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A modern telecommunication service is portrayed as a complex system
and is characterized by its stochastical attributes and fuzzy performance
considerations. Asynchronous transfer mode (ATM) telecommunication
is studied as an example of such a complex system. A call admission
control (CAC) procedure is developed using a fuzzy inference method
applied to the complex connection patterns of ATM service. Such an
inference alleviates the potentially over-conservative nature of resource
allocation. A complex system parameter is defined and used as a fuzzy
variable in the inference strategies pursued. Some practical considerations
and merits of the present study are indicated and discussed.

1. Introduction

Modern telecommunication systems are aptly qualified to be described
as complex systems. The associated vastness of inherent technology,
variety in service considerations, and the plethora of application pro-
files have posed an inevitable attribute of interaction between the con-
stituent subsystems of modern telecommunication engineering. Such an
attribute describes, in general, how the resources of one subsystem are
expended in interacting with other subsystems in a complex manner.

The quality of service (QOS) parameters associated with a telecom-
munication system depicts the metric of complexity. This metric assays
the global performance of telecommunication service offered versus the
cost involved. Estimating QOS parameters, or prescribing such param-
eters while negotiating with a service provider to access a specific class
of connection across the network, warrants a meaningful modeling of
complexity associated with the telecommunication system. The relevant
modeling should include spatial stochasticity of interacting resources as
well as the temporal dynamics of information flow between the end
entities of a telecommunication channel.

Studies [1, 2] indicate that such spatiotemporal considerations in the
modern telecommunication environment are often fuzzy. That is, the
activity of information transfer across the network refers to the non-
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specificity of the values and sharplessness of the boundaries of activity
variables involved. Hence, it can be expected that the telecommunica-
tion QOS parameters would map onto a fuzzy domain. Correspond-
ingly, the performance attributes as well as any inferences made thereof
could be more realistically specified in fuzzy domains. Further, any con-
trol endeavor on the system can be accomplished via a fuzzy inference
engine. In other words, the complex system parameters depicting the
system performance can be used as fuzzy variables to arrive at a control
decision criterion as required.

In the context of modern telecommunication systems the relevance
of stochastical considerations, fuzzy attributes, and complexity (in both
spatial and temporal characterizations) arise mainly due to the follow-
ing.

1. Heterogeneity of traffic types (voice, video, and data transmissions).

2. Variety in the physical media of transmission (copper wires, optical fibers,
and wireless means).

3. Different versions of switching which interconnect the lines with varying
buffer sizes.

4. Temporal fluctuation of traffic demands (peak and slack hour traffics).

5. Temporal variations in bits per second emitted by the source (variable
bit-rate traffics).

6. Time-dependent bandwidth demands (multimedia transmissions).

7. Synchronous and asynchronous transmissions of packetized information.

8. Types of packetization of bits (either as variable size packets or as fixed
size cells).

9. Protocol specifics such as call admission control (CAC), congestion con-
trol, and service priority scheduling.

10. Statistical multiplexing of packets with traffic priorities on contention.

11. Signal-to-noise ratio (SNR) and bit-error rate considerations (bit-error
detection and correction methods implemented).

12. Statistical aspects of the amount of information emitted by different
sources (loading factor considerations as a function of time).

13. Mobility of end entities (wireless communication systems).

14. Types and modes of implementing signaling for connection setup and
release.

15. Connection-oriented and connectionless configurations of the network.
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16. Geographical outlays: wide-area network, local-area network, metropoli-
tan-area network, and global-area network considerations.

17. Network security (encryption and decryption requirements).

The gross features of the network (in terms of its connectivity size and
extent of traffic handled) plus the stochastical nature of network per-
formance (as a function of time) render the telecommunication system
realistically complex.

In order to capture fully the intuitive concept of the complexity of
telecommunication systems, it is necessary to portray the associated
complexity in a multidimensional framework. This multidimensional-
ity should include the gamut of measures, each addressing a specific
aspect of service category, QOS objectives, and traffic descriptors along
one dimension. Further, inasmuch as many of these measures could be
correlated, the modeling should facilitate the corresponding enhance-
ment in the complexity being assessed due to the interactiveness of the
measures involved.

The metric of QOS objectives in crisp form denotes primitive mea-
sures. They do not, per se, reflect the gross and correlatory attributes
between the parameters. Neither do they depict the fuzziness of the vari-
ables. At most, they are represented in probabilistic norms signifying
only the stochastical attributes.

In order to include cohesively the stochastical considerations and
fuzzy characteristics, as well as the gross complexity of the system, an
integration of the following is needed. (i) The spatiotemporal dynamics
of the system specified in the entropy or information-theoretic plane [3–
5]; and (ii) rendering fuzzy of the variables involved in the dynamics [6].

The purpose of this paper is to indicate how the complexity of a
telecommunication system can be analytically modeled via considera-
tions of information-theoretics (IT) and fuzzy properties. Specifically,
an asynchronous transfer mode (ATM) switching stage is considered.
Modeling is performed in respect to the following two QOS parame-
ters. (i) Variations in the delay of cell-transfers. Such cell-delay vari-
ations (CDVs) or jitter lead to dropping those cells which are delayed
beyond a permissible upper bound on CDV. This is of concern especially
in a congested traffic ambient. (ii) Additional loss in the number of cells
(packetized segment of bits, which carry the information) due to bit
errors caused by the noisy channel.

The performance of a telecommunication network vis-à-vis a given
set of QOS objectives can be deduced in terms of a complexity profile
posed by stochastical considerations and fuzzy attributes of the relevant
network technology. It is shown in this paper how to reduce the multidi-
mensionality of primitive measures concerning network performance to
a single complexity parameter (with fuzzy properties) which can decide
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an upper bound on the performance. The relevant strategy involves, as
stated earlier, a blend of IT and fuzzy logic considerations.

Using the complexity parameter deduced, it is shown how a fuzzy
inference engine can be constructed using the complexity parameter
as a fuzzy variable. This inference engine is adopted to formulate an
algorithm that enables CAC in ATM networks. That is, a fuzzy inference
engine, which assesses the complex connection patterns of the network
and prescribes fuzzy norms on resource utilization, is developed. This
approach alleviates the risk of over-conservative resource allocations in
the CAC implementation. The efficacy of this algorithm is demonstrated
via simulated results pertinent to a typical ATM environment.

Thus, the content of this paper is presented in two parts. In Part I
a time-dependent complexity metric s(t) is deduced via an IT approach
for ATM telecommunication systems. The statistical bounds on the per-
connection guarantee (i.e., QOS parameters) solicited from the network
operator are obtained in terms of the complexity measure proposed.

The modeling strategy adopted is based on the following. (i) The
flow of information-bearing ATM cell streams is regarded as a queueing
system. Unlike the conventional queueing model wherein the temporal
statistics of cell arrival and cell waiting are used in the analysis, the
present study considers the flow of entropy (or information content in
Shannon’s sense) borne by the queue [4–6]. A relevant metric of com-
plexity s(t) is defined thereof, and deduced in terms of the Shannon
information content. (ii) The temporal dynamics of s(t) are then formu-
lated in terms of stochastical differential calculus. Further, (iii) fuzzy at-
tributes to s(t) are introduced via Zadeh’s extensive principle and a fuzzy
Fokker–Planck equation [7] describing the dynamics of s(t) is obtained.

The considerations of an IT strategy allow a direct evaluation of the
impairment to information flow (or information loss) posed by the statis-
tics of cell loss. That is, the effects of cell loss impairing the information
transmitted are introduced appropriately in terms of the complexity pa-
rameter adopted. The cell losses considered include both those lost as
a result of buffer-overflows or queueing at the ATM switch (or mul-
tiplexer) and those dropped due to uncorrectable bit errors stemming
from a finite SNR (which depicts the finite extent of noise in the system).

In Part II, using the strategy developed in Part I, a CAC algorithm is
deduced and its efficacy is demonstrated with simulated data.

2. Asynchronous transfer mode telecommunication

2.1 A brief review

ATM is a platform recommended to support broadband integrated sys-
tems of digital networks (B-ISDNs). It is a technique that has been de-
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Figure 1. ATM multiplexing and switching. Η # 1, 2, 3 are incoming cells from
different types of sources at the call-origination end.

veloped to handle cohesively the telecommunication of heterogeneous
streams of messages emanating from different sources such as data,
voice, and video on a given network [8].

The characteristics of mixed ATM traffic are as follows. (i) A vast
difference in the speeds of individual traffic (in terms of bits per second).
(ii) Delay sensitiveness of isochronous traffic such as video and voice
(relative to data traffic). (iii) Cell losses incurred while in transit across
the network. (iv) Virtual connectivity offered to the cells (fixed-size
packets, each with 53 bytes) for transmission across the network.

When the delay experienced by a cell becomes too excessive, the
ATM protocol would let the cell be dropped from the transmission. The
fraction of such cells dropped is designated by a QOS parameter, known
as the cell loss ratio (CLR). Inasmuch as the causative mechanisms and
the deciding factors of these delays are largely statistical, the delay
parameter fluctuates randomly with respect to time. This statistically
varying cell delay, as stated before, refers to a parameter designated as
cell delay variation (CDV). It represents one of the QOS parameters.
A typical multiplexing of cells from different sources and switching of
ATM calls is illustrated in Figure 1.

Apart from excessive cell transfer delay (CTD) variation (scaling be-
yond an upper bound) causing cell losses, bit errors in the cell-header
which are detected but cannot be corrected would also lead to dropping
cells. The first type arises as a result of the randomness of the traffic.
The second type is due to a change in the bit pattern in the cell-header
due to a finite extent of noise (specified by a finite SNR prevailing in the
transmission path). A bound on CLR depicts the limit on the number
of cells lost in the transmission path which can be tolerated without any
significant impairment to the semantic transparency of the information
transferred. It is proposed in the present work that the CDV-based cell
losses and noise-induced cell losses can be combined and represented
by a single parameter in the IT plane. The corresponding upper bound
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on the resultant variation in the CTD can be decided by the tail-end
probability Α in the resultant probability distribution of the CDV. Sup-
pose the CLR corresponding to jittered CDV is CLR1 and that due to
noise-induced bit-error is CLR2. The net CLR bound should then be
the result of the joint influences of CLR1 and CLR2. The problem of
linking CDV versus CLR1 and SNR versus CLR2 can be done via IT
considerations. Part I is devoted to relevant efforts.

Part II of this paper refers to using the complexity metric (deduced
in Part I) to develop a call admission algorithm under fuzzy operational
conditions. When a call request comes, an ATM switch has to decide
whether the connection would enable or not a required QOS if the call
is accepted. If the ATM switch judges that the required QOS can be
facilitated, then the call will be accepted. Otherwise, the call will be
rejected. This is the strategy known as CAC. Basically, it refers to a set
of rules or algorithms to decide whether a new call should be accepted
or not [9].

There is a set of essential QOS parameters that characterize source
traffic and are required to address CAC issues. Based on these QOS
parameters declared by the user, the CAC could determine the type
of service required. For example, a connection can be facilitated on
the basis of available-bit-rate service provided by the network. In this
case, the connection is assigned whatever the bit rate is available at that
particular time.

A broadband call, for example, can be a multimedia call having
a number of components such as still-picture, video, voice, and text.
Each component generally requires a separate connection. Facilitating
connectivity (meeting a set of specified QOS objectives) to a call refers to
assigning virtual channel identification to that category of cells belong-
ing to the call. Transport of these cells takes place on the assigned virtual
channels. A bundle of virtual channels constitutes a virtual path which
is identified by a virtual path identifier. Each virtual connection has a
transfer capacity (a bandwidth) assigned to it according to the user’s
request. This is usually done during the connection setup procedure
using CAC. This connection process also determines such parameters
as maximum CTD/CDV and/or CLR that a connection will be allowed
depending on user needs.

The decision on whether a call be permitted or not is made based on
the traffic characteristics of the call and availability of required network
resources to handle the additional traffic without affecting the resource
requirements of the existing calls. In other words, the additional traffic
demand on the resources to be generated by the new call should not
have any effect on the traffic performance aspects of existing calls.

There are several CAC algorithms described in the literature [1, 2, 8,
9]. CAC is a software function in a switch that is invoked at the call
setup time, when a virtual channel or a virtual path is established. It
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accepts the request only if the QOS for all existing connections will still
be met if accepted.

3. Part I: Quality of service specification a system complexity metric

In the present study, the QOS specification of the telecommunication
system (such as an ATM network) is presented as a single parameter
by taking into considerations of the associated stochastical and fuzzy
attributes of the system parameters.

In the relevant modeling, the end-to-end delay, or CTD, of the ith cell
is assumed to be governed by a random factor arising out of queueing
and buffering (multiplexing) within the network, as well as by the extent
of noise (in terms of SNR) involved. As stated before, it is assumed that
the SNR attribute of the network leads to a bit-error based, finite CLR,
CLR2; and the buffer induced CDV in the cells which eventually leads
to dropping of cells to an extent that is specified by CLR1. Thus, there
are two phenomena which ultimately lead to an effective CLR in the
system. Normally, the CDV-based cell dropping is decided by the extent
of buffering used while the SNR-based cell dropping is largely decided
by the physical media. For example, if the physical medium corresponds
to a wireless transmission, the bit errors are relatively larger than in the
telecommunication facilitated via fiber optic lines.

Presently, a complexity metric is proposed that is deduced via max-
imum entropy considerations [10] plus the fuzzy attributes associated
with the stochastical characteristics of cell losses. Such cell losses in-
clude cohesively, the SNR considerations and CDV performance. In
terms of the metric so derived, it is possible to bifurcate the network
end-to-end transmission as “simple” or “complex” in a fuzzy domain.
The dividing line sets a limit on the acceptance level of CLR and im-
poses an upper bound on the CAC implemented. Pertinent analyses are
elaborated in the following section using a heuristic approach of the
aforesaid problem.

3.1 A complexity metric for the acceptable threshold of cell loss ratio

Suppose 0 % p(i) % 1 denotes the probability of occurrence of the
ith cell in an ATM transmission. Let i # 1, 2, . . . , M represent the
cells for which the end-to-end performance is assessed in an ATM link.
Then, the axiomatic probability requirement is that !M

i#1 p(i) # 1 and
the mean value !M

i#1 ip(i) % Β0. Here Β0 > 0 depicts the constraining
value on the ensemble mean as decided by the limit of acceptable traffic
performance. Given a set of parameters attributed to a virtual channel
traffic, the entropy (Shannon information) parameter of the epochs of
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cell occurrence is given by:

H(p) # '
M"
i#1

p(i) ln[p(i)] nats. (1)

Following the procedure presented by one of the authors elsewhere [6],
the entropy associated with the M participating cells can be written in
terms of a complexity parameter s as follows:

H(s, M) # ln #1 ' sM(1

1 ' s
$ ' # s

1 ' s
'

(M ( 1)sM(1

1 ' sM(1 $ ln(s), for s < 1 (2a)

# #1 ' ΡM(1

1 ' Ρ
% 1
ΡM &$ ' # Ρ

1 ' Ρ
%1
Ρ
&

(
(M ( 1)ΡM(1

1 ' ΡM(1 Ρ % 1
ΡM(1 &$ ln(Ρ), for Ρ % 1 (2b)

where s is the complexity parameter [10].
The given relations refer to the maximized entropy functional that

is based on the probability of having i disorderly (performance-wise)
subsets in the cell space of total size M. That is, p(i) depicts the prob-
ability distribution which maximizes the entropy H(p) of disorderliness
associated with epochal occurrence of cell events and implicitly refers to
the statistics of associated performance impairment such as jitter and/or
bit-errors. Explicitly, the entity s in equation (2) is specified by exp('b)
where b is a lagrangian parameter used in maximizing the entropy func-
tional [10].

The entropy of disordered subsets is a positive function increasing
monotonically with respect to M for all values of s * 0. It also increases
monotonically with s for s < 1 but decreases monotonically with s for
s > 1.

The coefficient s can be regarded as a measure of complexity asso-
ciated with the ATM transmission experiencing cell losses as a result
of cell delay jitter and SNR-dependent bit errors in an end-to-end con-
nection. Suppose the mean value Β0 (specified as a constraint on the
statistics of M) is specified in terms of s as Β0 # E[s, M]. For a given
stretch of cells, s represents the extent of CLR expected. As such, when
s # 0, the cells flowing between an end-to-end connection constitute a
“simple” subsystem with an expected value of E[0, M] equal to zero.
The other extreme situation refers to s + ,, in which case the system is
totally complex with E[,, M] # M meaning that the associated loss of
information is excessively large inasmuch as the cell loss includes all of
the M cells involved.

That is, when the number of disordered subsets of cell loss in a cell
population M + ,, the complexity associated refers to the entire uni-
verse of the jittered cells and/or bit errors. The corresponding expected
value E[s,,] can be deduced using the following relations [10].
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In the limit M + ,, the functions associated with (M, s) become
nonanalytic at s # 1. Explicitly, this implies that

E[s, M]-M+, #

./////0/////
1

s
1's s < 1
M
2 s # 1
Ρ

1'Ρ s # 1
Ρ * 1

(3a)

and

E[s,,] # E[s, M] for small s and moderately large M. (3b)

Correspondingly,

H['s, M(]M+, # ' ln(1 ' s) '
s ln(s)
1 ' s

0 % s < 1 (4a)

# ' ln(1 ' Ρ) '
Ρ ln(Ρ)
1 ' Ρ

s #
1
Ρ
* 1 (4b)

and H(s, M) ! H(s,,) for small s. Relevant inferences pertinent to these
algorithmic derivations follow.

(a) For very small extents of CLR with s 2 1, the expected extent of cell loss
is almost independent of the number M of cells involved.

(b) For very large extents of CLR with s 3 1, the expected extent of cell loss
is characterized by the number of participating cells M.

(c) The characteristic value of s # 1 bifurcates the system as simple or com-
plex in respect to the extent of information loss perceived due to dropping
cells caused by CDV and/or bit-errors.

The simple, or small extents of CLR, when grown to a larger level
would make the overall system performance be designated as com-
plex. That is, small values of cell losses can be considered as quasi-
autonomous (simple) subsets, but when grown to a large extent would
render the system complex in terms of its performance assessed via CDV
and/or SNR parameters. To model this consideration, the complexity
coefficient s can be written as a function of M. Specifically, around s # 1,
let s # (1 ' 4) where 4 # (A/M) + 0 as M + , and the constant A
remains invariant. Using Taylor’s expansion, on equation (3a) at s # 1,
one has:

E[s, M] 5
M
2
%1 ' A

3
&)%1 ' A

2
(

A2

6
(!& (5)

and the corresponding entropy deduced from equation (2) is,

H(s, M) 5 ln(M ( 1). (6)
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This result leads to defining a coefficient of cell loss complexity in a
functional form of the type:

s # exp %' A
M
& (7)

with s < 1 and A > 0, (i.e., when the system is considered simple). With
the exponential form of s given by equation (7), the following results
can be deduced with A > 0:

s(e'A/M) #
M
A

[1 ' e'A] (
1
2

[1 ' e'A] ( 6 % A
M
& (8)

E[e'A/M, M] # MF(A) 'G(A) ( 6 % A
M
& (9)

H[e'A/M, M] # ln M 'U(A) ( 6 % A
M
& (10)

where

F(A) #
1
A
'

1
(eA ' 1)

,

G(A) #
1
2
(

1

(eA ' 1) ' AeA

(eA'1)2

,

U(A) # AF(A) ( ln
1
A

(1 ' e'A).

Further, 6(7) represents the “order of (7).”
At the critical point of s # 1 and in its neighborhood, the mean value

of system performance denotes the extensive property in respect to the
possible number of impaired cells (M) and the propensity of impairment
is directly proportional to ln(M), namely, the message content of M cells.

When s * 1, the exponential law can be modified as s # exp(A/M) in
which case,

E[eA/M, M] # 81 ' F(A)9M 'G(A) ( 6 % A
M
& (11)

H[eA/M, M] # ln M (U(A) ( 6 % A
M
& . (12)

These algorithmic considerations can be adopted appropriately to
use the complexity parameter s as a cohesive measure of the extent of a
QOS parameter (such as cell losses) in an end-to-end ATM connection.
Relevant details follow.

3.2 Entropy of cell losses: Information-theoretic considerations

Suppose the statistics of CDV (∆Η) of a traffic (identified as the traffic
from source Η) is assumed to be gaussian. Then the probability density
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function of ∆Η, namely, p(∆Η) can be written as:

p(∆Η) #
1*

2ΠΣ∆Η
exp

=>>>>>>>>>>?
'

(∆Η ' Μ∆Η )
2

2Σ2
∆Η

ABBBBBBBBBBC
(13)

where Σ∆Η and Μ∆Η denote the mean and standard deviations of ∆Η respec-
tively. The maximum entropy vis-à-vis the gaussian statistics is given
by:

(Hmax)Η #
1
2

ln[2Πe(ΣD∆Η)
2] (14)

where ΣD∆Η is Σ∆Η normalized with respect to a time parameter, such as the
total time of transmission of M cells, T seconds.

As detailed earlier, a critical transition from a simple to a complex
state mediated by M cells arriving at a rate ΛΗ cells/second occurs when
the complex parameter s + 1. Using equation (6), the corresponding
maximum entropy associated with M cells flowing at a rate ΛΗ is given
by

(Hmax)Η # ln #M ( 1
ΛΗT
$ . (15)

Hence, combining equations (14) and (15), it follows that ln[(M (
1)/ΛΗT] # ln[2Πe(ΣD∆Η)2

max]1/2. Or, (M ( 1)/ΛΗ #
+

2Πe(Σ∆Η)max.
In other words, for a set of M cells for which end-to-end delay is as-

sessed, the maximum entropy associated with the delay ∆Η has a standard
deviation given by:

Σ∆Η #
M ( 1+
2ΠeΛΗ

second. (16)

The corresponding variance parameter then decides the upper limit
on the permissible cell delay jitter beyond which the network is led to
discard the cells as indicated earlier.

3.3 Net cell loss ratio due to cell delay variation and signal-to-noise ratio
influences

Considering the two possible reasons that lead to the dropping of cells,
the tail-end probability Α, which can be deduced from equation (13),
places an upper bound on net CLR; and, Α can be bifurcated into Α1
and Α2 corresponding to CLR1 and CLR2 respectively. That is, the
functional relations to be ascertained are:

Α1 F CLR1 G CTD1 (17a)
Α2 F CLR2 G CTD2 (17b)
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where CTD1 and CTD2 are parameters which decide jointly to specify
a net upper bound on CTD and lead to a corresponding (net) upper
bound on CLR.

The problem of linking Α1 and CLR1 is the same as correlating the
variance of ∆, namely, (Σ∆)

2 and the CLR1. That is, the variance of the
CDV (under the worst case condition) that corresponds to the CTD1
exceeding a maximum value equal to fixed delay (F) plus (Σ∆) with a
probability no greater than Α1. It specifies the maximum limit on CTD,
CTD1. Similarly, assuming that the cell losses due to SNR-based bit
errors (represented by CLR2) correspond to an equivalent delay CTD2,
a relation between the bounding parameters Α2 (of CTD2) and CLR2
has to be established. The relevant exercise is indicated in [5] and
summarized as the resultant cell loss parameter that can be ascertained
from CLR1 and CLR2 that eventually specifies a bound, which can then
be utilized to establish a CAC criterion.

3.4 CLR1 versus PxΗ and Α1

Relevant to a source Η, suppose a cell loss probability PxΗ is specified
as the impairment parameter of end-to-end traffic performance due to
asynchronous multiplexing and/or congestion induced CDV and PEΗ
denotes the bit-error probability leading to relevant cell erasures caused
by finite SNR. The strategy to implement the required interrelations
specified in equation (17) is based on the following heuristics.

The CLR1 parameter concerning cell losses (arising from CDV caused
by multiplexing/congestion in ATM links) can be specified by a corre-
sponding cell erasure probability PxΗ that leads to a loss of average
information content per unit bandwidth associated with M cells consti-
tuting the ATM traffic. The nonzero value of PxΗ can be regarded as
an “equivalent probability of error” induced by a “corruption factor”
CxΗ. That is, the cell loss due to excessive CDV resulting from the multi-
plexing/congestion mechanism can be dubbed equivalently, as if such a
cell loss is a result of some corrupting entity (analogous to noise) being
present in the traffic flow. Therefore, from the considerations of digital
communication theory as applied to binary digit errors introduced due
to noise, PxΗ in reference to an Ηth source (Η # 1, 2, . . . , N), can be spec-
ified by an exponent relation, namely, PxΗ # km exp('CxΗ) where km is a
constant dependent on the modulation scheme. (For example, km # 1/2
in frequency shift keying.) In this relation, the corruption factor CxΗ is
represented as an erasure exponent that sets a limit on CDV exceeding
an upper bound. This exponent is analogous to the SNR parameter.

The multiplexer of ATM cells (MUX) is a multi-access shared pro-
cessor where cells from different sources compete for the processor time
to get accessed on the trunk line (Figure 1). The more sources active at
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a given time, the less rate of service each receives, since there is more
contention. The total service rate rendered by the MUX depends on the
state of the queue through the number of cells competing for multiplex-
ing service. Following the IT model of a multi-access system discussed
in [4] and using the underlying concepts of equation (6), it can be shown
that the average information loss HΗ(LΗ) of the Ηth source resolved per
unit time at the multiplexer can be specified as:

HΗ(LΗ) # ln[MTLΗ(mΗ) ( 1] nats per bandwidth (18)

where LΗ(7) denotes the expected number of cells dropped at the multi-
plexer due to the delay suffered as a result of queueing and contentions,
and MT is the total number of cells from all the N active sources re-
solved per unit time. Further, mΗ refers to the cells in the Ηth source
traffic stream.

The mean delay time H1Η equivalence (representing the cell loss)
can be obtained from the well known Little’s formula. That is, when
MTLΗ(mΗ) 3 1,

H1Η 5
MTLΗ(mΗ)

ΛΗ
second (19)

where the subscript 1 corresponds to traffic impairment specified by
CLR1.

The expected loss of information caused by the cell drops pertinent
to the Ηth source as given by equation (18), is identically equal to the
entropy associated with the CDV. Hence,

ln #MTLΗ(mΗ)
ΛΗ

$ I ln[2ΠeΣ2
1Η]

1/2 (20a)

or,

Σ1Η #
H1Η

(2Πe)1/2 (20b)

which represents the standard deviation of the statistics describing the
CDV equivalence of the cell loss pertinent to the Ηth source. It should be
noted that both the mean value (H1Η) and the standard derivation (Σ1Η)
are specified per unit bandwidth of trunk transmission and resolved per
unit time.

3.5 CLR2 versus PEΗ and Α2

Additional delay H2Η is induced as a result of cell drops due to uncor-
rectable bit-errors caused by a finite SNRΗ value prevailing in the Ηth
ATM source-to-MUX link. It can be specified explicitly in terms of the
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error probability as: PEΗ # km exp('SNRΗ). That is, given PEΗ or its
exponent SNRΗ, the pertinent CLR, namely, CLR2 when linked to CTD
will give rise to a corresponding average delay H2Η with a variance Σ2Η.
The parameters H2Η and Σ2Η can be determined by a similar procedure
indicated in section 3.4 replacing PxΗ by PEΗ and CxΗ by SNR. Again,
the subscript 2 in H and Σ refers to the conditions dictated by CLR2.

Summarizing, the net CTD specification pertinent to an ATM system
can be deduced in reference to an Ηth source in terms of the following.

1. Fixed-delay (F) due to propagation, delay induced by switching system
and/or processes and due to fixed components.

2. Random delay introduced by asynchronous transfer involving buffering
performed on incoming cells from different sources (of different band-
widths and bit rates). This has the worst case or maximum value decided
by H1Η and Σ1Η.

3. Random delay introduced by cell drops due to uncorrectable bit-errors
caused by a finite SNR value prevailing in the ATM link. This has the
worst case or maximum value decided by H2Η and Σ2Η.

The combined effects of multiplexing/congestion and nonerasable
bit-errors can be specified by a single gaussian statistic of CDV with
a mean value of HΗ # (H1Η ( H2Η) and a standard deviation of (ΣΗ) #
[(Σ1Η)

2 ( (Σ2Η)
2]1/2. Hence, a corresponding effective CLR bound can be

stipulated. The probability Α is decided by an upper bound set by the
quartile value equal to 2/3ΣΗ.

Thus, for a given set of specifications on the expected number of
1s dropped (LXΗ, LEΗ), probability of error values (PXΗ, PEΗ), rate of
transmission (ΛΗ), and mΗ of the Ηth traffic, a gaussian probability density
function curve can be constructed for ∆Η when a total of MT cells (from
all the sources) are impressed on the input to the MUX. It is given by:

p(∆Η) #
1*
2ΠΡΗ

exp
.//0//
1
'
=>>>>>>>>>?

(∆Η ' HΗ)
2

2Ρ2
Η

ABBBBBBBBBC

J//K//
L

. (21)

4. Fuzzy attributes of cell loss characteristics

Referring to earlier discussion, in the region of s % 1 in which the ATM
system is assumed to be simple (in terms of the net CLR experienced
being lower than a certain upper bound), the complexity metric versus
entropy is given by equation (6), it follows that

M(s) # exp[H(s)] # #1 ' A
ln(s)
$ s # 1 (22)

with A > 0. Further, in terms of M(s), equations (6), (10), and (12) can
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be written respectively as:

H(s) # ln(M ( 1) # ln[M(s)] s # 1 (23a)
# ln(M) (U(A) 5 ln[M(s)] (U(A) s < 1 (23b)
# ln(M) (U(A) 5 ln[M(s)] (U(A) s > 1 (23c)

with the approximations indicated when M 3 1.
For the three cases given by equation (23), the following differential

equation can be validly specified:

d2H(s)
ds2 ( #dH(s)

ds
$2 # MNN(s)

MN(s)
. (24)

This equation depicts the calculus of entropy (or Shannon information)
associated with the complexity parameter s. It describes the calculus
of H(s) versus s in the crisp domain. Presently, it is attempted to fuse
fuzzy concepts using interval-value calculus into the above nonlinear
differential equation. Further, the so-called “extensive principle” due
to Zadeh [11] is adopted notionally to infuse the fuzzy attributes to
the telecommunication system, the cell loss performance of which is
described by the complexity parameter s.

For this purpose, a general (algebraic) description of the nonlinear
differential equation (equation (24)) relating the sets 8Hi(s)9 and 8si9
which bear crisp values is first considered. Suppose 8x9 and 8y9 are crisp
sets, which identically represent the independent variable set 8si9 and
the dependent variable set Hi(s) respectively. These sets are crisp in the
sense that certain definitive values can be assigned to each element of
the respective universal set (so as to discriminate between members and
nonmembers of the crisp set). The uncertainty features of real world
problems (such as in telecommunication systems), however, warrant the
following considerations.

The values so assigned (to the elements of the universal sets) should
fall rather within a specified range and qualify the associated uncertainty
by a “membership grade” given to each of the elements in these sets in
question. That is, the sets 8x9 and 8y9 should be regarded as fuzzy
sets with linguistic gradation and having corresponding membership
functions. Denoting the corresponding fuzzy variables as xf and yf

(with the superscript f denoting explicitly the fuzzy considerations),
the membership gradation should allow the representation of the range
concepts attributed to the variables involved to be expressed in natural
language within the scope of the context pertinent to 8xf , yf 9.

Rewriting equation (24) in terms of x and y, suppose the set of input
values of 8xi9 are nonspecific or fuzzy. Extending Taylor’s formula to
intervals, the output yi(xi) has a fuzzy value yf

i (xi) for a generic set 8xi9.
That is, 8yf

i 9 refers to the fuzzy transmission of the crisp set 8yi9 whose
generic elements are 8xi9. The ith component of 8yf

i 9 can, therefore, be
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written in respect to the uncertain (fuzzy) boundary value of all vectors
yf

i (xi) in the interval x O [xL, xH] as, [7]:

yf
i (xi) # yf

i (xL) (
k'1"
j#1

[fΨ(j'1)yf
i (xL)]xj/j! (25)

where fΨ(7) denotes the corresponding function Ψ(7) defined in respect
to the fuzzy set 8yf

i 9.
Equation (25) is an algebraic sum of addenda, each one of which takes

an interval value. The summation computed via interval arithmetic leads
to a “width of results” resulting from superposition of the addenda. In
this interval arithmetic, any interval-value of yf

i will become wider with

increasing values of xf
i . Conversely, the interval value of y

f
i will become

narrower with decreasing values of xf
i .

Considering equation (24), it can be written in the fuzzy domain in a
vector form where the variables and parameter values can be expressed
as intervals with k being the number of interval-valued parameters and
n is the order of the system. That is,

d2Yf (x, I)
dx2 ( %dY(x, I)

dx
&2 # g(x) (26)

where the vector boundary of yf
i is specified by Yf (XL,H) # Yf

L,H. Further,
8I9 represents the vector set of parameters whose value is an interval and
I # [I1, I2, . . . , Ik]. Since equation (24) is a second order (nonlinear)
equation, its order n is equal to 2. The explicit solution of this fuzzy
differential equation (equation (26)), namely, yf (x) # f F(x) is indicated
in section 6.

5. Bifurcation of the fuzzy domain and membership attribution to
fuzzy sets

In reference to earlier discussions, the set 8yi9 in response to a set 8xi9 in
the fuzzy domain is indicated by a fuzzy differential equation given by
equation (26). Now, the question is how the membership attributes can
be incorporated into the fuzzy set. The specifications of membership
functions as discussed earlier are ΜA(7) # [0, 1] and its rth interval Ir is
given by (Λr1, Λr).

The fuzzy function under discussion corresponds to the solution of
equation (26). The variables x and Yf are bounded by x O (xmin +
0, xmax + (,) and Y # 8ln[M(s)], ln[M(s)] (U(A)9, respectively.

Now, consider the function B(s) # H(s)/H(Σ)-Σ+1. Explicitly, it is
written as follows:

B(s) #
H(s)
H(Σ)

,,,,,,,Σ+1
#

ln[M(s)]
ln[M(Σ)]

,,,,,,,Σ+1
#

ln -1 ' A
ln(s) .

ln -1 ' A
ln(Σ) .

,,,,,,,,,,,Σ+1

. (27)
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The graphical representation of equation (27) is presented later in Fig-
ure 4.

Equation (27) decides the transcritical regimes of simple and complex
while considering s as a fuzzy variable. Further, this heuristically derived
bifurcation function B(s) includes the overlapping, linguistic attributes
of the variable s in each of the bifurcated regimes as will be indicated
later.

6. Part II: Fuzzy attributes of cell loss ratio and their implications on
call admission control

In general, the values of bounds on CLR required for CAC cannot
be ascertained to a deterministic extent. This is due to the inherent
fuzzy attributes and stochastic nature of the complex telecommunication
transmission involved as discussed earlier.

The nonspecificity of CLR bounds therefore, warrants enforcing a
fuzzy inference scheme which an ATM switch can use to facilitate a call
admission so that the connection enabled would offer a guaranteed CLR
on the limit of not falling out of its upper bound.

In the efforts due to Uehara and Hirota [1], fuzzy CAC for ATM
networks have been indicated in which the guarantee is restricted to the
CLR value; and, as far as CDV is concerned, the associated implications
are taken care of via traffic smoothing.

In the present study, as mentioned before, the traffic impairment
attributes of CLR are represented by a single complexity parameter s.
This single parameter cohesively accounts for the influences of CDV
and SNR (or bit errors) in deciding the resultant cell losses in the ATM
transmission. Further, s can be regarded as a fuzzy parameter.

Considering the complexity specified by end-to-end performance of
an ATM link (in terms of s), we now describe a CAC scheme which guar-
antees respect of the bounding limits on s. This CAC is based on fuzzy
inference and guarantees a limited CLR. The inference engine proposed
uses the complexity algorithm deduced via IT considerations. That
is, from the considerations presented earlier, it can be observed that the
complexity parameter s inherently has entropy details (or Shannon infor-
mation) concerning information loss experienced by the ATM cells due
to CLR. Hence, by using the parameter s, a fuzzy inference method to
implement the CAC is developed. Two analytical methods are suggested.
The first one refers to constructing an if-then rule-based look-up table
portraying the implicative output for a set of if-considerations. This
table represents a fuzzified, overlapping implication set. For example,
given a set of traffic descriptors and resource profiles, the relevant call is
implicated to a membership class specified by the complexity metric s.

Thus, in reference to an ith call, the look-up table offers an implica-
tive inference on si (usually in a linguistic format) which overlaps with
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adjoining (neighborhood) inferences. A (defuzzification) procedure can
now be adopted to extract a defuzzified value of si from its fuzzified
map. CAC is then specified on the basis of this extracted value of si.

The second step deduces a possible distribution of si in the fuzzy
domain. Using the relevant algorithm, the upper bound on s is ascer-
tained. That is, the upper bound on s allows establishing a CAC (when
a number of connection requests prevail at a switch) and an admitted
call guarantees a limit on CLR (as well as the associated CDV). The fol-
lowing sections elaborate the procedure involved and present simulation
studies performed to evaluate the efficacy of the proposed strategy.

6.1 Fuzzy complexity based call admission control

The CLR versus number of connections (or traffic load) is invariably a
nonlinear relation. This is due to extensive variations in the cell gener-
ation patterns of participating sources of an ATM transmission. Such
patterns are usually characterized by constant bit rate and/or variable
bit rate transmissions and in each class, the rate may vary significantly.

A typical CLR database versus the number of connections realized
in repeated measurements would exhibit a significant dispersion due to
the statistics of cell emission characteristics of the sources. Therefore,
in order to facilitate a meaningful CAC, a correct choice for the upper
bound on CLR should be made despite the fact that the observed data
is dispersed.

Deciding on the upper bound of CLR can be done with artificial
neural networks (ANNs) by training them with a measured set of CLR
data [12–14]. However, since the learning in ANN follows the average
trend in the learned data, the prediction phase of ANN also yields
only an average prediction on CLR; and such an average prediction is
crispy and does not portray the fuzzy profile of the CLR values. As a
result, the connection facilitated would not guarantee the actual trends
in CLR for any cell arrival process so as to satisfy the traffic parameters
of the transmission class without overburdening the available resource
allocation schedules.

Another approach adopted in the literature [8] to ascertain the CLR
bound refers to a flow approximation model in which a variable bit
rate source is assumed to pose alternate active and silent periods of
cell emission characterized solely by its peak and average bit rates.
No assumptions on the statistical distributions of the two periods are
made. The resulting algorithm depicting the Chernoff bound on CLR
is then used to make the CAC. However, there are two drawbacks of
this technique. First, this method does not consider the buffer size in
decision-making. This means that the decision does not account for
any statistical multiplexing gain involved. Second, the procedure does
not distinguish cell loss requirements of individual connections. That
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is, any connection in the transmission is assumed to have the same CLR
characteristics as the other connections.

A nonparametric approach has also been studied [15, 16] wherein
the peak and average cell rates of the connections are alone considered
without the statistical distribution of the arrival process being specified.
This approach, however, overestimates the CLR bound, making CAC
less efficient; that is, it results in lower multiplexer gain.

Therefore, fuzzy traffic control and fuzzy CAC have been addressed
in the literature as alternative strategies [1, 2] and relevant simulation
studies have indicated promising results. But as mentioned before, the
CAC in these efforts [1, 2] is based on an established bound on the CLR
alone. And, a traffic smoothing is presumed so as to ignore the influence
of CDV on CAC.

The present study presents a parallel approach, but the fuzzy infer-
ence made here refers to the complexity parameter s. This parame-
ter also cohesively includes both influences of congestion and buffer
overflow-based CDV as well as SNR-based bit errors on the resulting
CLR attributes. The “then” part of the if-then rules adopted in the fuzzy
inference approach presented here lead to ascertaining the membership
class of s, namely, Μ(s) governing the connections (to which the if-then
rule is applied). Based on this decided value of s, CAC is performed.

In general, CAC algorithms should be able to cope with normal
and heavy traffic situations. Further, they must facilitate negotiation
between the user and the connection service on QOS requirements.
Typically, CAC may permit a certain amount of resource overbooking
in order to increase the statistical multiplex gain. Other factors, such
as the slack, are implied by the compliant connection definition. CDV
tolerance parameter, buffer size available for a certain cell loss, delay
in QOS objective, and so forth, may also allow for a certain laxity in
the admission threshold of the CAC algorithm. All these considerations
contribute to the fuzziness of the inference strategies pursued towards
CAC.

6.2 Linguistic description of fuzzy rules

The linguistic descriptions of if-then rules towards estimating the com-
plexity aspects of ATM connectivity can be specified as follows. Let a
traffic (such as from a multimedia user) constituting an end-to-end call
connectivity be identified by an index i. Suppose Xi and Zi are two
functional attributes that belong to a relevant transmission rate class
Ci. The entity Xi, for example, may denote the variety attributes of the
sources involved. That is, Xi depicts the number and variety of the bit
rates emitted by the source constituting the ith traffic. It is a collective
representation, for example, of data, voice, and video signals from a
multimedia source.
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Likewise, Zi may represent the distribution and availability of re-
sources handling the ith traffic. Hence, pertinent to the ith traffic,
there exists a performance index si, which depicts the complexity profile
posed by Xi and Zi. That is, si O (Xi, Zi). The set of variables, namely
8Xi, Zi, si9 constitutes, in general, a fuzzy set for which the following
linguistic norms of descriptions can be prescribed explicitly.

Set 8Xi9 Linguistic
Xi: Source type identification

Extremely varying constituent bit rates and
burstiness:

EX

Largely varying constituent bit rates and
burstiness:

LX

Moderately varying constituent bit rates and
burstiness:

MX

Constant constituent bit rates: CX

Set 8Zi9 Linquistic
Zi: Profile of the resources identification

Large extent of buffers and traffic smoothing plus
high SNR physical medium:

RA

Moderate extent of buffers and traffic smoothing
plus high SNR physical medium:

RB

Large extent of buffers and traffic smoothing, but
low SNR physical medium:

RC

Moderate extent of buffers and traffic smoothing,
but low SNR physical medium:

RD

Low extent of buffers and traffic smoothing plus
high SNR physical medium:

RE

Low extent of buffers and traffic smoothing plus
low SNR physical medium:

RF

Set 8si9 Linguistic
si: Type of system complexity identification

Extremely simple system: ES
Highly simple system: HS
Somewhat simple system: SS
Somewhat complex system: SC
Highly complex system: HC
Extremely complex system: EC
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µ(Xi)

0

1

CX      MX      LX      EX

0

1

µ(Zi)

0

1

µ(si)

RF       RE       RD      RC       RB      RA

ES       HS       SS        SC       HC      EC

(a)

(b)

(c)

Xi

Zi

si

Figure 2. Graphical representation of membership class and overlapping ele-
ments of the set 8Xi, Zi, si9.

Each fuzzy variable of the set 8Xi, Zi, si9 identified by these linguistic
descriptions can be assigned a membership class using a membership
function Μ(7) O [0, 1], as illustrated in Figure 2. The choice of member-
ship function Μ(7) is rather arbitrary. In Figure 2, a triangle function is
used for illustration. A host of other functions have been adopted in the
literature [17] to represent Μ(7).

In terms of the linguistic descriptions of 8Xi, Zi9 as identified previ-
ously, the extent of the complexity 8si9 should be evaluated, despite the
ambiguous overlapping features of the linguistic norms depicted in Fig-
ure 2. For this purpose, a set of if-then rules should, therefore, be first
established with crisp variables. Here is an example.

Rule 1: If the source is of type EX and the resource profile is RF, then the
complexity is EC.

Rule 2: If the source is of type CX and the resource profile is RA, then
the complexity is ES.

Rule 3: If the source is of type MX and the resource profile is RD, then
the complexity is SS.

and so on.
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Zi
Xi

RA RB RC RD RE RF

EX SC HC HC EC HC EC

LX HS SS SS SC SC HC

MX HS SS SS SS SC HC

CX ES ES HS SS HC HC

Table 1. Decision table on 8si9 given 8Xi, Zi9: crisp domain representation. The
double thick line boundary specifies a symmetric dichotomy of simple and com-
plex entities; for the upper set si < 1 and for the bottom set si * 1.

Rules 1 through 3 are largely intuitive but have the expert’s reasoning
behind them. For example, Rule 1 represents the extremities in regards
to the source characteristics and resource restrictions. Under these con-
ditions, achieving a performance of end-to-end connectivity meeting a
given set of QOS requirements on CDV/CLR is rather constrained ex-
tensively. As such, the associated complexity is declared of extreme
value.

The collection of all if-then rules pertinent to the crisp set 8Xi, Zi, si9
can be concisely stated in the form of a look-up table as shown in Table 1.
Approximately, the linguistic descriptions presented in Table 1 can be
split into a crisp dichotomoy of classes, namely, simple and complex by
a symmetrically dividing boundary shown (by a double thick line) across
Table 1. The top set of this boundary is complex (with si > 1) and the
bottom set is simple (with si < 1). That is, for the linguistic elements
of the upper set, the si values are specified as those of equation (4a)
with si < 1; and, for the bottom set, the si values refer to those of
equation (4b) with si * 0.

Now, a decision table relevant to fuzzy considerations can be studied.
That is, a procedure to construct a decision table by taking into account
the overlapping attributes of each of the sets 8Xi9, 8Zi9, and 8si9 can be
evolved. Corresponding to the map of Table 1, a fuzzy decision table can
be constructed as shown in Table 2. The procedure used in constructing
Table 2 is as follows. Write the linguistic identifications of 8Xi9 and 8Zi9
in their overlapping formats (consistent with their membership profiles
indicated in Figure 2), then for each intersection of Xi and Zi, the
corresponding linguistic identification of system complexity is borrowed
from Table 1 and indicated. For corners and edges having only one side
neighbor, the missing side neighbor is indicated as a null using asterisks.

The linguistic representation of if-then relations between the variables
8X(f )

i , Z(f )
i 9 versus 8s(f )

i 9, as specified in Table 2, depicts the overlapping
attribute of the implication 8s(f )

i 9. That is, by pairing X(f )
i and Z(f )

i , a
multiple set of overlapping implications are triggered.
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Z(f )
i

X(f )
i

D-RA-RB RA-RB-RC RB-RC-RD RC-RD-RE RD-RE-RF RE-RF-D

D
EX
LX

D
D HC

HS

D
SC HC

SS

D
HC EC

SS

D
HC HC

SC

D
EC EC

SC

D
HC D

HC

EX
LX
MX

SC
D SS

HS

HC
HS SS

SS

HC
SS SC

SS

EC
SS SC

SS

HC
SC HC

SC

EC
SC D

HC

LX
MX
CX

HS
D SS

ES

SS
HS SS

ES

SS
SS SS

HS

SC
SS SC

SS

SC
SS HC

HC

HC
SC D

HC

MX
CS
D

HS
D ES

D

SS
ES HS

D

SS
ES SS

D

SS
HS HC

D

SC
SS HC

D

HC
HC D

D

Table 2. Fuzzy decision table on 8s(f )
i 9 given 8X(f )

i , Z(f )
i 9. Is the defuzzified value

to be determined.

Suppose the set 8X(f )
i , Z(f )

i 9 denoting a specific traffic, seeks call ad-
mission at a switch. Likewise, there are other traffics, each having a
universe of discourse, 8X(f )

i , Z(f )
i 9j,k,l! which also request a connection at

the same switch. Whether a given call be admitted or not is then decided
by ascertaining the implication vector 8s(f )

i 9j,k,l! pertinent to that call.
In Table 2, this implication vector 8s(f )

i 9 of the ith traffic (or call)
resides in the neighborhood as a set of four fuzzy variables represented
via linguistic identifications. From the overlapping attributes of 8s(f )

i 9 in
Table 2, a meaningful metric should, therefore, be assessed in order to
depict the actual complexity of the ith call, so that this metric can be
used to decide the CAC criterion under the fuzzy discourses.

6.3 Concept of possibility distribution and construction of fuzzy look-up table

Using the if-then based fuzzy logic scheme discussed in section 6.2, a set
of si values and their membership function Μ(si) for a given incoming ith
call (constituted by an heterogeneous mixture of cells) can be specified
as follows.

From the IT considerations on CLR1 and CLR2 described earlier, the
mean delay Hi and the standard deviation Σi corresponding to an ith call
constituted by a set of service categories (voice, video, and data) can
be evaluated. This refers to a set cell population M that loads the line
connected to the input of the ATM switch (Figure 1). Corresponding
to this set 8Hi,Σi9, the entropy function H(Hi,Σi) can be determined
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Figure 3. Histogram of Hi (Him is the modal value).

via equation (14). Hence, the associated complexity metric si can be
extracted from H(si, M) I H(Hi,Σi) given by equation (4).

The population M is then increased in steps, together with random
changes (within specified bounds) of the values of the parameters per-
tinent to the service categories constituting the ith call. For each step
of the increased population with the randomly perturbed parameters,
the mean delay Hi is ascertained. Hence an histogram depicting the
mean delay values Hi versus their relative occurrence can be drawn as
illustrated in Figure 3.

Using the histogram of Figure 3, for any Hi, the corresponding si and
the bifurcation domain values B(si) in the simple and complex regimes
are plotted as depicted in Figure 4. In Figure 4(a), the set of points
[7 7 7] represent the aggregation of data on si collected via linguistic
attributes of fuzzy sets of antecedents (premises). Further, the Xi denote
the characteristics of service categories of the ith call and the Zi represent
the resource profiles handling the ith call on their respective universe of
discourse which decide the delay statistics or possibility distribution of
Hi presented in Figure 3.

For each population sample depicting a set of linguistic descriptions
of input vectors 8Xi, Zi9 having appropriate statistical attributes, the cor-
responding si (deduced via Hi as the consequent) falls under a linguistic
characterization (such as “extremely simple” or “somewhat complex”).
Hence, in the bifurcation diagram of Figure 4(a), the overlapping mem-
bership class pertinent to the linguistic descriptions of the si values is
depicted by means of a chosen membership function (such as the trian-
gular function). Thus, the set of si values deduced from the histogram of
Figure 3 and presented on the bifurcation diagram of Figure 4(a), maps
on the linguistic overlapping descriptions of si as shown in Figure 4(b).

Now, the task is to decide a single or specific linguistic description
of si from the fuzzy, overlapping map of Figure 4. This effort calls

Complex Systems, 12 (2000) 31–69



A Complex System Characterization of Modern Telecommunication Services 55

s

B(s)

(b)

10

1

s

(c)
1

Simple Complex
regime regime

sim#im$

#i#im

R
el

at
iv

e 
nu

m
be

r 
of

   
   

oc
cu

rr
en

ce

(a)

ES HS SS SC HC EC

µ(s)

0

Figure 4. Bifurcation and membership functions. (a) Histogram depicting the
population of cell delays (Him # modal value). (b) Bifurcation function B(si)
obtained from the values of si extracted from the histogram of Hi in Figure 3.
(c) Projection of 8si9 onto the overlapping membership set of linguistic descrip-
tions, 8ES, . . . , EC9.

for a defuzzification procedure and the following two approaches are
pursued in the present study.

Approach 1. This approach uses the so-called centroid method [17]. In
this procedure, the defuzzified value is evaluated by considering a surface
such that all the neighborhood values fall onto this surface. Following this
procedure, the defuzzified value of si is determined from the neighborhood
information in respect to the fuzzy look-up table constructed.

Approach 2. From the possibility distribution of Figure 3, the modal value
of Hi, namely, Him is ascertained and the corresponding sim is marked on
the bifurcation diagram of Figure 4(a). By projecting sim further on the
Μ(si) map, the membership class of sim to the appropriate (defuzzified)
linguistic description is determined.
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Thus, the extent of complexity in terms of the defuzzified complexity-
metric value si and its linguistic description are made available with
respect to the ith call by either one of the two approaches indicated.
Based on this value, CAC will be implemented as discussed later.

6.4 Call admission boundary: Crisp and fuzzy considerations

As indicated earlier, in practical CAC mechanisms, the ATM switch con-
verts the connection of service request signaled across the user–network
interface into an appropriate service categorization, traffic description,
and QOS objective.

The service categorization is declared in terms of a peak-to-average
bit ratio parameter associated with different types of services (such as
voice, video, or data) being handled. Each of these categorized services
can be labeled as distinct call types with specified traffic requirements
or descriptors (such as peak cell rate) and/or QOS objectives like CLR,
CTD, and CDV.

Shown in Figure 5(a) is a crisp call admission boundary in respect
to calls identified by the index i # 1, 2, 3, . . .K. For each call, the CLR
is regarded as the QOS parameter to control. Suppose each call bears
three distinct services designated by Η1, Η2, and Η3. A call is a multiplex
of these services. Further, the cell loss rate of an ith traffic with a specific
combination of Η1, Η2, and Η3 is denoted by CLR({)i # ({1Η1, {2Η2, {3Η3)i
where ({1, {2, {3) are relative proportions of the traffics belonging to
the participating service categories. Let the required CLR objective
be an upper bound CLR0. Then one can divide the ({1Η1, {2Η2, {3Η3)i
map into two regions: CLR({)i > CLR0i and CLR({)i < CLR0i. The
corresponding surface boundary between these two regions is a crisp
call admission boundary. When the combination of the numbers of
connected categorized calls lies above this boundary surface, the ATM
switching node will reject the call setup requests.

!i

liCLR
Region: CLR( l!)i > CLR0i

Region: CLR( l!)i < CLR0i

Crisp boundary

    Fuzzy
boundaries

High

Medium

Low

CLR li

!i

(a) (b)

Figure 5. The call admission boundary surface of an ith call. (a) Crisp boundary.
(b) Overlapping fuzzy boundaries.
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For the reasons stated earlier, if the call admission inference is decided
on the basis of the crisp boundary as described, the decision rule is rigid
and more often would lead to a conservative approach in the allocation
of available resources. That is, the resource utilization would become
inefficient and not cost-effective.

Further, based on earlier discussions, it is rather prudent to consider
the call admission boundary to be fuzzy with linguistic attributes of
high, low, or medium in respect to the decision on call admission with
a desired CLR0i. In other words, Figure 5(a) can be redrawn to indicate
the fuzziness of accept/reject regimes as illustrated in Figure 5(b).

Thus, a given combination of {1Η1, {2Η2, and {3Η3 constituting the ith
call has an associated fuzzy cell loss ratio, (f )CLR({)i #

(f )({1Η1, {2Η2, {3Η3)i
where the superscript (f ) explicitly denotes the fuzzy attribute. The
membership class of (f )CLR({)i to high, medium, or low regimes is stip-
ulated by the membership function, Μ8(f )CLR({)i9 # [1, 0].

In the present study, the call admission criterion is set by a similar
fuzzy procedure but with a modification. The call admission boundary
is constructed in terms of the complexity parameter si (instead of CLR
or any other objective parameters such as CTD or CDV). The reason (as
indicated earlier) is that the complexity parameter si is derived from IT
considerations and cohesively includes the information loss suffered by
a particular set 8{1Η1, {2Η2, {3Η39 as a result of the global traffic impair-
ments caused by cell losses due to CDV and/or SNR. Thus, Figure 5(b)
illustrating the fuzzy call admission boundaries can be modified to de-
note overlapping boundaries of the system complexity, namely simple
through complex and specified via linguistic identification ES through
EC indicated before. Hence, relevant fuzzy inference would lead to a
decision on call admission devoid of over- or under-utilization of avail-
able resources. Therefore, the information loss impairment due to CDV
and/or SNR is addressed through the complexity parameter s.

6.5 Fuzzy call admission control procedure

Suppose a CAC scheme is designed assuming that the 24 different calls
(described in Table 1) are presented to an ATM switch. The call ad-
mission criterion for the ith traffic, for example, is set by the value of
si obtained via one of the defuzzification procedures (Approach 1 or 2)
described in section 6.4. The relevant parameters required are indicated
in Table 3.

For simulation purposes two sets of data with source descriptions
8Xi9 and profiles of the resources 8Zi9 of the ith call are presumed as
given in Tables 4 and 5.
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Service categories Parameters

Η1: Data traffic High bit rate # Λ1h
(CBR: Interrupted Bernoulli process) Low bit rate # Λ1{

Transition probability from high-
to-low rate # PHL
low-to-high rate # PLH
Loading factor: {D1

Η2: Voice traffic On-time bit rate # Λ2
(CBR: On-off Bernoulli process) On-state probability # Pon

Off-state probability # Poff
Loading factor: {D2

Η3: Video traffic Nonbursty bit rate # Λ3
(VBR: Markov-modulated Bernoulli Burstiness ratio # BP
process) Transition probability from

bursty-to-nonbursty state # PBN
Transition probability from
nonbursty-to-bursty state # PNB

Loading factor: {D3

Table 3. Source descriptions ({D1 ( {
D
2 ( {

D
3 # 1).

Service category Priority, if any

EX Video: Λ3 # 10 Mbps (MPEG2); BP # 3; {D3 # 0.35;
PNB # 0.35; PBN # 0.55

I: Video

Voice: Λ2 # 32 Kbps (compressed voice); Pon # 0.50;
Poff # 0.20; {D2 # 0.40

II: Voice

Data: Λ1h # 2 Mbps (data file transfer); Λ2h # 64 Kbps;
PLH # 0.50; PHL # 0.90; {D1 # 0.30

III: Data

LX Video: Λ3 # 10 Mbps (broadband video retrieval); BP #
5; {D3 # 0.30; PNB # 0.50; PBN # 0.50

I: Video

Voice: Λ2 # 64 Kbps (telephony); Pon # 0.80; Poff #
0.10; {D2 # 0.30

II: Voice

Data: Λ1h # 64 Kbps (narrowband document retrieval);
Λ1{ # 64 Kbps; PLH # 0.50; PHL # 0.50; {D1 # 0.40

III: Data

MX Video: Λ3 # 2 Mbps (video phone); BP # 1; {D3 # 0.80; I: Video
Voice: Λ2 # 64 Kbps (telephony); Pon # 0.60; Poff #
0.40; {D2 # 0.20

II: Voice

CX Voice: Λ2 # 32 Kbps (compressed voice); Pon # 0.50;
Poff # 0.50; {D2 # 0.40

I: Voice

Data: 64 Kbps # Λ1h # Λ1{ (data on demand); PLH #
PHL # 0.50; {D1 # 0.60

II: Data

Table 4(a). Data set I: Traffic (source) types, 8Xi9.
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Type Description Nominal parameters (typical)

RA: (intense traffic-
handling and medium
BER)

Large buffers
Medium SNR

Buffer size: 30
SNR: 3.5 dB
Μ/Λ3 # 15
Μ/Λ1h # 75

RB: (moderate traffic-
handling and high BER)

Medium buffers
Low SNR

Buffer size: 10
SNR: 2 dB
Μ/Λ3 # 1.5
Μ/Λ1h 5 30

RC: (intense traffic-
handling and high BER)

Large buffers
Low SNR

Buffer size: 30
SNR: 2.5 dB
Μ/Λ3 # 5
Μ/Λ1h 5 20

RD: (low traffic-handling
and medium BER)

Low buffers
Medium SNR

Buffer size: 5
SNR: 3 dB
Μ/Λ3 # 2
Μ/Λ1h # 5

RE: (low traffic-handling
and low BER)

Low buffers
High SNR

Buffer size: 3
SNR: 10 dB
Μ/Λ3 # 5
Μ/Λ1h # 10

RF: (low traffic-handling
and high BER)

Low buffers
Low SNR

Buffer size: 2
SNR: 1.5 dB
Μ/Λ3 # 3
Μ/Λ1h # 10

Table 4(b). Data Set I: Profile of the resources, 8Zi9.

Service category Priority, if any

EX Multimedia
Video/MPEG: Λ3 # 90 Mbps; BP # 4; PBN # 0.20;
PNB # 0.50; ΛD3 # 0.35

I: Video

Voice: Λ2 # 64 Kbps; Poff # 0.40; Pon # 0.60; {D2 # 0.55 II: Voice
Data: Λ1h # 10 Mbps; Λ1{ # 6 Mbps; PLH # 0.20;
PHL # 0.85; {D1 # 0.10

III: Data

LX Multimedia
Video: Λ3 # 30 Mbps; BP # 3; PBN # 0.13; PNB # 0.75;
{D3 # 0.30

I: Video

Voice: Λ2 # 64 Kbps; Poff # 0.24; Pon # 0.76; {D2 # 0.40 II: Voice
Data: Λ1h # 6.3 Mbps; Λ1{ # 2.33 Mbps; PLH # 0.30;
PHL # 0.90; {D1 # 0.30

III: Data

MX Voice: Λ2 # 32 Kbps (compressed); Poff # 0.30; Pon #
0.70; {D2 # 0.50

I: Voice

Data: Λ1h # 10 Mbps; Λ1{ # 3 Mbps; PLH # 0.20;
PHL # 0.80; {D1 # 0.50

II: Data

CX Voice: Λ2 # 64 Kbps; Poff # 0.15; Pon # 0.85; {D2 # 0.65 I: Voice
Data: Λ1h # 3 Mbps; Λ1{ # 500 Kbps; PLH # 0.30;
PHL # 0.80; {D1 # 0.35

II: Data

Table 5(a). Data set II: Traffic (source) types, 8Xi9.
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Type Description Nominal parameters
(typical)

RA: (intense traffic-
handling and low

BER)

Large number of buffers
Traffic-smoothing present
Large SNR

Buffer size: 20
SNR: 15 dB
Traffic-intensities:

Μ/Λ3 # 4; Μ/Λ1h # 30

RB: (moderate traffic-
handling and medium
BER)

Medium number of buffers
Traffic-smoothing present
Medium SNR

Buffer size: 15
SNR: 10 dB
Traffic-intensities:

Μ/Λ3 # 3; Μ/Λ1h # 15

RC: (intense traffic-
handling and high
BER)

Large number of buffers
Traffic-smoothing present
Low SNR

Buffer size: 20
SNR: 3 dB
Traffic-intensities:

Μ/Λ3 # 4; Μ/Λ1h # 30

RD: (moderate traffic-
handling and high

BER)

Medium number of buffers
Traffic-smoothing present
Low SNR

Buffer size: 10
SNR: 2 dB
Traffic-intensities:

Μ/Λ3 # 2; Μ/Λ1h # 10

RE: (low traffic-
handling and medium
BER)

Low number of buffers
Traffic-smoothing present
Medium SNR

Buffer size: 5
SNR: 7.5 dB
Traffic-intensities:

Μ/Λ3 # 3; Μ/Λ1h # 5

RF: (low traffic-
handling and high
BER)

Low number of buffers
Traffic-smoothing:

present
Low SNR

Buffer size: 5
SNR: 2 dB
Traffic-intensities:

Μ/Λ3 # 3; Μ/Λ1h # 5

Table 5(b). Data set II: Profile of the resources, 8Zi9.

7. Simulations and results

Relevant to fuzzy heuristics concerning the complexity attributes of an
ATM transmission as discussed, a call admission strategy is considered
in the simulation experiments. It involves the assignment of an outgoing
virtual channel/virtual path in response to an incoming call request at
an ATM switch. The admission of a call meets the negotiated QOS
objectives in a heterogeneous system of incoming calls. As indicated
before, the QOS objectives are conglomerated into a single complexity
parameter s. Further, the traffics associated with each incoming call
are characterized by certain stochastic attributes and the related perfor-
mance inferences are regarded as fuzzy.

Suppose the incoming call at an ATM switch corresponds to a given
set of categories vis-à-vis source characteristics and resource profiles
presented in section 6. Referring to Figure 1, it is presumed that the cell
streams offered by each source are multiplexed at the entry node of a
high-speed line with a rate of Μ cells per second.
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Figure 6(a). Simulated results pertinent to data set I, Approach 1. The asterisk
denotes normalization with respect to the peak value and (sDi )df is the defuzzified
value obtained from s(f )

i . (A) (sDi )df values versus the call-type/number mapped
to depict the single, fuzzy, and complex regimes. (B) Supremum limit on call-
accept decision 8Ξi9 and infimum limit on call-reject decision 8Ξi9 with a gray
transition across Ξi and Ξ i.

Now, the CAC function with respect to the multiplexed cells of each
incoming ith call can be interpreted as a mapping of the state vector
8si9 into the acceptance decision vector 8Ξi9. This functional mapping
divides the state-space crisply into two regions, namely, the acceptance
region and rejection region (as indicated in Figure 5(a)), if the input
variable si and the decision considerations 8Ξi9 are studied in crisp for-
mats. However, due to the reason indicated earlier, the input 8Xi, Zi9
would cause fuzzy, overlapping decision regions while implementing the
acceptance or rejection of a connection request.

Hence, using the fuzzy set 8si9 O 8Xi, Zi9 pertinent to the ith call, the
defuzzification procedure (Approach 1 or 2) would lead to a defuzzified
value (si)

f , say, (si). In Approach 1, it corresponds to the centroidal
value and in Approach 2, it refers to the modal value sim.

Using the defuzzification approaches, the defuzzified values (si) are
obtained for the 24 calls (i # 1, 2, . . . , 24) pertinent to the data sets I
and II.
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Figure 6(b). Simulated results pertinent to data set I, Approach 2. The subscripts
1m and 2m on (sDi ) represent the dichotomous solution obtained via equation (4)
corresponding to the modal value Him G sim. (A) (sDi )1m and (sDi )2m versus the
call-type/number mapped to depict the single, fuzzy, and complex regimes. (B)
Supremum limit on call-accept decision 8Ξi9 and infimum limit on call-reject
decision 8Ξi9 with a gray transition across Ξi and Ξi.

Since the call admission corresponds to the condition that (si) of any
ith call maps onto a preset acceptance decision vector 8Ξi9, the call is
allowed, if (si) O 8Ξi9. In Figures 6(a) and 6(b), the defuzzified results for
data set I are presented. The simulated results for data set II are shown
in Figures 7(a) and 7(b). The simulations indicated can be performed for
any given set of calls submitted to the ATM switch for call admission;
and, the admission priority schedule can be specified accordingly.

Consider the graphical results of data set I presented in Figures 6(a)
and 6(b) corresponding to Approaches 1 and 2 respectively. In Fig-
ure 6(a)/A, the defuzzified and normalized values of si, namely (sDi )df
versus each call type (number) are indicated. These values show two
distinct clusters in the extreme regions marked as simple and complex.
In the middle, the set of values presented show transitional character-
istics. That is, their membership in the simple or complex category is
rather fuzzy or nonspecific.
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Figure 7(a). Simulated results pertinent to data set II, Approach 1. (A) (sDi )df val-
ues versus the call-type/number mapped to depict the single, fuzzy, and complex
regimes. (B) Supremum limit on call-accept decision 8Ξi9 and infimum limit on
call-reject decision 8Ξi9 with a gray transition across Ξi and Ξ i.

The task now is to decide a boundary across this fuzzy regime. This
is done as shown in Figure 6(a)/B. First, a supremum bound is fitted
for the simple (or accept regime O Ξi) and for the complex (or reject
regime Ξi) an infimum bound is fitted. These boundaries are obtained
by considering the dichotomous values of si (obtained via equation (4))
for the linguistic attributes of Table 1. If a value of (sDi )df shown in
Table 6(a) (and plotted in Figure 6(a)/A) is set by neighborhood values
(sDi )1,2, the corresponding supremum or infimum value is set by the
neighborhood values (sDi )2,1 or vice versa.

Similarly, using Approach 2, simulations with data set I (as illustrated
in Figure 6(b)), the bounding limits can be specified by (sDi )2m and (sDi )1m
and vice versa.

In both approaches the bounds of call accept/reject domains indicate a
transitional gray regime as shown in Figures 6 and 7. A line constructed
across this gray region of discontinuity in either case can be regarded as
the boundary of separation between Ξi and Ξi (in this gray regime).
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Figure 7(b). Simulated results pertinent to data set I, Approach 2. (A) (sDi )1m

and (sDi )2m versus the call-type/number mapped to depict the single, fuzzy, and
complex regimes. (B) Supremum limit on call-accept decision 8Ξi9 and infimum
limit on call-reject decision 8Ξi9 with a gray transition across Ξi and Ξi.

Hence, with the limiting bounds on call acceptance or rejection estab-
lished, the two approaches can be compared. Listed in Table 6 are the
counts on accepted type calls (A) and reject type calls (R) enumerated
within the bounds indicated in Figures 6(a) and 6(b). There are certain
calls which are close to the boundaries and are marked as A/BL or R/BL
(where BL denotes the borderline cases). Table 7 is similar, using the
results of Figures 7(a) and 7(b) obtained from the simulations relevant
to data set II with Approaches 1 and 2.

8. Discussions on the results

Referring to the results presented in Figures 6 and 7 and in Tables 6 and
7, a summary of details on call admission and/or rejection can be made
as shown in Table 8.
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Approach 1 (Figure 6(a)) Approach 2 (Figure 6(b))

Call Accept Reject Regime/ Accept Reject Regime/
Number Type (A) (R) Counts (A) (R) Counts

1 EX-RA A/BL Simple A Simple
2 LX-RA A A
3 MX-RA A 6-A A
4 CX-RA A 2-A/BL A
5 EX-RB A/BL 1-R A 9-A
6 LX-RB A A
7 MX-RB A A
8 CX-RB A A
9 EX-RC R A

10 LX-RC A/BL Fuzzy A/BL Gray
11 MX-RC A R 2-A
12 CX-RC A 4-A R/BL 2-R
13 EX-RD A/BL 1-A/BL A 1-A/BL
14 LX-RD A 1-R/BL A 1-R/BL
15 MX-RD A R

16 CX-RD A Complex R Complex
17 EX-RE R R
18 LX-RE R R
19 MX-RE R 1-A R
20 CX-RE R 8-R R 9-R
21 EX-RF R R
22 LX-RF R R
23 MX-RF R R
24 CX-RF R R

Table 6. Call accept/reject decisions (data set I, Approaches 1 and 2).

From Table 8, it can be observed that Approach 1 leads to decisions
more diffused and indicates the existence of certain borderline decision
cases. On the other hand, Approach 2 specifies distinct accept/reject
division of calls even in the fuzzy regime. Nevertheless, both approaches
in majority agree on common decisions.

The above observations are quite justifiable. Approach 1 is based on
the centriod of fuzzy opinion gathered from the neighborhood; whereas,
Approach 2 relies on a dichotomous opinion centered around a modal
value. Hence, a diffused transition across simple-to-complex regimes
and abrupt transitions across these regimes can be expected in Ap-
proaches 1 and 2 respectively.

Relatively, the diffused decisions obtained via Approach 1 are robust
inasmuch as they also indicate the borderline cases (decisions which can
be made only subject to system tolerance or via predefined criterion).
Approach 2 on the other hand, has a tendency towards crisp decisions
and therefore may lead to over- or under-specified decisions.

Relevant to these observations, the following inferences can be enu-
merated.
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Approach 1 (Figure 7(a)) Approach 2 (Figure 7(b))

Call Accept Reject Regime/ Accept Reject Regime/
Number Type (A) (R) Counts (A) (R) Counts

1 EX-RA A Simple A Simple
2 LX-RA A A
3 MX-RA A A
4 CX-RA A 7-A A 8-A
5 EX-RB A/BL 1-A/BL A 1-A/BL
6 LX-RB A 1-R/BL A
7 MX-RB A A
8 CX-RB A A
9 EX-RC R/BL A/BL

10 LX-RC A/BL Fuzzy A/BL Gray
11 MX-RC A R 1-A
12 CX-RC A 4-A R 1-A/BL
13 EX-RD R/BL 1-A/BL R/BL 2-R
14 LX-RD A 1-R/BL A 2-R/BL
15 MX-RD A R/BL

16 CX-RD A Complex R Complex
17 EX-RE R R
18 LX-RE R R
19 MX-RE R 1-A R
20 CX-RE R 8-R R 9-R
21 EX-RF R R
22 LX-RF R R
23 MX-RF R R
24 CX-RF R R

Table 7. Call accept/reject decisions (data set II, Approaches 1 and 2).

Approach 1 Approach 2
Data set Regime Decision % of calls % of calls

I Simple Accept 34* 38
Reject 4 —

Gray Accept 18* 12
Reject 6* 12

Complex Accept 4 —
Reject 34 38

II Simple Accept 34* 37*
Reject 5* —

Gray Accept 17* 8*
Reject 5* 17*

Complex Accept 5 —
Reject 34 38

Table 8. Summary of accept/reject decisions. (*Includes borderline decisions.)
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The linguistic classification of calls distinctly fall into three categories,
namely, “simple type,” “complex type,” and “fuzzy type” in regards to
their admissibility across the ATM switch.

Approaches 1 and 2 presented here classify these calls and cluster them
into two specific domains namely, simple/accept regime (O Ξi) and com-
plex/reject regime (O Ξi). Also, a nonspecific (fuzzy) domain is indicated
(between the accept/reject regimes) in which a partial set of calls appear.

A procedure is indicated to obtain the limiting bounds (a supremum on
accept decisions and an infimum on reject decisions) in the accept (Ξi) and
reject (Ξi) domains.

Across the fuzzy domain, a transitional boundary (which can brute-force
the decision either as accept or reject) is drawn by smoothing the asymp-
totic discontinuities of supremum and infimum bounds.

With the limiting bounds constructed as above, the decisions made via
the two approaches proposed in respect to data sets I and II can be
enumerated as summarized in Table 8.

Another interesting inference that can be made from Figures 6 and
7 refers to the nonlinear transition from simple/accept regime to com-
plex/reject regime across the fuzzy regime that lies in between.

The nonlinearity of this type arises from the interaction between var-
ious subsystems/parameters, which decide the performance (depicting
simple or complex considerations), in reference to the call admissibility
profile of the traffic. The interaction and the associated uncertainty leads
to a fuzzy nonlinearity which is governed by the fuzzy nonlinear equa-
tion (equation (26)) as discussed by one of the authors elsewhere [7].

Typically, the simple-to-complex transitional nonlinearity is dictated
by the order-to-disorder (or vice versa) changes in an interactive system.
The nonlinear curve is sigmoidal and can be functionally specified by
the Langevin–Bernoulli function, namely LQ(x) with Q depicting the
extent of order/disorder of the system. Its slope at the origin x # 0 is
Α0 # (1 (Q)/3. Shown in Figures 6 and 7 are linear approximations of
the sigmoidal nonlinearity depicting the transitional states. In Figure 8,
the call accept/reject boundary is illustrated in terms of LQ(x) where x
denotes a call characterization parameter.

9. Concluding remarks

The present study offers a robust design methodology to construct a
fuzzy inference engine, which can manage CAC in ATM transmissions.
It uses the concept of complexity in depicting the expert knowledge on
overlapping attributes of traffic parameters. The fuzzy complexity met-
ric adopted merges cohesively the delay considerations resulting from
buffer flow and SNR-induced cell losses. Further, two approaches of
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defuzzification are indicated. The efficacy and implementation of this
CAC technique are presented via simulated results on a set of calls hav-
ing characteristics of practical significance. The CAC proposed here
would match any traffics with varying mean rates and mixed applica-
tions as normally encountered in ATM telecommunication. The major
feature of the CAC strategy indicated here is its simplicity and straight-
forwardness.
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