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The enumeration of preimages in sequential cellular automata is ap-
proached. Two methods are given to enumerate the preimages of a rule.
Preimage enumeration is simplified by using transform matrix expres-
sions. The concept of factor graphs is presented in the study of De Bruijn
graphs. A criterion for a rule having gardens-of-Eden is given.

1. Introduction

Cellular automata (CA) are discrete dynamic systems, of simple con-
struction but varied behavior. Studying preimages of CA is important
for learning their properties [2, 3]. Gardens-of-Eden (GOE) are se-
quences with no preimages and are related to the preimages of a rule
in [1, 2, 4]. Recently in [5], Chris Barrett, William Y. C. Chen, and
Christian Reidys made an approach on the GOE in sequential cellular
automata (SCA), and proposed a question: What is a sufficient and
necessary condition of a rule having no gardens-of-Eden (i.e., to be non-
GOE)? For the enumeration of preimages in parallel CA, E. Jen gave a
recurrence relation formula in [1]. But in SCA there is no formula to
enumerate the preimages.

This paper presents a preimages enumeration formula for a rule in
SCA, and gives two methods for enumerating the preimages of a rule.
The enumeration is greatly simplified by using a transform matrix ex-
pression, especially when r and k are bigger than 1 and 2. The concept
of factor graphs is presented in the study of sequential De Bruijn graphs.
A criterion for a rule being nonGOE is given. That is, a certain kind of
special structure of rule matrix is the sufficient and necessary condition
for a rule to be nonGOE.
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2. Preliminaries

The general form of SCA is

xt+1
i = f (xt+1

i−r , . . . , xt+1
i−1, xt

i , xt
i+1, . . . , xt

i+r)

where xt
i denotes the value of site i at time t. The values are restricted

to the finite field Fk = {0, 1, . . . , k− 1}, f represents the “rule” defining
the automaton and r is a nonnegative integer specifying the radius of
the rule.

Just as in parallel CA, the rule number for primary CA (r = 1,
k = 2) is defined as the decimal value of the term’s binary expression:
a7a6 . . . a0, where ai = f (xyz)(i = 0, . . . , 7). xyz ∈ {000, 001, . . . ,
111}. i is the decimal value of xyz. For example, according to a rule
with f (111) = f (110) = f (101) = f (100) = 0, f (011) = f (010) =
f (001) = f (000) = 1, the rule number is 15, and is called rule 15.

Definition 1. A k2r × k2r matrix, with rows and columns labeled by
the sequences of length 2r on Fk, is called the rule matrix of rule f
if Pi,j = x0 = f (m0, m1, . . . , m2r−1, x), for i = m0m1 . . . m2r−1, j =
m1m2 . . . mr−1x0mr+1 . . . m2r−1x; and Pi,j = 0, otherwise. Also, let the
vertices be the sequences of length 2r and draw an arc from i to j with
the label x0 for all i, j as above. Then the digraph is called a sequential
De Bruijn graph of the rule.

When r = 1, k = 2, P is a 4 × 4 matrix. The row and column labels
are 00, 01, 10, and 11. The element of row (y1, y2) and column (y0, y)
is y0 = f (y1, y2, y). If y0 = 0, the element is denoted by α, if y0 = 1, it
is denoted by β, other elements are 0. For example, the rule matrix of
rule 15 is





0 0 β β
0 0 β β
α α 0 0
α α 0 0



 .

In fact, this rule matrix is the depiction of a De Bruijn graph. The De
Bruijn graph in CA and in SCA of rule 121 are shown by D1 and D2 in
Figure 1 respectively.

3. Preimage enumeration in sequential cellular automata

For an arbitrary integer 0 ≤ m ≤ k2r − 1, with

m =
2r−1∑

i=0

mik2r−i−1,
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Figure 1. The De Bruijn graph of rule 121.

denote by M = m0m1 . . . m2r−1 the symbol corresponding to its k-ary
representation. The symbols M thus range over all possible blocks of
length 2r.

Given a sequence S = snsn−1 . . . s1, the number of its preimages is
denoted by N(S). Let Lj

M be the preimage of the sequence sj . . . s1
beginning with M, from [1] we have

N(S) =
k2r−1∑

m=0

Ln
M,

where

Lj
M =

∑

i

Lj−1
Mi

Ij(xi), (1)

and

Ij(x) =
{

1, x = xj,
0, otherwise.

Definition 2. Let Lj be the column vector consisting of Lj
M, then equa-

tion (1) can be written as

Lj = PjLj−1. (2)

We call Pj the transform matrix.

In fact, the rule matrix has the same structure as the transform matrix.

Theorem 1. On Fk, suppose S = aa . . .a is the sequence produced by a
rule with radius r, then

Ln = AnE,

where E is the k2r-dimension column vector and A is the transform
matrix of the rule on S.
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Proof. From the structure of the transform matrix, we know P1 = P2 =
· · · = Pj, and by equation (2) we get Ln = AnE.

Theorem 2. On Fk, for any n element sequence S, we separate S into
blocks such that in one block all of the elements are the same. Let vi
be the value of the elements in block i and ui be the length of the block.
We have

Ln = Aut
vt

. . . Au1
v1

E, (3)

where vi ∈ Fk, t, ui are integers, E is the k2r element column unit vector
(all elements are 1), and Aui

vi
is the transform matrix on the elements of

vi (i = 1, 2, . . . , t).

Proof. For a sequence S, the separation method means that if si = si−1 =
· · · = s1, si+j+1 %= si+j = · · · = si+1 %= si . . . , there are v1 = s1, u1 = i;
v2 = si+1, u2 = j . . . . From Theorem 1 we have

Lu1 = Au1
v1

E,
Lu2 = Au2

v2
· Lu1 , . . . ,

Lun = Aun
vn
· Lun−1 .

Then

Ln = Aut
vt

. . . Au1
v1

E.

There are two ways to enumerate the preimages in SCA. One is to
apply the method used in [1]; the other is to use Theorem 2, which we
call the transform matrix method. In the following we take r = 1, k =
2 and rule 12 as an example for enumerating the preimages by both
methods.

Let S be an arbitrary sequence. From right to left, divide S into blocks
of consecutive 0s and 1s, and let

ai = number of consecutive 0s in the ith block,
bi = number of consecutive 1s in the ith block.

For example, with S = 00101001100100, set a1 = a2 = a3 = 2,
a4 = 1, a5 = 2 and b1 = 1, b2 = 2, b3 = b4 = 1.

Suppose there is a sequence S with the blocks of btat . . . b1a1. On
the block of 0s the transform matrix is A, and on the block of 1s the
transform matrix is B.

By using the first method, we have

Lj
00 = (Lj−1

00 + Lj−1
01 )Ij(0), Lj

01 = (Lj−1
10 + Lj−1

11 )Ij(1),

Lj
10 = (Lj−1

00 + Lj−1
01 )Ij(0), Lj

11 = (Lj−1
00 + Lj−1

01 )Ij(0),
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and

Uj
00 = Uj−1

00 + Uj−1
01 ,

Uj
01 = 0,

Uj
10 = Uj−1

00 + Uj−1
01 ,

Uj
11 = Uj−1

00 + Uj−1
01 ,

Vj
00 = 0,

Vj
01 = Vj−1

10 + Vj−1
11 ,

Vj
10 = Vj

11 = 0.

Then

U1
00 = U1

10 = U1
11 = 2, U1

01 = 0,
Ua1

00 = Ua1
10 = Ua1

11 = 2,
Ua1

01 = 0,

Vb1
00 = Vb1

10 = Vb1
11 = 0.

If b1 > 1, there is Vb1
01 = 0. If b1 = 1, there is Vb1

01 = Ua1
10 + Ua1

11 = 4.
For the first a2 0s there is Ua2

00 = · · · = U1
00. After a2 0s there is a 1,

according to the rule, U1
00 = Vb1

01 = 4, namely Ua2
00 = 4. So we have

Ua2
10 = Ua2

11 = 0, Ua2
01 = 0.

From the recurrence relation of Vj
01, we know bi = 1, (i = 1, 2, . . .).

According to the rule, there is

Vbi
01 = Uai

10 + Uai
11

Vbi
00 = Vbi

10 = Vbi
11 = 0

so

Uai
10 = Uai

11 = Vbi−1
01 .

Then

Vbi
01 = 2Uai

11 = 2Vbi−1
01 = 2i−1Vb1

01 = 2i+1,

N(S) =
∑

i,j∈{0,1}

Vbt
ij = Vbt

01 = 2t+1.

By using the transform matrix method we have

A =





0 0 0 0
0 0 1 1
0 0 0 0
0 0 1 1



 , B =





1 1 0 0
0 0 0 0
1 1 0 0
0 0 0 0



 .
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Figure 2. The factor graphs of the De Bruijn graph of a nonGOE rule.

It is easy to see that Bi = B and Aj = 0 (i = 1, 2, . . . ; j ≥ 2). We have
Ln = CtE, where

C = AB =





0 0 0 0
2 2 0 0
0 0 0 0
0 0 0 0



 ,

and hence

Ln =





0
2t+1

0
0



 .

So we have

N(S) = 2t+1.

4. The no gardens-of-Eden matrix expression

Given a rule, if there is S = sn . . . s1 such that N(S) = 0, we say the rule
has GOE, otherwise it is nonGOE.

We denote 0 . . . 0 and 1 . . . 1 as 0∗ and 1∗. For any sequence S, if
we find a path in the De Bruijn graph of a rule, and there is a bijective
map between S and the consecutive labels of the path, it is denoted as
{0, 1}∗. Since the preimages of the sequence S are the combinations
of the vertices between which the labels hold consecutive maps to the
elements of S, the rule is nonGOE.

Definition 3. We call graphs T1 and T2 in Figure 2 the factor graphs
of a nonGOE rule.

Proposition 1. In graphs T1 and T2, one can find the path labeled 0∗

or 1∗.

Complex Systems, 12 (2000) 83–91
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Figure 3. The graphs delivered from T1.

Proof. In graph T1, from A1 to B1 or A1 via C1 to B1 is the path. In
graph T2, from A2 to B2 or A2 to C2 via several cycles made of B2 and
C2 to one of B2 and C2 is the path.

Graphs T1 and T2 can be changed to graphs T3 and T4, T6 is another
form of T1. Combinations of the factor graphs can produce the {0, 1}∗
path shown in Figure 3.

Theorem 3. To obtain the graph containing the {0, 1}∗ path by using
graphs T1, T2, T3, and T4, the possible combinations are T1 + T2,
T3 + T3, and T4 + T4.

Proof. Label the arcs or ring with 0 in graph T1, and 1 in graph T2. Let
A1 connect B2 and B1 connect A2, then we can find the {0, 1}∗ path in
the new graph. Similarly, we can find the {0, 1}∗ path in the new graph
of T3 + T3 and T4 + T4.

Now we prove it is impossible to get the {0, 1}∗ path from the other
combinations.

T1 + T3: The only combination is vertex B3 connects A3. But,
according to the rules in SCA, the label of the cycle at vertex A3 must
be the same as the label in T1. So it is impossible.

T1 + T4: The only combinations are vertex B1 connects A4 and A1
connects B4. If so, there must be three arcs to get out from vertex B4,
and it is impossible in SCA. For the same reason, T2 + T3, T2 + T4,
and T3 + T4 are not qualified.

In SCA, according to the definition of the De Bruijn graph, there are
four cases of combinations of T1 (or T6)+T2.

(a) B1 connects A2, A1 connects B2.

(b) C1 connects A2, A1 connects C2.

(c) B6 connects A2, Q connects B2, P connects C2.

(d) B6 connects A2, P connects B2, Q connects C2.

At first, we label all arcs and rings in graphs T1 and T6 with 0s, that
is, let graphs T1 and T6 produce the 0∗ path. Then graph T2 must

Complex Systems, 12 (2000) 83–91
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produce the 1∗ path, which implies that all arcs in factor graph T2 are
labeled 1.

For cases (a) and (b), the vertex B1,C1 must be 00,01 or 01,00. The
vertex A1,C2 can be any of 10,11. The rule matrices must be of the
form

P1 =





α α . .
0 0 . .
α α . .
0 0 . .



 , P2 =





0 0 . .
α α . .
α α . .
0 0 . .



 ,

P3 =





α α . .
0 0 . .
0 0 . .
α α . .



 , P4 =





0 0 . .
α α . .
0 0 . .
α α . .



 .

In the matrix “.” can be 0 or β. (This explanation is validated in the
following.)

For the same reason, in cases (c) and (d) the vertex B1,C1 must be
00,01 or 01,00. The corresponding matrices are

P5 =





α α . .
0 0 . .
0 α . .
α 0 . .



 , P6 =





0 0 . .
α α . .
α 0 . .
0 α . .



 ,

P7 =





α α . .
0 0 . .
α 0 . .
0 α . .



 , P8 =





0 0 . .
α α . .
0 α . .
α 0 . .



 .

On the other hand, we let factor graph T2 produce the 0∗ path, and
T1 and T6 produce the 1∗ path. The matrices with the structure of the
combined graph using cases (a), (b), (c), and (d) are

P9 =





0 α . .
α 0 . .
α α . .
0 0 . .



 , P10 =





0 α . .
α 0 . .
0 0 . .
α α . .



 .

Now we consider graph T5. T5 is the self-combination of T3 or T4,
two T5s constitute a De Bruijn graph. When vertex A5 is 00 or 01,
vertex B5 must be 10 or 11. Then the four vertices of the De Bruijn
graph are 00,10 (or 00,11) and 01,10 (or 01,11). The corresponding
matrices are

P11 =





α . . β
. . . .
. . . .
α . . β



 , P12 =





. . . .

. α β .

. α β .

. . . .



 ,
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P13 =





α . β .
. . . .
. . β .
α . . .



 , P14 =





. . . .

. α . β

. . . .

. α . β



 .

It can be seen that a rule matrix determines the property of being
nonGOE. However, any {0, 1}∗ path must include the factor graphs;
and, in order to get the {0, 1}∗ path, we have discussed all possible
combinations. So we get the conclusion in Theorem 4.

Theorem 4. A rule is nonGOE if and only if the structure of its rule
matrix is the same as one of P1, . . . , P14.

Example 1. The rule matrix of rule 150 is




α 0 0 β
0 α β 0
0 α β 0
α 0 0 β



 .

Its structure is the same as P11 and P12. So rule 150 is nonGOE. In
fact, there are two factor graphs of T5 in its De Bruijn graph.
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