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Cryptography is a basic requirement in today’s distributed information
storage and transmission systems. A single key cryptographic system
based on cellular automata is described. The approach employs high-
quality pseudorandom bit sequences produced by one- and two-dimen-
sional nonuniform cellular automata. The robustness of the scheme
against cryptanalytic attacks is discussed and it is shown that direct crypt-
analysis requires an exponential amount of computational resources. A
further advantage of the proposed scheme is that it is eminently suitable
for hardware implementation.

1. Introduction

Cryptographic techniques are very important in these times dominated
by the growth of digital information storage and transmission. In fact,
increasingly available communication networks and databases make the
need for privacy and authentication a basic requirement in many areas,
especially in electronic commerce transactions and for classified mate-
rial. There exist many different cryptographic techniques, an excellent
review is given in [9]. Here we will describe the potential uses of some
types of cellular automata (CA) in this domain. CA have previously been
suggested as encrypting devices by Wolfram [14] and by Nandi et al.
[8]. Independently, Guam [3] and Gutowitz [4] also used CA for cryp-
tographic purposes. We will not discuss Guam’s and Gutowitz’s works
here since the principles on which they are based are different from ours.
In particular, Guam’s work concerns public-key cryptography, while we
will only discuss symmetric systems, where the encryption key and the
decryption key are the same or can be calculated from each other. As
in references [8, 14], our encryption scheme is based on the generation
of pseudorandom bit sequences by CA. In section 2, we summarize
work done on CA for random number generation by our group and by
others. Section 3 presents the implementation of the proposed crypto-
graphic system and compares it with previous approaches. Finally, we
discuss the vulnerability of the scheme to possible cryptanalytic attacks,
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showing that the scheme is stronger that those previously proposed and
of practical use for many common types of cryptographic applications.

2. Pseudorandom number generation by cellular automata

CA are dynamical systems in which space and time are discrete. A CA
consists of an array of cells, each of which can be in one of a finite
number of possible states, updated synchronously in discrete time steps,
according to a local, identical interaction rule. Here we will only con-
sider boolean automata for which the cellular state s ∈ {0, 1}. The
state of a cell at the next time step is determined by the current states
of a surrounding neighborhood of cells. The cellular array (grid) is
d-dimensional, where d = 1, 2, 3 is used in practice. In this paper we
shall concentrate on d = 1 and d = 2, that is, one- and two-dimensional
grids. The identical rule contained in each cell is essentially a finite state
machine, usually specified in the form of a rule table (also known as
the transition function), with an entry for every possible neighborhood
configuration of states. The cellular neighborhood of a cell consists of
itself and the surrounding (adjacent) cells. For one-dimensional CA, a
cell is connected to r local neighbors (cells) on either side where r is
referred to as the radius (thus, each cell has 2r + 1 neighbors). For
two-dimensional CA, two types of cellular neighborhoods are usually
considered: 5 cells, consisting of the cell along with its four immediate
nondiagonal neighbors (also known as the von Neumann neighbor-
hood), and 9 cells, consisting of the cell along with its eight surrounding
neighbors (also known as the Moore neighborhood). When considering
a finite-sized grid, spatially periodic boundary conditions are frequently
applied, resulting in a circular grid for the one-dimensional case, and a
toroidal grid for the two-dimensional case.

Nonuniform (also known as inhomogenous) CA function in the same
way as uniform ones, the only difference being that the cellular rules
need not be identical for all cells. Note that nonuniform CA share the
basic “attractive” properties of uniform ones (e.g., simplicity, paral-
lelism, locality).

A common method of examining the behavior of one-dimensional
CA is to display a two-dimensional space-time diagram, where the hor-
izontal axis depicts the configuration at a certain time t and the vertical
axis depicts successive time steps (see Figure 1). The term “configura-
tion” refers to an assignment of ones and zeros at a given time step (i.e.,
a horizontal line in the diagram).

S. Wolfram in [15] first proposed one-dimensional CA as pseudoran-
dom number generators (PRNG). In particular, he extensively studied
the bit sequences generated by rule 30 in his numbering scheme for
one-dimensional, r = 1 rules, where the rule number represents in
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decimal format the binary number encoding the rule table. For ex-
ample, f (111) = 1, f (110) = 0, f (101) = 1, f (100) = 1, f (011) = 1,
f (010) = 0, f (001) = 0, f (000) = 0, is denoted rule 184. In boolean
form rule 30 can be written as:

si(t + 1) = si−1(t) XOR (si(t) OR si+1(t)),

where si(t) is the state of cell i at time t. The formula gives the state of cell
i at time step t + 1 as a boolean function of the states of the neighboring
cells at time t. Pseudorandom bit sequences are obtained by sampling
the values that a particular cell (usually the central one) attains as a
function of time. Often, in order to further decorrelate bit sequences,
time spacing and site spacing are used. Time spacing means that not
all of the bits generated are considered as part of the random sequence.
For instance, one might keep only one bit out of two, referred to as a
time space value of 1, which means that sequences will be generated at
one-half the maximal rate. In site spacing, one considers only certain
sites in a row, where an integer number indicates how many sites are
to be ignored between two successive cells. In practice, a site spacing
of one or two is common, which means that one-half or two-thirds of
the output bits are lost. For applications that need very good quality
random numbers, this sacrifice is acceptable, if one takes into account
that, in fact, many parallel streams of random bits are being generated
simultaneously by a CA.

A nonuniform CA randomizer was presented in [5, 6], consisting
of two rules, 90 and 150, arranged in a specific order in the grid. In
boolean form rule 90 can be written as:

si(t + 1) = si−1(t) XOR si+1(t),

and rule 150 can be written as:

si(t + 1) = si−1(t) XOR si(t) XOR si+1(t).

The performance of this hybrid (nonuniform) CA in terms of random
number generation was found to be superior to that of rule 30 and to
the usual linear feedback shift register approach.

Sipper and Tomassini [11] showed that good nonuniform CA ran-
domizers can be evolved by a genetic algorithm, rather than being de-
signed. This work was pursued by our group, finding better nonuniform
CA for RNG by using a fine-grained parallel genetic algorithm called
cellular programming (for details, see [13]). Figure 1 depicts one of
the best one-dimensional nonuniform CA that was obtained. Actually,
this CA was hand-constructed by randomly mixing the four rules that
appeared most frequently within successfully evolved CA. The rule num-
bers are 90, 105, 150, and 165 and one of the results of [13] is that any
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Figure 1. A good quality nonuniform one-dimensional random number genera-
tor consisting of a random mixture of rules 90, 105, 150, and 165.

random mixture of these rules produces a good RNG. This observation
will be made use of later in the construction of cryptographic keys.

More recently, we have obtained by artificial evolution and design
two-dimensional, nonuniform CA for random number generation with
even better statistical quality [12], as demonstrated by the application
of a complete battery of stringent tests for pseudorandomness.

Pseudorandom number sequences are needed in many important ap-
plications, such as Monte Carlo techniques, Brownian dynamics, and
stochastic optimization methods. Moreover, CA offer a number of
advantages over other methods, especially where hardware implemen-
tation is concerned. Among the beneficial features of CA for VLSI
implementation one can cite simplicity, regularity, and locality of inter-
connections, which make them suitable for on-board applications such
as built-in self-test circuits, associative memories, and special purpose
massively parallel fine-grained computers. See [2] for a good description
of the theory and VLSI applications of CA. In section 3 we will focus on a
cryptographic application of the pseudorandom bit sequences generated
by the CA described.

Complex Systems, 12 (2000) 71–81



Nonuniform Cellular Automata for Cryptography 75

3. A cellular automata-based key stream generator

Let P be a plaintext message and E an enciphering algorithm. The
fundamental transformation to obtain the ciphertext C is thus:

C = Ek(P),

where k is the key of the transformation which distinguishes a particular
encryption in a family of transformations using the same enciphering
algorithm. To recover the original message, a deciphering function Dk,
using the same key, is defined as the inverse of E:

P = Dk(C) = Dk(Ek(P)).

Enciphering algorithms that operate on the plaintext a single bit
at a time are called stream algorithms or stream ciphers. A stream
cipher breaks the message P into a stream of successive bits or bytes
p1, p2, . . . , pq and enciphers each pi with a stream of bits (or bytes)
k1, k2, . . . , kq generated by a key stream generator such that:

Ek(P) = Ek1
(p1)Ek2

(p2) . . . .

A common enciphering operation, and the one used here, is the
exclusive-or operation XOR:

ci = ki XOR pi,

where ci is the ith bit of the ciphertext. Applying the same operation on
the ciphertext allows the recovery of the original text:

pi = ci XOR ki = (ki XOR pi) XOR ki.

If the key stream is truly unpredictable, then we have the so-called
“one-time pad” system which is perfectly safe (assuming that the keys
are not stolen or eavesdropped). The one-time pad was invented by
J. Mauborgne, an American Army officer, and is based on a variation
of the Vernan cipher in which the key never repeats itself, (e.g., [9]).
However, the one-time pad is impractical because the sender and the
receiver must be in possession, and protect, the random key. Moreover,
the total amount of data that can be encrypted is limited by the length
of the key available.

Thus, the security of a stream cipher scheme rests on the predictability
of the bits in the key stream. Good statistical pseudorandomness of the
key stream is not sufficient in cryptographic applications: a perfectly
good RNG may be completely unsuitable if the next random bit can
be predicted from the previous sequence. From that point of view,
CA are more suitable than classical RNGs such as linear congruential
generators, which are very easy to crack, given the algorithm and a small
portion of the sequence (e.g., [9]).
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Given a CA of size N, a configuration of the grid at time t is defined
as:

C(t) = (s0(t), s1(t), . . . , sN−1(t)),

where si(t) ∈ {0, 1} is the state of cell i at time t. For a CA-based key
stream generator, the initial configuration of states C(0) is the key or
a part of the key. Thus, cryptanalysis of the system amounts to the
reconstruction of C(0). In [14], the bits k1, k2, . . . to be used for enci-
phering the message stream p1, p2, . . . are extracted from the sequence
(si(t), si(t + 1), si(t + 2), . . .) attained through time at a site i (say, the
central cell) of a rule 30 CA. It would appear that reconstructing the
key from a fragment of the sequence is a difficult problem. However, in
[7] it is shown that there is a known plaintext attack against this gener-
ator which is successful in reasonable time and with limited computing
power for key sizes N up to 500. The attack is based on reconstructing
a right (or left) sequence adjacent to the sequence at site i. This can be
done by guessing adjacent site states with high probability of success,
due to the particular nature of rule 30. Once the adjacent sequence is
known, it is an easy matter to successively compute the missing site val-
ues backwards to the complete C(0) key. The generator is thus insecure.

In another study [8], using a nonuniform CA generator based upon
rules 90 and 150 is proposed for producing a key stream. It has
been shown that such a generator produces good-quality pseudoran-
dom streams (see section 2 and [5]), better than either rule 30 or linear
feedback shift registers. In [8] both block and stream cipher algorithms
are presented, here we will only briefly discuss the stream cipher scheme.
They proposed two different systems: a programmable CA with ROM
(PCA) and a two-stage programmable CA. Both schemes are easy to im-
plement in hardware. In the PCA, an N-cell CA register is loaded with
one of a number of (90, 150) rule configurations stored in ROM and run
for a clock cycle. A group of four consecutive output bits is chosen out
of the N output bits and xored with a portion of plaintext of the same
length to give the corresponding ciphertext. The CA is then loaded with
another rule configuration from the ROM and the cycle continues until
all the text has been encrypted. The two-stage system works according
to the same principles but instead of configuring the CA from a fixed
set of configurations stored in ROM, a second CA register, which is
itself constituted by a fixed (90, 150) rule vector, randomly produces the
desired (90, 150) current rule configuration for the first CA register at
each clock cycle.

In view of the static and periodically repeating rule configurations
stored in ROM, the PCA appears to be vulnerable to attacks. In fact,
successive rule configurations are always used in the same sequential
order. Moreover, the suggested values for the CA register length and
for the number of rule configurations stored in ROM are small, thus
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facilitating a cryptoanalytic attack. The two-stage system should be
more secure since, ideally, there is no correlation between successive
rule configurations. Both systems use groups of four consecutive bits,
a fact that makes rule induction by divide-and-conquer and completion
easier.

In our scheme, we use nonuniform CA in which each cell rule is
randomly sampled with uniform probability from rules 90, 105, 150,
and 165. We have shown in [12] (see also section 2) that these au-
tomata have excellent PRNG properties. The key K is formed from the
current vector of CA rules Ri and the initial random state of the CA
C(0): K = 〈Ri, C(0)〉. For an N-cell CA each of the N rules can be
chosen independently among the set of four and each bit in the initial
configuration is also independent; thus, the apparent length of the key
is: 4N × 2N = 23N. To give an order of magnitude, N can be well
above 100 if the key stream generator is implemented in software and
in the order of 100 for VLSI implementation, although this is only a
cost/benefit tradeoff and suitable values of N can be used as a function
of the degree of security one wants to reach. Obviously the hardware
implementation will be several orders of magnitude faster. The rule
vector and the initial state can be established once per session (session
key) or they can be changed at any time. Frequent change of K is advis-
able not only for security reasons but also because there is no guarantee
that the nonuniform CA generated in this way will be maximum-length
CA. However, our previous work [12] has shown that the average cy-
cle lengths will be large enough, in the order of 2n−4. As in [14], bits
are sampled from the central column of a cyclically connected CA. But
in our case divide-and-conquer attacks of the kind proposed in [7] are
much more difficult and the following argument shows that guessing
the key is indeed a hard task.

Suppose that we have a plaintext and the corresponding ciphertext
of a given arbitrary but finite length. The goal of the cryptanalysis is to
find the key K = 〈Ri, C(0)〉 starting from the bit stream generated with
K during a number n of time steps. The bit stream used for encoding
can obviously be deduced unambiguously from the plaintext/ciphertext
pair. The search space is huge as there exist 23N possible key configura-
tions. However, among those only a small fraction generate the given
bit stream as the following counting argument will show. We will start
by trying to reconstruct the automaton backwards in a triangle shape
starting from a given bit in the central sequence until we have recon-
structed a full line. The triangle shape is due to the fact that each cell
state depends on the state of its two neighbors at the previous time step.
For each time step we must make hypotheses about the rules and the
states of the cells and we will count the number of guesses made in order
to complete the line. Consider Figure 2(a) which represents the states
of the relevant cells and the rules at time steps t and t − 1 respectively.

Complex Systems, 12 (2000) 71–81



78 M. Tomassini and M. Perrenoud

rules
t-1
t

A
m x  n

y

rules
t-2
t-1
t

B A C
o p  z  q  r

y
m x  n

(a) (b)

Figure 2. Schema of the first two stages in the backward completion of the
automaton by guessing rule and cell values.

Cell states x and y are known since they belong to the central sequence.
We must guess the central cell’s rule, let us call it A, and the value (0
or 1) of one of the neighbors of the cell whose value is x. Assume that
we guess m. This is enough to infer the t − 1 slice of the triangle since
we only work with additive rules (XOR and XNOR logic only). At
this stage, there are eight different configurations of the triplet (A, m, n)
producing the sequence (x, y). If we now go one time step further back-
wards to time t − 2, we have the situation depicted in part (b) of the
figure. The central cell value z is known and we need to infer the state
values o, p, q, r. With A, m, x, y, n now fixed we must guess rules B and
C and one of o, p, q, r as the other values can then be inferred. There
are 32 possible configurations of (B, C, o, p, q, r) that produce the bits
(z, m, x, y, n). Now it is easy to see that for each further time step back-
wards there are 32 possible configurations of rules/values to consider in
order to obtain the situation at the previous time step and the process
can be iterated (n−1)/2 times until we get a full line. Taking the product
gives us the number of combinations of rules/values that produce the
given sequence of n/2 bits. This number is u = 2(5n−9)/2. But only one
of those combinations will fit a complete sequence. In fact, if we now
try to extend the bit sequence further down by one bit, only one-half of
the solutions will produce the right sequence. The next bit will reduce
that to a quarter and so on. Thus, to find the right combination of rules
and initial state values, one has to test all u cases over log(u) subsequent
bits belonging to the central sequence.

The system can be made more secure by time spacing the bit stream,
that is, by discarding one bit out of two or three. This will have the
effect of increasing the number of rules/values that have to be guessed
to reconstruct the time/space diagram backwards.

Although the previous argument shows that direct cryptanalysis of
the system is a task requiring an exponentially increasing amount of
computational resources, one cannot rule out the possibility that, by
exploiting some kind of information-theoretic or statistical regularities,
the system can be transformed into an equivalent one that is easier to

Complex Systems, 12 (2000) 71–81



Nonuniform Cellular Automata for Cryptography 79

analyze. With the information given here, our generator can be easily
programmed and any length of plaintext/ciphertext pair can be gener-
ated. As such, the proposed encryption technique is open to scrutiny.

Here we have mainly described the use of one-dimensional nonuni-
form CA. In [12] we showed that two-dimensional nonuniform CA are
even better PRNGs. They can be used in a manner analogous to the
one-dimensional case for generating key streams. We found that seven
additive rules tend to emerge consistently via artificial evolution and
give rise to excellent PRNGs. Randomly mixing these rules again pro-
duces very good generators. Since in this case the number of rules is
higher with respect to the one-dimensional case and the neighborhood
comprises five cells, reconstructing the key is even more difficult.

4. Conclusions

CA are an attractive approach for cryptographic applications. They are
simple, modular logic systems that can generate good quality pseudoran-
dom bit streams as required in robust cryptographic systems. A further
advantage is that they can be easily and efficiently implemented in VLSI,
and could thus find applications in many areas. The system we have
described is based on nonuniform one-dimensional or two-dimensional
CA. Comparing it with the only other two proposals known to the au-
thors shows that it appears to be more secure, since reconstructing the
key demonstrably requires an amount of computational resources which
is an exponential function of the key length. Of course, we cannot ex-
clude that the system could be decrypted in reasonable time and with
reasonable computing resources. The stream generator can be easily
programmed and analyzed from the description given here and it is thus
open to scrutiny.

In this respect, it is also worth noting that nearly all known systems
are insecure in absolute terms, the important consideration being the
tradeoff between the time and the resources available to the cryptanalyst
and the lifetime of the encryption key. With our system, the key can be
changed at will and on the fly, although this in turn raises the question
of the key exchange between parties. But this problem can be solved
by using standard public-key cryptography for exchanging one-time
session keys for use with the CA-based stream scheme presented here
as frequently as needed. Of course, theoretically, even RSA public-
key cryptography is not absolutely safe since the difficulty of factoring,
barring new and unlikely efficient algorithms, depends on the length of
the key and on the amount of computing power that a cryptanalyst is
able to deploy. This power is on the rise, which implies that longer and
longer keys have to be used. In fact, public-key schemes could easily
be cracked today if efficient quantum computing algorithms devised for
the task could be implemented in practice [10].
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Finally, it has to be said that cryptographic systems that are both
provably secure and physically realizable have been found. These are
based on the cryptographic protocol invented in 1984 by C. Bennet and
G. Brassard [1] which makes use of quantum information concepts. This
approach is extremely promising but still difficult to use in practice due
to the technological constraints of today’s communication and storage
devices. The practical advantage of the CA described here is that they
are very easy and cheap to implement both in hardware and software
and could meet the needs of many applications in which a high degree
of security is needed but provably absolute inviolability is not called for.
Using VLSI implementations, very high speed encrypting and decrypt-
ing circuits can be built and incorporated in communication devices
such as hand-held computers and mobile phones. In this respect, an
exciting prospect would be to build them using modern reconfigurable
circuits such as field-programmable gate arrays (FPGA). These circuits
are becoming competitive with custom VLSI but, instead of being wired
once and for all, their function can be easily and quickly reprogrammed
on the fly. The advantage is that in this way programmability of the
generator would be retained together with the implied security aspects,
as well as speed of operation.
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