/2

0 with probability 1/2. (6)

The complementary offspring are also created and the pair replaces their
parents.

3. The statistical physics formalism

Rather than model the exact structure of the population, we use a sta-
tistical mechanics technique and model several macroscopic variables of
the ensemble average of an infinite number of finite populations. In this
way we model the mean behavior of an evolving finite population. The
formalism used here was first developed by Prügel-Bennett and Shapiro
in an analysis of a GA using Boltzmann selection [8, 9]. The macro-
scopic variables used are the cumulants of the population magnetization
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distribution. With Boltzmann selection it was found that at least four
cumulants were needed to accurately model the dynamics of the GA due
to finite population effects.

When modeling ranking selection with uniform crossover we find
that the higher order cumulants are sufficiently small that just the first
two cumulants give a good degree of accuracy. For a finite population
these are given by

Κ1 # %M&
Κ2 # %M2& " %M&2, (7)

where %. . .& represents the average over the population. The cumulants
of the ensemble we denote as K1 and K2. Due to the well-known finite
sampling effect, the cumulants of any particular finite population of
size P drawn from the ensemble will differ slightly from those of the
ensemble. The two terms are related by the expressions

Κ1 # K1

Κ2 # '1 "
1
P
(K2. (8)

In section 6, when crossover is considered, another macroscopic variable
is introduced, the correlation of the population due to the replication
of individuals through selection. Thus in the final analysis we use just
three macroscopic variables to fully describe the state of the ensemble
distribution.

4. Selection

Ranking selection [1] is a commonly used form of GA selection as it
prevents a single highly fit individual from taking over the population
and causing premature convergence. The expected number of times
that the population member of rank i will be represented in the next
generation is controlled by the parameter MAX and is given by

Ei # MAX " 2 $MAX " 1%
i " 1
P " 1

. (9)

The fittest population member is expected to be represented MAX times
and the least fit (2 " MAX) times. MAX may take any value between 1
and 2.

The effect of ranking selection on a population is found by first
considering the infinite population case.

4.1 Infinite population model

We first consider the simpler case of the one-max landscape and an
infinite population size. Whilst mutation and crossover operate on the

Complex Systems, 11 (1997) 437–464



442 A. Rogers and A. Prügel-Bennett

magnetization distribution we must consider the function of unitation
when calculating the effect of selection. In the case of one-max the
ranking of an individual with magnetization M is solely related to its
position within the population. The expression for the expected number
of occurrences of any population member given in equation (9) can be
rewritten in terms of the population magnetization distribution. We can
write this as

EM # $2 " MAX% & 2 $MAX " 1%) M

"1
Ρ #M3$ dM3, (10)

where Ρ $M3% describes the magnetization distribution. The first and
second moments of the population distribution after selection are found
by integrating the weighting over the ensemble distribution. This distri-
bution is described as a gaussian with mean K1 and variance K2. The
resulting moments are

%M& # ) 1

"1
MEMΡ $M% dM

# K1 & $MAX " 1%

*
K2

Π%M2& # ) 1

"1
M2EMΡ $M% dM

# K2 & K2
1 & 2 $MAX " 1% K1

*
K2

Π
. (11)

Thus using the expressions in equation (7), the cumulants after selection
are given by

%K1&s # K1 & $MAX " 1%

*
K2

Π

%K2&s # +1 "
$MAX " 1%2

Π
,K2, (12)

where %. . .&s represents the average over all ways of performing selec-
tion. Clearly the variance is decreased by a factor determined by the
selection pressure whilst the mean increases by a factor dependent on-

K2, a measure of the width of the distribution. The analysis of rank-
ing selection for an infinite population when MAX # 2 is identical to
that of tournament selection which has previously been performed by
Blickle and Thiele [3]. Changing the parameter MAX is equivalent to
introducing a probabilistic element into tournament selection.

When using ranking selection, the exact function of unitation and
population structure need not be considered as only the rank within the
population is significant. For a symmetrical concave fitness landscape
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with a minimum at Ml, the weighting of a population member whose
magnetization is M is related to not only its position within the popu-
lation magnetization distribution but also the position of the minimum
Ml and can be written as

EM #

566666766666
8

MAX " 2 $MAX " 1% . 2Ml"M
M Ρ $M3% dM3 when M ' Ml

MAX " 2 $MAX " 1% . M
2Ml"M Ρ $M3% dM3 when M 9 Ml.

(13)

The calculation of the cumulants after selection is similar to that carried
out before but involves rather more algebra. The resulting expressions
are

%K1&s # K1 & $MAX " 1%

*
K2

Π
erf 'Ml " K1-

K2
(

%K2&s #

:;;;;;;;;;;<
1 "

2 $MAX " 1%
Π

exp
=>>>>>
?
"
#Ml " K1$2

K2

@AAAAA
B

"
$MAX " 1%2

Π
erf2 'Ml " K1-

K2
(,K2. (14)

Here erf $x% represents the standard error function. Clearly when Ml is
sufficiently large little of the distribution falls over the minimum and the
dynamics will be identical to the case of the one-max landscape. In this
case the expressions simplify to those presented earlier.

4.2 Finite population effects

The preceding expressions describe the infinite population response to
selection. A real GA however has a finite population and the stochastic
nature of the selection operator leads to a deviation from the infinite
population response. Whilst the first cumulant is unaffected by finite
population effects, the effects on the second cumulant is significant and
gives rise to genetic drift and performance differences between roulette
wheel selection and SUS [2].

To calculate directly the effect of selection on a finite population is
not possible. Instead we make an approximation and consider that
selection operates on an infinite population from which we sample a
finite population. We consider the change in variance to be due to the
product of the infinite population result and a factor which describes
the stochastic nature of the selection scheme. We find this factor by
considering selection from a finite population independent of magneti-
zation. In this way the factor which we calculate is a measure of the
genetic drift inherent in the selection scheme and has been used by the
authors in another paper as a basis for the comparison of genetic drift
in steady state GA with varying generation gaps [11].
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If we consider a finite population the second cumulant Κ2 is given by

Κ2 #
1
P

P!
Α#1

M2
Α "

=>>>>>
?

1
P

P!
Α#1

MΑ

@AAAAA
B

2

. (15)

Separating out terms which are not independent gives

Κ2 #
P!

Α#1

'1
P

"
1
P2 (M2

Α "
1
P2 !

ΑCΒ

MΑMΒ. (16)

We now apply some selection scheme to this population and draw from
it a new population of P individuals. In this new population there are
now nΑ copies of population member MΑ and the second cumulant is
given by

Κ3
2 #

1
P

P!
Α#1

nΑM2
Α "

=>>>>>
?

1
P

P!
Α#1

nΑMΑ

@AAAAA
B

2

. (17)

We can separate out terms which are independent to give

Κ3
2 #

P!
Α#1

'nΑ

P
"

n2
Α

P2 (M2
Α "!

ΑCΒ

nΑnΒ

P2 MΑMΒ. (18)

Averaging over all ways of performing the sampling gives

Κ3
2 # '%n&

P
"
%n2&
P2 ( P!

Α#1

M2
Α "
%nΑnΒ&

P2 !
ΑCΒ

MΑMΒ. (19)

Our selection scheme keeps the population size constant so %n& # 1 and
we have the following identity,

=>>>>>
?

P!
Α#1

nΑ

@AAAAA
B

2

# P2 #
P!

Α#1

n2
Α &!

ΑCΒ

nΑnΒ (20)

and thus

%nΑnΒ& # P " %n2&
P " 1

. (21)

Using this result gives the expression

Κ3
2 #

P " %n2&
P " 1

:;;;;;;;;;;;<

P!
Α#1

'1
P

"
1
P2 (M2

Α "
1
P2 !

ΑCΒ

MΑMΒ

DEEEEEEEEEEEF
. (22)

The expression in the square brackets is simply the variance of the initial
population and thus

Κ3
2 #

P " %n2&
P " 1

Κ2. (23)

Complex Systems, 11 (1997) 437–464



The Dynamics of a Genetic Algorithm on a Model Hard Optimization Problem 445

This factor describes the loss in variance when a finite population is
sampled by some selection scheme independent of magnetization and
is simply dependent on %n2&, that is, a measure of the variance in the
number of times any population member is selected. We can combine
this result with the infinite population result to give the variance after
selection of a finite population

%K2&s #
P " %n2&

P " 1

:;;;;;;;;;;<
1 "

2 $MAX " 1%
Π

exp
=>>>>>
?
"
#Ml " K1$2

K2

@AAAAA
B

"
$MAX " 1%2

Π
erf2 'Ml " K1-

K2
(,K2. (24)

4.3 Calculating %n2&
The finite population effect of the selection scheme calculated above was
shown to be entirely dependent on the value of %n2&. Baker [2] noted
that whilst any individual with rank i is expected to occur Ei times
after selection, the stochastic nature of roulette wheel selection allows
anywhere between 0 and P copies to be selected. This is the source
of convergence of a finite population due to stochastic effects, that is,
genetic drift.

Baker proposed SUS as a selection scheme which limits the range
of possible occurrences to either /Ei0 (Ei rounded down to the nearest
integer) or 1Ei2 (Ei rounded up to the nearest integer). Whilst no argu-
ments were made as to the virtue of doing this in the original paper, it is
generally understood that the use of SUS reduces the effects of genetic
drift. Intuitively we can see that limiting the range of possible occur-
rences will reduce %n2& and hence reduce the loss in variance through
stochastic effects. However, using the expression derived above we can
calculate this difference and formally compare them.

4.3.1 Roulette wheel selection
Using roulette wheel selection gives rise to a binomial distribution in
which we make m trials with a probability of success p. The standard
result for a binomial distribution is%n2& # m $m " 1% p2 & mp. (25)

Assuming independence between each population member, %n2& can be
found by averaging over the weighting for each rank. If the probability
of success is Ei/P and we make P trials, the resulting expression is

%n2& # 1
P

P!
i#1

+P $P " 1%
E2

i

P2 & P
Ei

P
, . (26)
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Using the expression for Ei given in equation (9) and performing the
summation gives

%n2& # 3 &
(P & 1)(MAX2 " 2MAX " 2)

3P
. (27)

4.3.2 Stochastic universal sampling

In SUS, for any value of Ei we have either /Ei0 or 1Ei2 copies after
selection. The probabilities of either are given by

ni # " 1Ei2 with probability Ei " /Ei0/Ei0 with probability 1Ei2 " Ei.
(28)

Assuming independence between individuals we can find %n2& by calcu-
lating the distribution averaged over each ranking

%n2& # 1
P

P!
i#1

1Ei22 #Ei " /Ei0$ & /Ei02 #1Ei2 " Ei$ . (29)

Calculating this for most selection schemes is far from trivial as the
exact population fitness distribution is required. However for ranking
selection Ei, and thus /Ei0 and 1Ei2, are known independently of the
population structure. For i ' P/2, /Ei0 # 1 and 1Ei2 # 2 whilst when
i > P/2, /Ei0 # 0 and 1Ei2 # 1. Applying these ranges gives

%n2& # 1
P

P/2!
i#1

4 #Ei " 1$ & #2 " Ei$ & 1
P

P!
i#(P/2)&1

Ei. (30)

Again using the expression for Ei given in equation (9) and performing
the summation gives

%n2& # MAX "
$MAX " 1%

2
P " 2
P " 1

. (31)

4.4 Discussion

For any particular value of MAX, %n2& for SUS is less than that of roulette
wheel selection, showing that the variance in the number of times any
population member is selected is less. This results in a smaller reduction
of population magnetization variance at each selection step and thus
slower convergence of the population through stochastic effects. Under
neutral selection where MAX # 1, SUS shows no loss in population
variance whilst under roulette wheel selection variance still decreases at
each generation by a factor of $1 " 1/P%, the rate of genetic drift. This
analysis confirms the generally held beliefs about SUS and roulette wheel
selection.

Figure 2 shows a comparison of simulation results with these theo-
retical results. A population of size P # 2, 10, and 100 was initially
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Figure 2. Comparison of theoretical and simulation results for Κ2 after roulette
wheel selection (dashed line) and SUS (solid line). Population size P # 2, 10,
and 100. In each case, SUS is the curve with the least change in variance.

assigned a fitness drawn from a unit gaussian (K2 # 1) and then selection
applied once. The variance of the population after selection was calcu-
lated and averaged over 1000 runs. Both roulette wheel and SUS are
shown with SUS consistently experiencing less loss in variance through
selection.

The finite sampling effect described in section 2 is clearly seen in
Figure 2 as we are plotting Κ2, that is, the variance of a finite population.
The variance of the initial finite population drawn from the unit gaussian
is (1 " 1/P) and not 1 as may be expected.

The theoretical results are in good agreement with the simulation
results even at extremes of small population sizes where finite popula-
tion effects are dominant. Our assumption that we can approximate
the effect of a finite population simply by considering the product of
the two factors is clearly justified. Our calculation of %n2& for SUS also
assumed independence between population members. This approxima-
tion leads to another slight deviation from the simulation data but the
fit is generally good.

5. Genetic operators

The search power of a GA is determined by how the selection scheme in-
teracts with other genetic operators such as mutation and crossover. To
fully understand the dynamics of the GA we must model these operators.

Complex Systems, 11 (1997) 437–464



448 A. Rogers and A. Prügel-Bennett

5.1 Mutation

When the mutation operator is applied, each bit has a small probability
of mutation, Γ. The analysis of the effect of mutation on the cumu-
lants of the ensemble magnetization distribution has previously been
performed by Prügel-Bennett and Shapiro [8, 9]. We present the results
here and, for completeness, present the derivation in the notation used
here in appendix A. The first and second cumulant after mutation are%K1&m # GK1%K2&m # G2K2 & L #1 " G2$ where G # 1 " 2Γ (32)

and %. . .&m represents the average over all ways of performing mutation.
The effect of mutation can be clearly seen in these expressions. It

acts to push the ensemble distribution back to the maximum entropy
state, decreasing the mean and increasing the variance. In this way it
acts against selection, which is reducing the variance and increasing the
mean magnetization.

5.2 Crossover

Like mutation, the analysis of uniform crossover has been performed
previously by Prügel-Bennett and Shapiro [8, 9]. Details of the deriva-
tion are included in appendix B. The effects of crossover on the first two
cumulants are%K1&X # K1%K2&X #

K2

2
&

L
2
#1 " q$ , (33)

where q is defined as

q #
1

P $P " 1%!
ΑCΒ

1
L

L!
i#1

SΑ
i SΒ

i . (34)

We call q the correlation of the population, as it describes the sim-
ilarity of strings. In the maximum entropy state, the correlation of
the population is 0. In a population consisting of P identical strings,
correlation is equal to 1.

The first cumulant does not change under crossover. This is expected
as crossover conserves the states of all the bits. Crossover does change
the second cumulant however and forces the variance towards the nat-
ural variance of the population which is defined by the value of q.

The analysis of higher cumulants show that they are greatly reduced
by uniform crossover. It is this feature along with ranking selection
which allows us to accurately model the dynamics with just two cumu-
lants.
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To fully understand the effect of crossover, we must understand how
correlation q changes with selection and mutation. As SΑ

i and SΒ
i are not

independent, taking the average of q directly is not trivial. An approach
to performing this calculation on a slightly different problem was de-
veloped by Magnus Rattray [10]. Here we take a similar approach and
describe correlation as a combination of the natural correlation due to
the mean magnetization of the population and a contribution due to
the existence of multiple copies of individuals within the population,
known as the founder effect.

We introduce another macroscopic variable which describes the prob-
ability that the bits at the same site in two randomly drawn population
members originate from the same ancestor. That is,

C #
1

P $P " 1%!
Α
!
ΒCΑ

1
L!

i

3SΑ
i H SΒ

i 4 , (35)

where

3SΑ
i H SΒ

i 4 # " 1 if both bits come from the same ancestor
0 otherwise. (36)

If the bits originate from the same ancestor, they will be identical and
contribute &1 to the correlation. If they originate from different an-
cestors, we can calculate their contribution to the correlation from the
fitness of the two strings. Thus we are able to describe the correlation
of the population in terms of this variable and the mean fitness,

q # C & #1 " C$ K2
1

L2 . (37)

In the initial maximum entropy case C # 0 and q is defined by the
mean magnetization of the population. If the population consists of
identical population members C # 1 and the population is perfectly
correlated. Selection will act to increase C by introducing multiple
copies of individuals whilst mutation will act to reduce C. To fully
model crossover we must calculate the effect these operators have on C.

5.2.1 Selection
If an initial population has a particular value of C its value after selection
C3 will depend on the probability that a pair drawn from the population
for crossover are identical. This is related to the number of copies
introduced by selection and the probability that they are drawn from
the population together. If nΑ is the number of copies of population
member Α, C3 is given by

C3 #
P!

Α#1

+nΑ

P
nΑ " 1
P " 1

& C
nΑ

P
'1 "

nΑ " 1
P " 1

(, . (38)

Complex Systems, 11 (1997) 437–464



450 A. Rogers and A. Prügel-Bennett
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Figure 3. Comparison of theoretical and simulation results for C when roulette
wheel selection (dashed line) and SUS (solid line) are used with ranking selection.
Population size is 100.

Averaging over all nΑ and using the fact that population size is constant
and %n& # 1 gives

1 " %C&s #
P " %n2&

P " 1
#1 " C$ , (39)

where %n2& is the variance of the selection scheme as calculated in sec-
tion 3. Indeed, the factor here is exactly the same as the factor describing
the loss in population variance after selection.

Figure 3 shows simulation and theoretical results for C after one se-
lection process. An initial population of 100 individuals were created
with a fitness assigned arbitrarily. Selection was applied using both SUS
and roulette wheel selection and C calculated. Results were averaged
over 1000 runs. The difference between the selection schemes is clear.
Roulette wheel selection shows a large increase in correlation even at
very low selection strengths. Over time this correlation builds up within
the population, decreasing the natural variance and thus reducing the ef-
fectiveness of crossover in restoring the population variance lost through
selection. The GA using roulette wheel selection exhibits a smaller final
population variance than one using SUS and thus searches a smaller area
of the problem space.

5.2.2 Mutation
The value of C will also change with mutation, as it reduces the degree
of replication within the population. By considering the expected value
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of individual bits after mutation as derived in appendix A, %Si&m # GSi,
and the definition of correlation given in equation (34), the correlation
after mutation can be shown to be%q&m # G2q. (40)

Using the definition of q in equation (37) and the change in the first
cumulant due to mutation, %K1&m # GK1. After mutation C is given by

%C&m #
G2 5K2

1 " L26
G2K2

1 " L2 C. (41)

6. Modeling the dynamics

The result of the analysis is a set of equations describing the change in
each macroscopic variable with each operator: selection, mutation, and
crossover.

Selection:

%K1&s # K1 & $MAX " 1%

*
K2

Π
erf 'Ml " K1-

K2
(

%K2&s #
P " %n2&

P " 1

:;;;;;;;;;;<
1 "

2 $MAX " 1%
Π

exp
=>>>>>
?
"
#Ml " K1$2

K2

@AAAAA
B

"
$MAX " 1%2

Π
erf2 'Ml " K1-

K2
(,K2

1 " %C&s #
P " %n2&

P " 1
#1 " C$ .

Mutation:%K1&m # GK1%K2&m # G2K2 & L #1 " G2$
%C&m #

G2 5K2
1 " L26

G2K2
1 " L2 C.

Crossover:%K1&x # K1%K2&x #
K2

2
&

L
2
#1 " q$ where q # C & #1 " C$ K2

1

L2 .

By considering an initial population whose bits are assigned randomly
(K1 # 0, K2 # L, and C # 0) we can iterate these equations to predict the
dynamics of the GA. Figure 4 shows the theory predictions compared to
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Figure 4. Comparison of theoretical and simulation results for the first two
cumulants and correlation for a GA with ranking selection, mutation, and
crossover. Roulette wheel selection (dashed line) and SUS (solid line) are shown.
Parameters used were L # 48, Γ # 1/48, P # 100, MAX # 1.4, and Ml # L/2.
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simulation results from repeated runs of a real GA using roulette wheel
selection and SUS. The simulation data is averaged over 10 000 runs
and uses the parameters L # 48, Γ # 1/48, P # 100, MAX # 1.4, and
Ml # L/2. The figures show very good agreement between theory and
simulations.

The population evolves until the increase in mean magnetization due
to selection is balanced by the decrease due to mutation. The loss in
variance due to selection is balanced against the increase due to mutation
and crossover. Selection by SUS leads to a final distribution with less
correlation and higher population variance than roulette wheel. The
mean of both distributions is the same and is close to the minimum at
Ml. Thus both distributions are centered around the same point but the
larger variance in SUS means the GA is continually sampling through
crossover a larger area of the problem space.

6.1 Equilibrium distribution

To find the equilibrium distribution to which the population evolves
was not possible using earlier models due to the dependence on higher
order cumulants. The small set of expressions resulting from this model
however, enable the equilibrium point to be solved by a set of simul-
taneous equations. It is not possible to do this exactly analytically but
it is easy to do numerically. Figure 5 shows the simulation results and
theoretical predictions for the first two cumulants of the equilibrium
distribution against changing selection pressure. Simulation results are
averaged over 1000 runs.
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Figure 5. Comparison of theoretical numerical solutions and simulation results
for equilibrium distribution. Roulette wheel selection (dashed line) and SUS
(solid line) are shown. Parameters used were L # 48, Γ # 1/48, P # 100, and
Ml # L/2.
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Figure 6. Comparison of theoretical numerical solutions and simulation results
for equilibrium distribution without crossover. Roulette wheel selection (dashed
line) and SUS (solid line) are shown. Parameters used were L # 48, Γ # 1/48,
P # 100, and Ml # L/2.

We can also consider the case when just the mutation operator is ap-
plied by omitting those macroscopic variables and expressions detailing
crossover. Here the model fit is slightly poorer, as without crossover to
suppress the higher cumulants, the distribution becomes skewed from
a gaussian. However when the distribution is near to the minimum, a
gaussian shape is restored and we obtain reasonable agreement without
having to calculate higher order cumulant terms. Figure 6 shows the
results for the same GA without the crossover operator. We see the
same behavior in the mean whilst the variance of the distribution is
greatly reduced. Without crossover acting to restore the variance to its
natural value, the population evolves very rapidly to a highly converged
distribution and samples a much smaller area of the problem space.

6.2 A closed form solution

We can attempt an analytical solution by making the assumption that
selection is strong enough for the population to approach the minimum
and make the approximation that

erf $x% I x where x #
Ml " K1-

K2
.

The response of the first cumulant to selection simplifies significantly in
this case and is no longer dependent on the variance of the distribution.
We can then simply solve for the equilibrium value of K1 to give

KJ
1 I

$MAX " 1% GMl-
Π $1 " G% & $MAX " 1% G

. (42)
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The lack of dependence of the equilibrium mean on the equilibrium
variance seen in Figures 5 and 6 is explained. The equilibrium mean
will be close to Ml. For small mutation rates, the distance from the
minimum is independent of string length L and is of the same order
as the number of bits per string which are expected to mutate at each
generation,

Ml " KJ
1 I

2Γ
-

Π
MAX " 1

Ml. (43)

The equilibrium correlation is determined by the balance of mutation
and selection and the equilibrium mean. We can simply solve for the
equilibrium value of C

CJ #
x(1 " r)
1 " xr

, (44)

where

x #
G2 5KJ2

1 " L26
G2KJ2

1 " L2 and r #
P " %n2&

P " 1
. (45)

The equilibrium correlation is thus given by

qJ I CJ & #1 " CJ$ KJ2
1

L2 . (46)

To find the equilibrium variance, we sacrifice some accuracy in order to
derive a simple result. We assume that the distribution is close enough
to the local minimum to make the approximations,

e"x2
I 1 and erf2(x) I 0 where x #

Ml " K1-
K2

.

Thus the equilibrium variance is given by

KJ
2 I

L #1 " G2$ & L #1 " qJ$
2 " G2r 31 " 2$MAX"1%

Π 4 . (47)

For the case when no crossover is applied we may go straight to the
result below using the same approximation

KJ
2 I

L #1 " G2$
1 " G2r 31 " 2$MAX"1%

Π 4 . (48)

For all but the largest mutation rates, (1 " G2) is small compared to the
correlation term (1"qJ). Thus the correlation is significant in producing
the larger equilibrium variance of the GA with crossover. For all but the
smallest population sizes, CJ is small and the correlation is thus defined
by the equilibrium mean and thus the position of the minimum, Ml.
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Figure 7. Comparison of numerical solution and closed form approximations
for the equilibrium distribution of a GA with crossover. Curves are roulette
wheel selection (dashed line), SUS (solid line), and closed form approximations
(dotted line). GA parameters are as before.
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Figure 8. Comparison of numerical solution and closed form approximations
for the equilibrium distribution of a GA without crossover. Curves are roulette
wheel selection (dashed line), SUS (solid line), and closed form approximations
(dotted line). GA parameters are as before.

Figures 7 and 8 show the closed form results plotted against the
previously shown numerical solutions for the GA with and without
crossover.

As expected we see reasonable agreement when selection is strong and
the distribution is near the minimum. The accuracy is better for the case
with crossover as the larger distribution variance improves the accuracy
of the approximations made. The closed form results provide a clear
insight into the factors determining the final shape of the distribution.
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In section 7 we see that the equilibrium variance is of direct importance
to how long it takes to move from the local to the global minimum in
the Basin with a Barrier problem.

7. Solving the Basin with a Barrier problem

From the analysis of the dynamics of a GA on a concave fitness potential,
we can calculate the first passage time of the Basin with a Barrier problem
presented earlier. We compare the GA to a stochastic hill climber on a
range of problem sizes with L # 8, 16, 32, and 48.

7.1 Modeling the genetic algorithm

Having solved the dynamics of the GA on the local minimum, we can
calculate the time for one population member to exceed the barrier,
that is, have magnetization greater than Mb, and fall into the global
minimum. At each stage in its evolution the ensemble population will be
described by the mean and variance of the magnetization. The extremes
of the distribution are not well defined but we can naively consider it to
be a gaussian and thus the percentage of the ensemble distribution less
than the barrier at generation i is,

pi #
1
2
+1 & erf 'Mb " K1-

2K2
(, . (49)

The probability that at least one member of the population of P jumps
over the barrier at each generation is given by 1"pP

i . Thus the expected
number of function evaluations for one population member to exceed
the barrier is given by

n # P
1!

i#0

:;;;;;;;;;;;<
i #1 " pP

i $ i"17
j#0

pP
j

DEEEEEEEEEEEF
. (50)

Figure 9 shows the results of the model against simulation results on
a logarithmic scale for a typical problem with Ml # L/2 and Mb #
7L/8. The positions of the barrier and local minimum were chosen to
allow easy scaling over many string lengths. The GA is using SUS and
crossover. Simulation results are averaged over 1000 runs.

This simple analysis gives reasonable predictions of the first passage
time. As the problem size increases, the ensemble distribution lies further
from the barrier and the first passage time becomes more dependent on
the ill-defined extremes of the distribution. This results in errors when
considering a simple gaussian distribution.

At the larger problem sizes, we see an optimum selection strength.
This is easy to understand in terms of the end-point distribution plotted
in Figure 5. With selection too strong, the population almost reaches
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Figure 9. Comparison of theoretical and simulation first passage times for a GA
with SUS to solve the Basin with a Barrier problem. Simulations are averaged
over 1000 runs and the error bars are approximately the size of the symbols.
Problem sizes are L # 8, 16, 32, and 48.

the center of the local minimum but has a small variance. At the other
extreme, weak selection results in a large final variance but the popula-
tion does not move far from the maximum entropy state. Between these
two is an optimum where the extreme of the population distribution
has a maximum magnetization.

When the time to solve the problem becomes large, the initial dynam-
ics of the GA become less important and the mean and variance of the
equilibrium distribution are most significant. At this limit we can use a
simple expansion of the error function, erf $x% I 1"e"x2 /x

-
Π, to give an

analytical expression for the fraction of the ensemble distribution less
than the barrier,

p I 1 "
e"x2/2

x
-

2Π
where x #

Mb " KJ
1-

KJ
2

. (51)

The probability of finding one member in the global minimum is again
1 " pP and the expected time in terms of function evaluations is given
by P/ #1 " Pp$. Using the previous result gives

n I x
-

2Πex2/2. (52)

The most significant term here is the exponential. As shown earlier, the
equilibrium mean magnetization KJ

1 is constant over the cases consid-
ered: roulette wheel selection, SUS, and the GA without mutation. The
time to solve the problem is thus strongly dependent on the equilibrium
variance

n K e(Mb"KJ
1)2/2KJ

2 . (53)
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For the case considered here, this results in a factor of approximately
two in the performance through using SUS as opposed to roulette wheel
selection. However the very small equilibrium variance which results
when running the GA without crossover has a large influence on the
performance. In the case when L # 48, the GA without crossover is
predicted to perform many orders of magnitude worse. This is verified
by experiment in that even after 108 function evaluations, the largest
practical limit, the GA does not solve the problem.

7.2 Modeling a single stochastic hill climber

Modeling the dynamics of a single stochastic hill climber search method
is straightforward. We consider that at each time step a new move is gen-
erated by allowing each bit to mutate with probability 1/L, equivalent to
the GA mutation rate. Strictly speaking this allows global and not just
local moves. However as L increases, the probability of this becomes
small. We model a simple GA where steps which increase fitness are
always accepted and steps which will decrease fitness are accepted with
some probability p. As there is only one barrier in this problem, there
is no need to anneal this probability as is done in simulated annealing.

The transition times to reach the global minima are calculated directly
from the transition matrix describing the probability of changing from
one state to another. A randomly assigned starting string is assumed.
Figure 10 shows the results for each problem size on a logarithmic
scale. For reasonable size problems there is a clear optimum. When
p # 0 the hill climber performs simple steepest descent and sits at the
local minima waiting for the correct mutation to jump straight into the
global minimum. When p # 1 the hill climber performs a random walk
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Function Evaluations for Stochastic Hill Climber

p

Figure 10. Theoretical first passage times for a single stochastic walker to solve
the Basin with a Barrier problem with sizes L # 8, 16, 32, and 48.
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and most time is spent in the maximum entropy area away from both
the local and global minima. Between the two an optimum is reached.

As the problem size increases, the time to reach the global minimum
increases rapidly. For problem sizes greater than L # 16, the single
walker is orders of magnitude slower at finding a solution in the global
minimum than the time predicted and observed for the GA.

8. Discussion

By considering ranking selection we have been able to accurately cal-
culate the effect of selection on any symmetrical concave function of
unitation. The inclusion of finite population effects allows a framework
by which the effect of roulette wheel selection and SUS may be com-
pared analytically. The comparison confirms the empirically held belief
that using SUS rather than roulette wheel selection reduces the effects
of genetic drift.

Using and extending results of a previous analysis, we have been able
to model the dynamics of the GA when subject to all three operators: se-
lection, mutation, and crossover. A comparison with simulation results
shows very good agreement between theory and simulation.

This analysis of the dynamics allows us to look at the time to solve
a model of a hard optimization problem, the Basin with a Barrier. We
can understand the dynamics in terms of the mean and variance of an
ensemble distribution. To find solutions in the global minimum we are
looking for population members in the extremes of the distribution.
In terms of this search we can understand the effect of crossover and
mutation operators.

Mutation will act to increase the variance but at the cost of moving
the whole distribution away from the global minimum towards the
maximum entropy state.

Crossover acts as a powerful search method in this model. Selection
acts on the fitness of the population members to reduce the variance.
Crossover acts to increase the variance of the distribution back towards a
natural variance defined by the correlation of bits within the population.
It does not change the mean and thus searches an area of the problem
space without biasing it back towards the maximum entropy state. In
the analysis of first passage time it is the significant force in finding
solutions in the global minimum.

Whilst there is much analysis which can be performed on this model
such as optimum population sizes or parameters, it is interesting to con-
sider the general picture this gives us regarding crossover. The analysis
here suggests that, to be effective, crossover should generate new pop-
ulation members with a reasonable degree of fitness correlation with
their parents. In this way, selection identifies areas of the problem space
which have a good fitness and biases the population to these areas.
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Crossover acts on this population, producing a new generation with a
larger variance without moving the mean too far from this area. When
the fitness of offspring are unrelated to parent fitness, we are effectively
doing random search and crossover is unlikely to be the most effective
operator in the search.

Appendix

A. Analysis of mutation

When the mutation operator is applied, each bit of population member
Μ has a small probability of mutation,

SΜ
i + "SΜ

i with probability Γ. (A.1)

We model the effect of mutation on the ensemble magnetization distri-
bution by first considering the effect on any individual bit. The expected
value of any bit after mutation is easily shown to be,%SΜ

i &m # GSΜ
i where G # (1 " 2Γ), (A.2)

and %. . .&m represents the average over all mutations. Applying this to
the expected magnetization of individual Μ after mutation gives,

%MΜ&m #
L!

i#1

%Si&m # GMΜ. (A.3)

For the second order terms the expression is more complicated as de-
pendent terms must be collected together,

%M2
Μ&m #!

iCj

%Si&m%Sj&m &
L!

i#1

%S2
i &m

# G2(M2
Μ " L) & L

# G2M2
Μ & L(1 " G2). (A.4)

Applying these expressions to the definitions of the cumulants and av-
eraging over the ensemble gives,%K1&m # GK1%K2&m # G2K2 & L(1 " G2). (A.5)

B. Analysis of uniform crossover

When we apply uniform crossover [13] the bits of offspring Μ are drawn
from each parent Α and Β at random

SΜ
i # ΧiS

Α
i & #1 " Χi$ SΒ

i , (B.1)
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where

ΧΜ
i # " 1 with probability 1/2

0 with probability 1/2. (B.2)

We calculate the effect by considering each bit. The expected value of
any bit from offspring Μ averaged over all ways of drawing bits from
each parent is simply

%SΜ
i &x #

SΑ
i

2
&

SΒ
i

2
. (B.3)

Clearly then the expected magnetization of offspring Μ produced through
crossover is

%MΜ&x #
MΑ

2
&

MΒ

2
. (B.4)

As Α and Β are drawn independently from the population, we may simply
average over the ensemble to give the mean ensemble magnetization after
crossover%M&x # %M&. (B.5)

For second order terms the analysis is slightly more complicated. If we
again consider offspring Μ then

%M2
Μ&x #!

i8 #j

%Si&x%Sj&x &
L!

i#1

%S2
i &x

#!
i8 #j

%Si&x%Sj&x & L

#
=>>>>>
?

L!
i#1

%Si&x@AAAAA
B

2

"
L!

i#1

%Si&2x & L. (B.6)

Now considering all ways of drawing the parents and the results from
equations (B.3) and (B.4) gives

%M2
Μ&x # 'MΑ

2
&

MΒ

2
(2 "

L!
i#1

'SΑ
i

2
&

SΒ
i

2
(2 & L

#
=>>>>
?

M2
Α

4
&

M2
Β

4
&

MΑMΒ

2
@AAAA
B
"

L!
i#1

'1
2

&
SΑ

i SΒ
i

2
( & L. (B.7)

Averaging over all ways of drawing Α and Β independently from the
population gives the second moment of the ensemble magnetization

%M2&x #
%M2&

2
&
%M&2

2
&

L
2
#1 " q$ , (B.8)
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where q is defined as

q #
1

P $P " 1%!
ΑCΒ

1
L

L!
i#1

SΑ
i SΒ

i . (B.9)

The cumulant terms are simply found from the ensemble moments de-
rived previously%K1&x # K1%K2&x #

K2

2
&

L
2
#1 " q$ . (B.10)
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