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Given a sequence f1(x1), f2(x1, x2), . . . , fk(x1, . . . , xk) of boolean functions,
each fi takes the value 1 at a single point of the form x0

1, x0
2, . . . , x0

i , i "
1, 2, . . . , k. The length of all x0

i is n, N " 2n. It is shown how to find
x0

k (k # 2) using kΠ
!

N/4
!

2 simultaneous evaluations of functions of the
form fi, fi%1 with an error probability of order k/

!
N. This is

!
2 times

faster than k sequential applications of the Grover algorithm for quantum
search. Evolutions of amplitudes in parallel quantum computations are
approximated by systems of linear differential equations. Some advantage
of simultaneous evaluations of all f1, . . . fk are discussed.

1. Introduction

1.1 Structure of the work

After giving some background and setting the problem, a short intro-
duction to abstract quantum computations is presented in section 3. In
section 4 linear differential equations are applied to a tight analysis of
the famous Grover algorithm of the fast quantum search.

Section 5 is the key. Here a parallel quantum algorithm for repeated
search is defined and studied by means of differential equations. In
section 6 we briefly run through a parallel algorithm for iterated search
with simultaneous queries of all oracles.

1.2 Background

One of the most promising quantum mechanical applications to algo-
rithm theory is associated with the fundamental algorithm of exhaustive
search, or finding a solution of the equation f (x) " 1 for a boolean func-
tion f . In 1996 Lov Grover showed in [23] how a quantum computer
can solve this equation for the case of a unique solution in time O(

!
N)

where N is the number of all possible values for x, whereas every prob-
abilistic classical algorithm requires time O(N). At about the same time
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466 Y. Ozhigov

it was shown in [7] that there are no substantially faster algorithms for
this problem. Later, a tight estimation for the time of Grover’s algo-
rithm as Π

!
N/4 with probability of error about 1/N was established in

[8]. Further development of the fast quantum search can be found in
[4, 12, 18, 20, 25, 27, 28, 40].

Earlier patterns of quantum speedup were constructed by P. Shor in
[41]. There the algorithms for finding a factorization of an integer and
a discrete logarithm are presented. Algorithms of such a sort are studied
in a lot of works (e.g., [16, 24, 29, 42, 43, 44]).

Classical computations admitting quantum speedup are rare excep-
tions from other classical computations in the following sense. Denote
all words of a length n in the alphabet '0, 1( by '0, 1(n. We can represent
a general form of classical computation as T iterated applications of
some oracle g: '0, 1(n ) '0, 1(n:

x ) g(x) ) g(g(x)) )! ) g(g(. . . (g(x)))). (1)

In [35] it is shown that if T " O(N1/(7%Ε)), Ε > 0 then, for the bulk
of all g, such a computation has no quantum speedup. Similar results
for search problems were obtained in [7, 8, 36, 48]. A lower bound
as O(N) was found as the time of quantum computations of functions
with functional argument F + 'f ( ) '0, 1( in [5]. Here f are boolean
functions on a domain of cardinality N. At the same time using a
memory of O(N) qubits it is possible to compute such functions in time
N/2 [14]. This brings up the question: What general type of classical
computations of the form of equation (1) admits a quantum speedup
beyond any possible speedup of g? As follows from [35], for the bulk of
functions g this speedup can result only from parallel applications of g.

Regarding other aspects of quantum evolutions see also [26, 34, 38].

2. Setting the problem

Consider the following situation. We want to gather a mosaic from
scattered stones in a rectangular list with the corresponding picture.
Each stone is of a unique form. We can gather this mosaic layer by layer
and use a simple search among stones still scattered to fill any layer
based on the previous one. Then we in fact fulfill an iterated search
classically, because to find the stones for the following layer we must
already have the previous layer filled.

We formalize this as a special type of iterated algorithm: an iterated
search (IS). Suppose we have a sequence S1, S2, . . . , Sk of similar search
problems where Si is to find a unique solution x0

i of an equation fi(xi) " 1
where a boolean function fi is accessible if and only if we know all x0

j ,
j < i. Let ,xi, " n, N " 2n, k - N, and ,x, denotes the length of word x.
The aim is to obtain x0

k, k # 2. In view of the results in [8] sequential
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applications of Grover’s search for x0
1, x0

2, . . . , x0
k give an answer in time

kΠ
!

N/4 with error probability about k/N. To do this we must have all
oracles fi, i " 1, 2, . . . , k, where a dependence fi of all xj, j < i can be
included with fi. So we can assume that fi has the form fi(x1, x2, . . . , xi)
and each equality fi(x1, . . . , xi) " 1 has the unique solution x0

1, x0
2, . . . , x0

i ,
i " 1, 2, . . . , k. Considering all oracles fi as physical devices which
cannot be cloned we assume that they are at our disposal at the same
time, so we can apply them simultaneously. Here an advantage is taken
of interference between the results of their actions. This results in a
speedup of computation compared to the sequential mode. Why does
this speedup arise? It arises because of a leak of amplitude at each
step of sequential searching. An amplitude of x0

i in search number i
increases step-by-step in the course of Grover’s search, after the first
few l steps it becomes approximately (2l % 1)/

!
N, when amplitudes of

other xi . x0
i decrease. This prevailing of the amplitude corresponding

to x0
i (a leak of amplitude) can be immediately used for the next i % 1

search.
We shall show how this effect can be used to solve the problem of

IS in time O(kΠ
!

N/4
!

2) which is
!

2 times faster than by k sequential
applications of Grover’s algorithm. Note that this speedup does not
require any extra hardware, the effect is reached by simultaneous action
of oracles. Thus we shall have a modification of the fast quantum search,
the parallel quantum algorithm for iterated search, which is described
later. In this paper we mostly consider the particular case k " 2 of IS,
we call this problem a repeated search (RS).

Compare the parallel algorithm for RS with the algorithm of nested
quantum search (NQS) presented in [12]. For the case of unique solu-
tions for each fi, NQS is equivalent to a sequential implementation of
simple quantum search. This means that NQS does not use a possible
interference between two sequential searches. The main advantage of
the parallel algorithm for RS presented here is that it uses this interfer-
ence between searches for solutions of f1(x) " 1 and f2(x, y) " 1 and
thus reaches the

!
2-times speedup.

The RS problem is connected with the known problem of structured
search (SS). The problem of SS is to find a unique solution x0, y0 of
f (x, y) " 1 provided we have a function g whose support 'x,g(x) " 1(
of cardinality M contains x0. The RS problem is a particular case of
SS when M " 1. The case 1 - M - N was investigated by Farhi
and Gutmann in [20]. They found a quantum algorithm for this case
with time complexity O(

!
MN), and also wrote that the best known

strategy for the case M " 1 is the sequential application of Grover’s
algorithm. In the present paper it is shown how this evident strategy
can be improved by a constant factor

!
2. Note that our approach

differs from [20]. Farhi and Gutmann used only algebraic properties of

Complex Systems, 11 (1997) 465–486



468 Y. Ozhigov

Figure 1. A model quantum computer.

Grover’s algorithm whereas for the RS problem we need to work with
an evolution of amplitudes in a computation.

3. Quantum computations and differential equations

After early studies of R. Feynman [22], P. Benioff [6], and D. Deutsch
[15] numerous approaches to quantum computations have appeared
(e.g., [11, 32, 45, 47]). Leaving aside the problem of decoherence and
quantum codes (e.g., [1, 13, 30, 39]) we shall regard ideal computations
in closed systems without decoherence. We use the abstract model of a
quantum computer independent of the formalism of classical algorithm
theory. This model consists of two parts: classical and quantum (see
Figure 1).

A state C of the classical part consists of the following objects.

1. Registers with labels corresponding to transformations Uij
of a finite

set 'Ui( of elementary unitary transformations with no more than three
qubits each. (Strictly speaking transformations on two qubits would suf-
fice: see, [17].) Moreover, as follows from [2, 33] there is a variety of
possible choices for the set 'Uij

(.

2. Pointers aimed from these registers to as many qubits from the quantum
part as there are arguments of the corresponding unitary transformation.
Here each qubit is involved in exactly one transformation.

3. Registers of an end of computation and of a query: e(C) and qu(C)
respectively.

A quantum part is a tape partitioned into cells with one qubit each.
Every qubit has two basic states ,0", ,1", so its quantum state Λ,0"%Μ,1",
,Λ,2 % ,Μ,2 " 1, belongs to the circle of radius 1 in two-dimensional
Hilbert space C2. If n is a length of tape, all states of the tape belong
to the tensor product H " C2 1C2 1!1 C2

︸ ︷︷ ︸
n

of spaces, corresponding

to all qubits, that is, H " C2n . Each state of the quantum part is a
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superposition Χ " #N31
i"0 Λiei of basic states e0, . . . , eN31 with complex

amplitudes Λi where #N31
i"0 ,Λi,

2 " 1 and N " 2n. We can assume that all
ei 4 '0, 1(n.

An observation of this state Χ is a random variable which takes each
value ei with the probability ,Λi,

2.
A working transformation of the quantum part corresponding to a

fixed state of the classical part has the form Ui1
1Ui2

1!1Uik
where

each Uij
acts on qubits which the corresponding pointer aims to.

Let f1, . . . , fl be functions of the form '0, 1(n ) '0, 1(m and for each
i " 1, 2, . . . , l there are special places in the quantum tape reserved for
an argument ai of fi (query) and for a value of fi (answer). Denote by bi
the initial contents of the answer.

A query transformation Quf̄ is Quf1
1 Quf2

1! 1 Qufl
where for

each i " 1, . . . , l

Qufi
,ai, bi" ) ,ai, bi 5 fi(ai)",

5 is the bitwise addition modulo 2. We call these functions Qufi
oracles.

A quantum algorithm is an algorithm that determines evolution of
the classical part:

C0 ) C1 )! ) CT (2)

(in particular it determines a number T). A classical part plays the role
of controller for the quantum part and determines its evolution (see
Figure 2).

A quantum computation consists of two sequences: equation (2) and

Q0 ) Q1 )! ) QT (3)

where for each i " 0, 1, . . . , T 31 e(Ci) " 06 e(CT) " 1 and every passage
Qi ) Qi%1 is:

a working transformation, corresponding to Ci, if qu(Ci) " 0, e(Ci) " 0,

a query transformation Quf̄ , if qu(Ci) " 1, e(Ci) " 0.

A result of this quantum computation is the contents of the first n0
qubits of the quantum tape after observation of the final state QT. An

Figure 2. A quantum computation.
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initial state (C0, Q0) of the computer is obtained from an input data x̄
by some routine procedure.

A time of computation for equations (2) and (3) is the number of
query transformations (queries) in it. We see that in this model some
oracles may be called simultaneously, which causes interference between
results of their actions. We shall prove that such interference can speed
up computations in the case of RS.

From a physical standpoint, systems of linear differential equations
are a natural tool for the study of quantum computation. The wave
function Ψ, which determines an evolution of a quantum computer,
satisfies the Shrödinger equation 8Ψ/8t " iHΨ, where H is hamiltonian
within a real factor. An evolution of Ψ is determined by the unitary
operator U(t) + Ψ(t) " UΨ(0) which satisfies the equation U̇ " iHU.
This equation is a prototype for all systems of differential equations
studied in the following. We need only to choose the hamiltonian so
that the amplitude of a target state peaks at a point tquant which is less
than the time of the best classical computation. In rare cases quantum
parallelism makes this possible.

Some other aspects of parallelism in computing may be found in
[9, 10, 31, 46].

4. An exact description of simple quantum search by differential
equations

4.1 Notations

Assume the notations of Dirac where a vector ā 4 Cm as a column of
coordinates is denoted by ,ā". A row obtained from ,ā" by the trans-
position and complex conjugation is denoted by $ā,. A dot product of
ā, b̄ 4 C will be $ā,b̄". The result of applying operator A to vector ,ā" is
denoted by A,ā". For every transformation A, B of the form L1 ) L2,
L2 ) L3 we denote by AB their composition, which acts from right
to left such that AB(x) " A(B(x)). Given vectors a 4 L, b 4 M from
linear spaces L,M the state ,a"1 ,b" 4 L1M is denoted by ,a, b". For
a function F: F,X, Y" " ,X, Φ(Y)" we denote by F,Y its restriction on Y:
F,Y ,Y" " ,Φ(Y)".

Let f be a function of the form A ) A. We define an ith iteration of
f : f 'i( by the following induction on i. Basis: f '1( " f . Step: f 'i%1( " ff 'i(.

4.2 Grover’s quantum algorithm for simple search and its implementation in
our model

Grover’s algorithm for finding a unique solution x0 of an equation f (x) "
1 for a boolean f is sequential application of the unitary transformation
G " 3WR0WRt to the initial stateΧ0 " 1/

!
N#N31

i"0 ,ei"where the Walsh–
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Hadamard transformation is W " J 1!1 J︸ ︷︷ ︸
n

,

J " % 1/
!

2 1/
!

2
1/
!

2 31/
!

2
& ,

R0,e" " ' ,e", if e . 0̄,
3,0", if e " 0̄,

Rt,e" " ' ,e", if e . x0,
3,x0", if e " x0.

It can be easily seen that W can be implemented on our model of a
quantum computer.

To implement Rt it is sufficient to apply Quf to the state

1!
N

N31(
i"0

,ei"1 ,0" 3 ,1"!
2

,

where the last qubit is the place for the oracle’s answer.
To implement R0 we need n % 1 ancillary qubits initialized to 0.

Consider some function Φ acting on three qubits: ,main, ancilla, res" as
follows:

,000" ) ,000"
,100" ) ,101"
,001" ) ,001"
,101" ) ,111".

Apply Φ sequentially after each step moving pointers to the right one
qubit in the main and ancillary areas (see Figure 3). This makes res " 1
if and only if at least one of the main qubits is 1. Then inverse the
phase of 0 in the qubit res and fulfill all reverse transformations with Φ
in reverse order restoring the initial states of ancillary qubits.

Let Χi " ai#e:.e ,e
:"%bi ,e", Χi%1 " GΧi, e is a state of the quantum part

corresponding to a target word x0. The difference between x0 and e is
that e also contains ancillary qubits having values that will be restored
after each step of computation (it can be simply traced in what follows).

Figure 3. Ancillary registers.
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The main property of Grover’s transformation may be represented by
the following equations (see [8, 23]):

;<<=<<
>

bi%1 " )1 3 2
N * bi % 2 )1 3 1

N * ai,

ai%1 " 3 2
N bi % )1 3 2

N * ai.
(4)

4.3 The passage to the system of differential equations

Equation (4) can be rewritten in the form:

;<<=<<
>

bi%1 3 bi " 3 2
N bi % 2 )1 3 1

N * ai,

ai%1 3 ai " 3 2
N bi 3

2
N ai,

(5)

where the initial condition of the quantum part gives a0 " b0 " 1/
!

N.
Equation (5) with the initial condition is the system of difference equa-
tions approximating the following system of linear differential equa-
tions:

;<<=<<
>

ḃ∆ " 3 2
N b % 2 )1 3 1

N * a,

ȧ∆ " 3 2
N b 3 2

N a,
(6)

with two unknown functions a(t), b(t), constant ∆ > 0, and the initial
condition a(0) " b(0) "

!
N, where ai, bi approximate a(i∆), b(i∆); ∆ is

a step. A difference between solutions of equations (5) and (6) on a
segment of the form t 4 [0, O(∆

!
N)] is O(

!
N∆2), hence the error of

this approximation may be made as small as required by varying ∆ (an
integral part of number x is denoted by [x]).

Solving equation (6) we obtain

b̈ %
4
∆2N

b %O % b
∆2N2 & % b̈O % 1

N
& % ḃO % 1

N∆
& " 0.

Hence within time O(1/
!

N) a solution b of equation (6) can be approx-
imated by a solution of

b̈ %
4
∆2N

b " 0 (7)

with the initial conditions b(0) " 1/
!

N, 1/2(ḃ(0)∆ % 2/Nb(0)) " 1/
!

N
on the segment [0, 2/Ω], where Ω " 2/∆

!
N. The required solution of

equation (7) with this accuracy is b " sin(Ωt) % 1/
!

N cos(Ωt), and the
maximum of amplitude 1 is at the point t0 " Π

!
N/4∆3∆/2. Then +t0/∆, "-Π!N/4. A 1 recurrent steps of equation (4) are necessary and sufficient

to achieve this value of b with this accuracy. Thus we obtain that
the accuracy O(1/

!
N) is reached in -Π!N/4. iterations of the Grover

algorithm. In [8] the authors obtained an exact solution of equation (4)
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and thus proved that in fact a probability of error is even about 1/N.
The approximation of the amplitude evolution by systems of differential
equations is a more universal method. For example, it makes handling
the more involved case of a parallel algorithm for RS possible, which is
the subject of section 5.

5. Parallel algorithm for repeated quantum search

5.1 Definitions and result

Let u, x, and y be variables with values from three different copies of
H0 " CN, a " a11 a2 4 C4, where a1 " a2 " 1/

!
2(,0"3 ,1"). We assume

the notations f1(x), f2(x, y) for two oracles in the repeated quantum
search and let e1, e2 be values for x, y representing unique solutions of
the equations f1 " 1, f2 " 1. We denote the corresponding states of the
quantum tape by the same letters.

Put H " H0 1H0 1H0 1 C4. Let

F1,u, x, y, a" " ,u, x, y, a1 5 f1(u), a2",
F2,u, x, y, a" " ,u, x, y, a1, a2 5 f2(x, y)",
P,u, x, y, a" " ,u5 x, x, y, a".

Then

F1,u, x, y, a" " ' ,u, x, y, a", if u . e1,
3,u, x, y, a", if u " e16

F2,u, x, y, a" " ' ,u, x, y, a", if ,x, y" . ,e1, e2",
3,u, x, y, a", if ,x, y" " ,e1, e2".

Define the following auxiliary unitary transformations onH:

R0 " I 1 R0x 1R0y 1 I6
W " I 1Wx 1Wy 1 I6
F " P(F1 ,u,a1

1F2 ,x,y,a2
)P,

where the lower indices x, y point to the corresponding area for applying
Walsh–Hadamard transformations and rotations of the phase of 0, and
I denotes the identity.

The key unitary transformation of a parallel algorithm for RS is

Z "WR0WF . (8)

The parallel algorithm for RS is the sequential application of Z be-
ginning with the initial state

Χ0 " ,0̄"1 1!
N

N31(
i"0

,ei"1 1!
N

N31(
i"0

,ei"1 a

[Π
!

N/2
!

2] times.
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Theorem 1. Let t " [Π
!

N/2
!

2]. Then the observation of Z't((Χ0) gives
x " e1, y " e2 with probability of error O(1/

!
N).

5.2 An advantage of the parallel quantum algorithm

It follows from the definition of Z that oracles F1 and F2 for functions
f1, f2 work simultaneously in parallel, hence the algorithm requires ap-
proximately [Π

!
N/2
!

2] simultaneous queries to obtain a result, when
the sequential application of simple quantum searches with f1 and then
with f2 requires [Π

!
N/2] time steps to obtain a result with the same

probability. Note that for a simple search the constant factor Π
!

N/4
cannot be essentially improved [8].

Suppose that every query is fulfilled by a physical device (oracle) of
the peculiar type corresponding to a form of query. Thus we consider
oracles as a type of hardware. A set with a minimum of oracles which
is necessary for the solution of RS consists of one oracle for f1 and one
for f2. We can run these oracles simultaneously in the parallel algorithm
and obtain a result

!
2 times faster than by sequential search. But if

we have two copies of each oracle it is possible to achieve the same
performance by sequential search if we divide the whole domain '0, 1(n

into two equal parts of N/2 elements each and apply a simple quantum
search initially with two copies of oracle f1—one for each part—then,
having e1, with two copies of oracle f2. But this way is expensive if
every copy of the oracle has a large cost, or impossible if every oracle is
unique, say issues from a natural phenomenon. Only in this case of the
minimal possible set of oracles f1, f2 does the application of a parallel
quantum algorithm for RS give an increase in performance of

!
2 times.

This speedup can also be obtained for IS if we apply this algorithm
sequentially for the pairs fi, fi%1, i " 1, 2, . . . , k 3 1. The resulting error
probability will be O(k/

!
N).

The main feature of the parallel algorithm is the speedup without
any extra hardware. It is significant because Grover’s algorithm for the
simple quantum search cannot be sped up even by a constant factor.

The remainder of this paper is devoted to the proof of Theorem 1
and perspectives of this approach.

5.3 A primary analysis of the parallel algorithm for repeated search

Note that each of Wy, R0y commutes with Wx, R0x, P, F1; P commutes
with F2, hence Z can be represented in the form

Z " 3[(I 1WxR0xWx 1 I)PF1P][3(I1 (WyR0yWy) 1 I)F2],

or in the form

Z " '3WxR0xWxF1('3WyR0yWyF2(, (9)
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Speedup of Iterated Quantum Search by Parallel Performance 475

where

F1,u, x, y, a" " ' ,u, x, y, a" if x . e1,
3,u, x, y, a" if x " e1.

Equation (9) is exactly the repetition of Grover’s transformations with
oracles F2,F1 in this order, hence we can apply equation (4) for the
resulting amplitudes of these transformations. Let the Z-iterations be
Χ0 ) Χ1 )! ) Χt, Χi%1 " Z(Χi), i " 0, 1, . . . , t 3 1;

Χi " bi,e1e2" % ai,e1N2" % Αi,N1N2" % Βi,N1e2", (10)

where e1 and e1, e2 are the target states. Unique solutions for f1(x) " 1
and for f2(x, y) " 1 respectively, N1 " #N

i"2 ei, N2 " #i.2 ei (we omit
ancillary qubits).

We represent the transformation Χi ) Z(Χi) as two sequential steps:

Χi
1
) Z1(Χi) " Χ

:
i

2
) Z2(Χ:i ) " Χi%1,

where Z1 " 3WyR0yWyF2, Z2 " 3WxR0xWxF1. To calculate the change
of amplitude resulting from the application of Z1 (or Z2) we shall fix a
value of x (or y respectively).

Step 1. Denote amplitudes of basic states in Χ:i by the corresponding
letters with primes:

Χ:i " b:i ,e1e2" % a:i ,e1N2" % Α:i ,N1N2" % Β:i ,N1e2".
Then for the two essentially different ways to fix a basic state for x:
x " e1 or x % ej, j . 1 we shall have the different expressions for new
amplitudes. Use the property of the diffusion transformation WR0W to
be an inversion about average [23]. Let Λav be an average amplitude of
the corresponding quantum state.

(a) x " e1.

Λav "
(N31)ai3bi

N , b:i " 2Λav % bi, a:i " 2Λav 3 ai,

b:i "
2(N 3 1)ai 3 2bi

N
% bi " bi %1 3 2

N
& % 2ai %1 3 1

N
& ,

a:i "
2(N 3 1)ai 3 2bi

N
3 ai " 3bi

2
N
% ai %1 3 2

N
& .

(b) x " ej, j . 1.

Λav "
(N31)Αi%Βi

N , Α:i " 2Λav 3 Αi, Β:i " 2Λav 3 Βi,

Α:i "
2(N 3 1)Αi % 2bi

N
3 ai " Αi %1 3 2

N
& % 2Βi

2
N

,

Β:i "
2(N 3 1)Αi % 2Βi

N
3 Βi " Αi %1 3 1

N
& 3 Βi %1 3 2

N
& .
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Step 2. Χ:i
2
) Z1(Χ:i ) " Χi%1.

We have two different ways to fix a basic state for y: y " e2 or y " ej,
j . 2.

(a) y " e2.

Λav "
(N 3 1)Β:i 3 b:i

N
,

bi%1 " 2Λav % b:i " b:i %1 3 2
N
& % 2Β:i %1 3 1

N
& ,

Βi%1 " 2Λav 3 Β
:
i " Β

:
i %1 3 2

N
& 3 b:i

2
N

.

(b) y " ej, j . 2.

Λav "
(N 3 1)Α:i 3 a:i

N
,

ai%1 " 2Λav % a:i " a:i %1 3 2
N
& % 2Α:i %1 3 1

N
& ,

Αi%1 " 2Λav 3 Α
:
i " Α

:
i %1 3 2

N
& 3 a:i

2
N

.

Hence, the recurrent formulas for amplitudes of sequential Steps 1
and 2 acquire the form:

bi%1 " bi %1 3 2
N
&2 % 2ai %1 3 1

N
& %1 3 2

N
& % 4Αi %1 3 1

N
&2

32Βi %1 3 2
N
& %1 3 1

N
& 6

ai%1 " ai %1 3 2
N
&2 3 bi

2
N
%1 3 2

N
& % 2Αi %1 3 2

N
& %1 3 1

N
&

%2Βi
2
N
%1 3 1

N
& 6

Αi%1 " Αi %1 3 2
N
&2 % Βi

2
N
%1 3 2

N
& 3 ai %1 3 2

N
& 2

N
% bi

4
N2 6

Βi%1 " 2Αi %1 3 1
N
& %1 3 2

N
& 3 Βi %1 3 2

N
&2

3bi %1 3 2
N
& 2

N
3 2ai %1 3 1

N
& 2

N
.

Thus the matrix of one step of the algorithm has the form

Z "

DEEEEEEEEEEEEEE
F

1 2 4 32
3 2

N 1 2 4
N

4
N2 3 2

N 1 2
N

3 2
N

4
N 2 31

GHHHHHHHHHHHHHH
I

.
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The system of recurrent equations can be rewritten as the following
system of difference equations.

bi%1 3 bi " 2ai % 4Αi 3 2Βi % biO1 % 1
N
& % aiO2 % 1

N
&

%ΑiO3 % 1
N
& % ΒiO4 % 1

N
& 6

ai%1 3 ai " 3
2
N

bi % 2Αi % aiO5 % 1
N
& % biO6 % 1

N2 &
%ΑiO7 % 1

N
& % ΒiO8 % 1

N
& 6

Αi%1 3 Αi " 3
2
N

ai % ΒiO13 % 1
N
& % aiO14 % 1

N2 &
%biO15 % 1

N2 & % ΑiO16 % 1
N
& 6

Βi%1 3 Βi " 3
2
N

bi % 2Αi 3 2Βi % aiO9 % 1
N
& % ΑiO10 % 1

N
&

%ΒiO11 % 1
N
& % biO12 % 1

N2 & . (11)

5.4 An approximation of amplitude evolution by differential equations

Let 'c̄i( be a sequence of vectors from Ck: c̄i " (c1
i , c2

i , . . . , ck
i ), c

j
i 4 C,

which satisfies the following system of difference equations

c̄i%1 3 c̄i " Ac̄i, (12)

where A is a matrix of size k J k with complex elements.
Let m be an integer and a function C(t): R ) Ck is a solution of the

system of differential equations

Ċ(t) " mAC(t) (13)

with the initial condition

C(0) " c̄0. (14)

Then the exact solution of the Cauchy problem (equations (13) and
(14)) is C(t) " R(t)c̄0, where the resolvent matrix R(t) " exp(mAt).
Equation (12) will be the system of difference equations approximating
C(t) by Euler’s method if we consider c̄i as an approximation of C(i/m),
i " 0, 1, . . . . The accuracy of approximation may be obtained by the
Taylor formula C((i % 1)/m) " C(i/m) % 1/mĊ(i/m) % 1/2m2C̈(t1), i/m <
t1 < (i % 1)/m. Here the error Ε1 of one step of equation (12) is the
third summand 1/2m2C̈(t1) " 1/2A2C(t1). Thus the error at the first
step is 1/2A2 exp(mAΘ1)c̄0, at the second step: 1/2A2 exp(mAΘ2)c̄1 %
exp(mA1/m)1/2A2 exp(mAΘ1)c̄0 " 1/2A2 exp(mAΘ2)(c̄0 % Ac̄0 % 1/2A2
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exp(mAΘ1)c̄0) % exp(A)1/2A2 exp(mAΘ1)c̄0, and so forth, at the ith step
the error will be Εi L 3/2#j"1 i exp(AΑj)A

2c̄0, where 0 < Αj < 1. Hence
if /c̄0/ L h, then the error after the ith step is Εi " O(ih). Particularly,
for the initial conditions /c0/ " O(1/N) a good approximation can be
obtained if i " o(N), and thus we can solve the Cauchy problem instead
of equation (11) for i " O(

!
N) having an error as small as required for

sufficiently large N.
Define a new function B(Τ) as B(tm) " C(t). In terms of B the Cauchy

problem acquires the form

d
dΤ

B(Τ) " AB(Τ), B(0) " c0. (15)

Apply this to the solution c̄i " ,bi, ai,Αi, Βi" of equation (11), where c̄0 "
,1/N, 1/N, 1/N, 1/N". Put B " ,b, a,Α, Β" for the scalar functions b, a, Β,Α
and denote the argument of the function B by t. Then equation (15),
approximating equation (11), acquires the form:

ḃ " 2a % 4Α 3 2Β % bO1 % 1
N
& % Ε1 % aO0 % 1

N
& 6

ȧ " 3
2
N

b % 2Α % Ε2 %O2 % 1
N
& a6

Β̇ " 3
2
N

b % 2Α 3 2Β % Ε4 %O4 % 1
N
& a6

Α̇ " 3
2
N

a % Ε3, (16)

where Εi " aO0i(1/N2) % bO1i(1/N2) % ΒO2i(1/N) % ΑO3i(1/N), i "
1, 2, 3, 4, with the initial condition

b(0) " a(0) " Β(0) " Α(0) "
1
N

. (17)

Then for t " O(
!

N), i " [t] the vector of error will be ∆̄ " B̄(t) 3 c̄i "
O(1/

!
N), N ) N and with this accuracy we can write b(i) O bi for the

amplitude bi of target state ,e1, e2".
5.5 Tight analysis of the parallel quantum algorithm for repeated search

Now we take up the system of linear differential equations (16) with the
initial conditions of equation (17). Our goal is to solve it on a segment
of the form 0 L t L O(

!
N). Equation (16) can be represented in the

form Ḃ " MB, where its matrix M " Z 3 1 " Ã0 % E %H (1 denotes the
identity matrix) for the matrices

Ã0 "

DEEEEEEEEEEE
F

0 2 4 0
3 2

N 0 2 0
0 3 2

N 0 0
0 0 0 0

GHHHHHHHHHHH
I

, E "

DEEEEEEEEEEE
F

0 0 0 0
0 0 0 0
0 0 0 0
3 2

N 0 2 32

GHHHHHHHHHHH
I

,
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H "

DEEEEEEEEEE
F

d1 d1 d1 32 % d1
d2 d1 d1 d1
d2 d2 d1 d1
d2 d1 d1 d1

GHHHHHHHHHH
I

,

where dl denotes different expressions of the form O(N3l), l " 1, 2.
We shall show that the deposit of Ã0 to the solution of equations (16)

and (17) is significant and deposits of E and H are negligible. What is
the main difficulty here? Consider the resolvent matrix for the Cauchy
problem (equations (16) and (17)), this is the solution R(t) of the differ-
ential equation for matrices: Ṙ " MR with the initial condition R(0) " 1.
Then we have C(t) " RC(0). The matrix R has the form exp(Mt). But
in our case the matrices Ã0, E, H do not commutate, hence we cannot
use the standard properties of exponent. In order to cope with this task
we first solve the Cauchy problem at hand neglecting deposits of E and
H to the main matrix M. The validity of this approximation is shown
in section 5.6.

Now consider the reduced equation Ċ(t) " AC(t) with the initial
condition C(0) " c0. Excluding the last column and row containing only
zeroes we obtain the new matrix A0. The characteristic equation for A0
is Λ3 % 8/NΛ 3 16/N2 " 0 and its nonzero solutions within O(1/N) are
Λ1,2 " A2

!
2i/
!

N. Then standard calculations give the approximation
of the solution as

b "
1
2
3

1
2

cos
2
!

2t!
N

,

a "
1!
2N

sin
2
!

2t!
N

%
1
N

cos
2
!

2t!
N

,

Α "
1

2N
cos

2
!

2t!
N

%
1

2N
(18)

within ,O(1/
!

N), O(1/N), O(1/N
!

N)". The amplitude b from equa-
tion (18) peaks at the point t1 " Π

!
N/2
!

2 where b(t1) " 1 within
O(1/

!
N). Assuming that deposits of E and H to the solution are small,

we obtain that the amplitude of target state ,e1, e2" will be 13O(1/
!

N)
after [Π

!
N/2
!

2] steps of the parallel algorithm which is
!

2 times
smaller than the time of sequential quantum search.

5.6 Completion of the proof

In the preprint version of this paper the deposits of E and H were
estimated by the conventional procedure of approximating a solution of
differential equations (see the Appendix in [37]). This is the immediate
but cumbersome way to prove that this deposit is vanishing. After
publication of the preprint version, Farhi and Gutmann developed a
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way to simplify this construction by uniting by pairs the sequential
transformations in a parallel algorithm [21]. In this section this idea is
combined with the approach of the first version.

First, turn to the orthonormal basis E1 " ,e1e2", E2 " 1/
!

N,e1N2",
E3 " 1/N,N1N2", E4 " 1/

!
N,N1e2". The matrix Z in this basis acquires

the form

A1 "

DEEEEEEEEEEEEEEEEE
F

1 2!
N

4
N 3 2!

N

3 2!
N

1 2!
N

4
N

4
N 3 2!

N
1 2!

N

3 2!
N

4
N

2!
N

31

GHHHHHHHHHHHHHHHHH
I

.

Now group together each pair of unitary transformations in the algo-
rithm: Χ2k ) Χ2k%1 ) Χ2k%2 and denote by B the corresponding matrix:

B0 " A2
1. It is sufficient to prove that /B[Π

!
N/4
!

2]
0 ,0, 0, 1, 0"3,1, 0, 0, 0"/ "

O(1/
!

N), because one application of A1 can only increase the error by
O(1/

!
N).

The Cauchy problem for the recursion c̄i%1 " B0c̄i has the form
˙̄c " (B0 3 1)c̄, c̄ " c̄0, and its resolvent has the form R " exp Bt, where
B " B0 3 1. We have:

B O
4!
N

DEEEEEEEEEE
F

0 1 0 0
31 0 1 0
0 31 0 0
0 0 0 0

GHHHHHHHHHH
I

within O(1/N).
Thus we can consider only a projection of c̄ to the subspace H1

spanned by E1, E2, E3. Denote by D the matrix

DEEEEEEEEEE
F

0 3 i!
2

0
i!
2

0 3 i!
2

0 i!
2

0

GHHHHHHHHHH
I

.

Then the restriction of B to H1 has the form 4
!

2i/
!

ND. It is easily
seen that D2k%1 " D, D2k " D2 for k " 1, 2, . . . . The initial state is
,0, 0, 1" within O(1/

!
N). Put k " 4

!
2/
!

N. Then within O(1/
!

N) we
have ,b, a,Α" O C,0, 0, 1", where

C " exp(kiDt) " cos(kDt) % i sin(kDt)

" 1 3
(kDt)2

2
%

(kDt)4

4!
3! % i %kDt 3

(kDt)3

3!
%!&

" 1 3D2(1 3 cos kt) % iD sin kt

that immediately gives equation (18) and the theorem is proved.
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6. Parallel implementation of iterated quantum search

6.1 Parallel quantum algorithm for iterated search

Now take up an IS problem for arbitrary k. Consider an evolu-
tion of amplitudes arising when k oracles work in parallel. Let Χi "
ai

0,N1, N2, . . . , Nk" % ai
1,e1, N2, . . . , Nk" %! % ai

k,e1, e2, . . . , ek" % Ri (this
generalizes equation (10)), where Ri contains only basic states of the
form , . . . , Np, . . . , eq, . . .". The natural generalization of the transforma-
tion equation (8) will be

Zk " (31)kW(k)R
(k)
0 W(k)F (k),

whereW(k) " W1 1 W2 1! 1 Wk 1 I, each Walsh–Hadamard trans-

formation Wi acts on xi, i " 1, 2, . . . , k, R
(k)
0 " R01 1! 1 R0k 1 I,

each rotation of 0 phase R0i acts on xi, i " 1, 2, . . . , k, F (k) " F1 1!
1Fk 1 I, each Fi acts on xi and inverses the sign of ei, identities I act on
ancilla.

Let a matrix A determine an evolution of the quantum state in a
parallel algorithm such that Χi " AΧi31. A represents the operator in
2kn-dimensional space. We reduce A to an operator Ar acting on k % 1-
dimensional space generated by the vectors ,N1, N2, . . . , Nk", ,e1, N2, . . . ,
Nk", . . . , ,e1, e2, . . . , ek". Then represent Ar as Ar " A0 % B, where A0 is
a Jacobi matrix of the form

DEEEEEEEEEEEEEEE
F

0 2 0 . . . 0
3 2

N 0 2 . . . 0
. . . . . . . . . " . . .
0 . . . 3 2

N 0 2
0 . . . 0 3 2

N 0

GHHHHHHHHHHHHHHH
I

. (19)

This matrix has the nonzero elements 2 (above the main diagonal)
and 32/N (behind it). Its size is (k% 1) J (k% 1). Assume that the effect
of reduction: A to Ar and the deposit of B are negligible. For k > 2 this
fact can be proved by using iterated approximations (see the Appendix
in [37]). An evolution of amplitude can be represented approximately
as the solution of the Cauchy problem

˙̄a " Aā, a(0) " ,N3k/2, . . . , N3k/2", (20)

where ā(i) O ,ai
1, . . . , ai

k", i integer, we assume that k -
!

N.

6.2 Perspectives of a parallel quantum algorithm for iterated search

One can ask: Can we obtain a speedup by a big constant factor for
IQS when applying parallel action of more than two oracles? In all
probability the answer is no.
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Estimate the growth of target amplitude as given. Canceling all 32/N
we can only increase this growth. This results in a simple system of linear

differential equations whose solution is ak(t) " N3k/2 % 2k0 t
0

'k(
N3k/2dt "

N3k/2 %2kN3k/2tk/k!. The parallel algorithm for IQS can exceed sequen-
tial quantum search only if ak(t) is substantially large for t < k

!
N.

For example, let the parallel algorithm work only one quarter of the
time required for the sequential search. Then it cannot reach the
vanishing error probability for any k, because for such t " Π

!
Nk/16

ak O PΠ/8Qk kk/k! < 1.
Nevertheless, the parallel quantum algorithm has one advantage.

Compare sequential and parallel quantum algorithms for IS in the case
1 - k -

!
N, if total time t "

!
N. If t "

!
N then t sequential

applications of Z(k) raise the amplitude ak up to the value ak(t) " ak/k!,
a " 2 3 Ε, where Ε ) 0 (N ) N). Hence the resulting probability is
Ppar " )ak/k!*2.

On the other hand, if we have a total time
!

N then we can apply
sequential quantum searches with time

!
N/k for each x0

i , i " 1, 2, . . . , k.
The probability Pseq to find x0

k will be less than )2/k*2k because for each

search it does not exceed )2/k*2. Consequently, Ppar exceeds Pseq in more
than 22k times.

This feature of the parallel algorithm for IS may be useful when quan-
tum computations are organized with an additional classical parallelism.
The classical type of parallelism does not use quantum entanglement
between different processors but can raise the resulting probability by
using extra memory.

6.3 Conclusion

To sum up, the parallel algorithm constructed for repeated quantum
search is

!
2 times faster than sequential application of fast quantum

search and it requires the same hardware. The advance is taken from
interference arising when two oracles act simultaneously on the set of
entangled qubits. This parallel quantum algorithm can be applied to
the problem of k dependent iterations of quantum search in areas of N
elements each, with the same effect of speedup in

!
2 times. Here the

error probability will be vanishing if k - o(
!

N), N ) N.
In addition, for the fixed total time

!
N a probability of success for

the parallel algorithm is 22k times as big as for the sequential algorithm.
The effective speedup of

!
2 times cannot be increased, essentially by

the same procedure, if we increase the number of oracles involved in the
simultaneous action. Nevertheless, a possibility for further speedup of
the iterated quantum search still remains.
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