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During a genetic search, the population may get stuck in a local opti-
mum. The population can escape from this after a long duration. This
phenomenon is called punctuated equilibrium. The punctuated equilibria
observed in nature and computational ecosystems are known to be well
described by diffusion equations. In this paper, simple genetic algorithms
are theoretically analyzed to show that they can also be described by a dif-
fusion equation when fitness is the function of unitation. Using theoretical
results on the diffusion equation, the duration of equilibrium is shown to
be exponential of such parameters as population size, 1/(mutation prob-
ability), and potential barrier. This is corroborated by simulation results
for one-dimensional bistable potential landscapes with one local optimum
and one global optimum.

1. Introduction

Genetic algorithms (GAs) are optimization methods modeled from op-
erations used during natural reproduction and natural selection [1].
Since the original idea was introduced by Holland [2], various GAs
have shown practical success in various fields. Among these, the simple
genetic algorithm (SGA) is the simplest one containing such essential
GA operators as roulette wheel selection, simple mutation, and simple
crossover.

Like many other heuristic optimization methods, SGAs have the prob-
lem of their system being trapped in a local optimum. Fortunately, there
are two kinds of effects contributing to escape from the local optimum,
which we will now call the microscopic effect and probabilistic fluc-
tuation. The microscopic effect is observed when individuals escape
through mutations or crossovers. This is related with the population
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variance while the probabilistic fluctuation indicates the fluctuation of
the population mean.

When fitness is confined to the function of unitation, bistable fitness
functions with one local and one global optima can be categorized into
two classes according to the infinite population dynamics [3, 4]. GAs
dealing with class I fitness functions converge into the global optimum
for any initial population state. However, for class II fitness functions,
the GA remains in the local optimum forever unless the initial ratio of the
population in the global optimum is larger than a positive criterion. The
equilibrium in the local optimum can be disturbed when the population
size is finite. Since each GA operator has some probabilistic parameters,
the result of GA operations may be different each time if the population
size is finite. This induces probabilistic fluctuations and can result in
punctuated equilibria.

Punctuated equilibrium is the phenomenon where a system in a meta-
stable state shows a sudden and short transition into a more stable
neighboring state after a long period of equilibrium. A metastable state
is a local optimum beside a better local or global optimum. Punctuated
equilibria are observed and analyzed in various fields such as compu-
tational ecosystems (CEs) [5], neodarwinian evolution models [6], and
GAs [7]. All of these systems share the common feature of having a
population of individuals driven on a fitness or potential landscape.

If there are only two types of individuals, the system state can be
represented by the ratio z of a particular type of individuals. In this
case, the dynamics of the CE is governed by a diffusion equation

dz(t) # $dtF%(z) & "dB(t) (1)

where F is the potential landscape, B(t) the standard brownian process,
and " a small constant [5]. Using the mathematical results on the
diffusion equation [8], the existence of punctuated equilibria and the
duration of the metastable state can be explained. The duration is
exponential in the population size and the height of the potential barrier
between the metastable and the stable states.

For the neodarwinian model, the population mean x of the individual
character x is governed by equation (1) if z is replaced by x and ($F)
by the fitness of x. Thus the neodarwinian model explains the punc-
tuated equilibrium and the exponential duration observed in natural
evolution [6].

For GAs, Vose tried to explain the punctuated equilibria observed
in genetic searches by showing that the local optimum state is unstable
unless it has globally maximal fitness [7]. But such a quantitative feature
as the duration of metastability was not considered. On the other
hand, a phenomenon similar to punctuated equilibrium was analyzed
for the Royal Road fitness function [9]. But the Royal Road fitness is
just like a step function and hence the phenomenon, “stasis followed
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by jump,” originated not from a local optimum surrounded by fitness
barriers but from a long fitness plateau. Thus, the duration of the
plateau is proportional to 1/(population size) rather than exponential.
The dynamics of a GA for class I fitness functions was also studied in
[10, 11]. The relation between their results and ours is discussed in
detail in section 5.3.

In this paper, we focus on the population mean of a phenotype as is
done in the neodarwinian model since there are more than two types
of individuals in general GAs. We adopt the central limit theorem
[12] to show that the dynamics of the SGA can be represented by an
equation whose form is similar to equation (1). Using class II functions
of unitation for fitness, we can obtain more details of the equation.
This enables us to use the mathematical results of equation (1) to obtain
the features of the punctuated equilibria. Although the functions of
unitation represent only a small class of all possible ones, they have
been of considerable interest to GA researchers, since they are easy to
analyze and understand [4, 13]. The theoretical results are compared
with the simulation results obtained for the one-dimensional bistable
potential landscapes.

In section 2, as background to the analysis, equation (1) and the CE
are more precisely described. We analyze the dynamics of the SGA in
section 3. The bistable fitness landscape is introduced and the simulation
results are shown in section 4. In section 5 we discuss the results ob-
tained in the previous sections focusing on the duration of metastability.
The conclusion and further work are covered in section 6.

2. Background

2.1 Diffusion processes

Consider the one-dimensional diffusion process z(t) satisfying equa-
tion (1) and let the bistable landscape F satisfy the following conditions.

F is a differentiable function defined on $' < z < '.

There exists z1 < z2 < z3 such that F is strictly decreasing on ($', z1] (
[z2, z3] and strictly increasing on [z1, z2] ( [z3,').

F(z1) > F(z3).

Then z1 is the metastable state and z3 is the stable state, and between
them there is a barrier at z2. Let D # F(z2) $ F(z1) be the height of the
barrier.

According to mathematical studies of the dynamics of these bistable
systems [8], if the initial state of the system is around z1, then punctuated
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equilibrium can be observed and the duration T of metastability satisfies

T ) exp !2D
"2
" (2)

as " * 0. Also, the transition is unidirectional in the sense that the
system remains in the stable state as t * ' if there are z0 < z1 and
z4 > z3 satisfying that F(z0), F(z4) > F(z2).

The aim of this paper is to explain the dependency of " on SGA pa-
rameters when the SGA dynamics is described by equation (1). This will
elucidate the relations between the duration T and the SGA parameters.

2.2 Computational ecosystems

The definitions of system state and state transition rule for CEs are
similar to those of the GAs. In the CE [14], a population consists of N
agents, and each agent chooses one of R possible strategies to get some
payment. The payment function f is dependent on the chosen strategy
and the population state. A population state is represented by a vector
n # (n1, n2, . . . , nR) or r # (r1, r2, . . . , rR) where ni is the number of
agents using the strategy i and r # n/N. During a unit time, each agent
has Α chances on average to change its strategy to a new one according
to Ρi(r), which is the probability that strategy i is perceived to be the
best choice.

The system state is described by the population state. Let P(n, t)
be the probability that the population state is n at time t. Then the
function P at a specific t describes a particular ensemble which contains
all possible system states at time t. Consider a sufficiently short time
interval -t during which only a single change contributes. That is, either
n is invariant or else there is a single change from some strategy j to
strategy i. Then, the change of the probability is

P(n, t & -t) $ P(n, t)
Α-t

# $P(n, t)#
i.j

njΡi &#
i.j

P(n[j,i], t)(nj & 1)Ρ[j,i]
i (3)

where n[j,i] satisfies that n
[j,i]
j # nj&1, n

[j,i]
i # ni$1, and the other elements

are the same as those of n [14]. Also, Ρi and Ρ
[j,i]
i are evaluated at n and

n[j,i], respectively.
The ensemble mean $ri% of the ratio ri is represented as

$ri% ##
n

ri(n, t)P(n, t).

The derivative of $ri% is, by applying -t * 0 to equation (3) [14],

d$ri%
Αdt

# $Ρi% $ $ri%. (4)
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The detail of the derivation is shown in appendix A. Equation (4) means
that the ratio ri has a tendency to approach the conceived value Ρi on
average. This result will be used to outline the form of the potential
function F in section 3.4.

3. Analysis

In this paper, the mean and variance for a random variable Z are rep-
resented as E(Z) and V(Z), respectively. However, to distinguish them
from each other, the population mean is represented as Z while the
ensemble mean of the population character is represented as $Z%.

3.1 Simple genetic algorithms

An SGA deals with a population which consists of N individuals. Each
individual is a binary string of L bits and each bit has one of two
values, 0 and 1; hence, there are R # 2L genotypes. The phenotype
for the genotype i is xi and the fitness f is a function on the phenotype
domain. The population state is represented by n # (n1, n2, . . . , nR)
or r # (r1, r2, . . . , rR) where ni is the number of individuals with the
genotype i and r # n/N.

The population of the next generation is produced from the current
one through the following SGA operators: roulette wheel selection,
simple mutation, and simple crossover [1]. After two individuals are
selected from the current population by roulette wheel selections, sim-
ple mutation toggles each bit of the individuals with the probability
pm. Simple crossover is then applied to the pair with the probability
pc. In simple crossover, each individual is cut at the same point and di-
vided into two substrings, and the second substrings are then exchanged.
The cutting point is selected uniformly at random among all possible
L points. After crossover, one of two children is chosen randomly and
inserted into the temporary population. The temporary population is
made as a copy of the old population when the new generation begins.
The individual to be deleted from the temporary population is chosen
uniformly at random without replacement, and is replaced by the child
individual produced. Repeating this process N times, a new generation
with generation gap 1 [1] is completely produced. Each child’s produc-
tion is independent of the others’ while the replacement is dependent.

3.2 Ensemble mean part and brownian part

As defined for CEs, let P(r, t) be the probability that the population
state is r at time t for SGAs. Then P at a specific t describes a particular
ensemble which contains possible system states at time t. The ensemble
mean of a random variable Z is $Z% # &r ZrP(r, t) where Z represents
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a feature of the population. And let Α be the average number of gen-
erations per unit time. Then the SGA changes the population state Α-t
times in time interval -t. We take sufficiently small -t so that the Α-t is
0 or 1. Note that a CE corresponds to a generation gap 1/N.

Since SGA operations contain random events, the phenotype of a
child can be considered as a random variable X. Each production of
a child is independent of the others since the generation gap is 1 and
the population can be considered as a sample of size N for X. Hence,
we can use the central limit theorem with the result that the population
mean X has a gaussian distribution with mean E(X) and variance of
approximately V(X)/N [12]. If the SGA starts at time t0, X changes into

X(t) # $X(t)% & Α(t $ t0)G(t) (5)

where G(t) is the gaussian random variable with mean 0 and variance
V(X(t)) # V(X)/N. Hence -X is obtained by

X(t & -t) $ X(t) # $X(t & -t)% $ $X(t)% & Α-tĜ(t) (6)

where-tĜ(t) # (t&-t$t0)G(t&-t)$(t$t0)G(t). Being a linear summation
of gaussians, Ĝ(t) is also a gaussian with mean 0 and variance V̂(X(t))
which has a value between V(X(t)) and V(X(t & -t)).

The accumulation of gaussian random variables, each of which has
the variance 1, results in a standard brownian process B(t) provided that
the increments are mutually independent. The randomness of Ĝ origi-
nates from the random events contained in SGA operations. These ran-
dom events are mutually independent among successive generations and,
hence, the Ĝ of these generations are also mutually independent though

the V̂(X) have specific relations. Since Ĝ/
'

V̂(X) is a gaussian with mean

0 and variance 1, the change in B during -t is -B # (Α-t)Ĝ/
'

V̂(X).
On the other hand, to obtain the contribution of the term $-X(t)% #$X(t & -t)% $ $X(t)%, we first find the function a(X) which is defined

by a(X(t0)) # $-X(t0)%/-t as -t * 0. Then, we replace X(t0) with
X(t). This method is valid if the following conditions of the analysis are
satisfied [15].

The fitness landscape should be smooth enough over X.

The “jump” of X between two adjacent generations should be sufficiently
small.

If these conditions are satisfied, equation (6) also becomes the stochastic
differential equation

dX(t)
dt

# a(X(t)) &

(
V(X)

N
dB(t)

dt
(7)
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as -t * 0 [15], where V̂(X) # V(X) # V(X)/N is used. If the potential
function, which we will now call F, can be determined by F%(X) # $a(X),
finally equation (7) becomes

dX
dt

# $F%(X) &

(
V(X)

N
dB
dt

(8)

which has the same form as equation (1).
In this derivation, instances of X were thought to be grouped into

populations each of which corresponds to a population state r. We
can obtain the population mean from the population state as X # x(r)
where x is defined by x(r) # &i xiri and ri is considered a random
variable. Since E(Xk) # $Xk% and $xk(r)% # xk($r%) for an integer k,

E(X) # $X% # x($r%) (9)

and

V(X) # E(X2) $ E2(X) # s2
X($r%) (10)

where s2
X(r) # x2(r) $ x2(r) is the population variance of the phenotype

for the state r. These equivalences are used in the following analysis.

3.3 Functions of unitation and effects of simple genetic algorithm operators

To apply the theory on the diffusion process of section 2.1 to equa-
tion (8), V(X) needs to be constant during the running of an SGA. At
worst, the duration T could be bounded by exponential boundary val-
ues if V(X) is bounded in a finite range. In this section, the effects of
the SGA operators are separately addressed focusing on V(X). These
are used to obtain the more useful result in section 3.5.

Now let the fitness f be the function of unitation. The phenotype
of an individual is defined by xi # li/L where li is the number of bits
with the value 1 in the genotype i. The definition of phenotype enables
us to get more details on V(X). In this section, we consider X in a
discrete time domain. Let X at generation (Τ & 1) be composed of
mutually independent random variables Xs(Τ), Xm(Τ), and Xc(Τ); X(Τ &
1) # Xs(Τ) & Xm(Τ) & Xc(Τ) where Xs is the result of the selection, and
Xm and Xc are the changes due to mutation and crossover, respectively.
This is possible because the SGA operators can be collected and run
separately for one generation. We can then consider the effects of the
SGA operators, one by one.

For the selection, suppose that the population at generation Τ is
uniformly distributed on the slope of f (x) # gx so that the individuals
have fitness values of H0, H0 &h, H0 &2h, . . ., H0 & (N$1)h # H0 &H1.
In this case, fi # H0 & ih, xi # fi/g, and ri # 1/N. We can find E(X) and
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E(X2) through simple calculation. The variance V(X(Τ)) is then

V(X(Τ)) #
(N2 $ 1)h2

12g2 #
H2

1

12g2 (11)

for N 0 1. The moments after the selection, E(Xs) and E(X2
s ), can be

calculated replacing ri by Ρi # rifi/f̄ where f̄ # H0 & (N $ 1)h/2. Finally,
the variance after roulette wheel selection is, for N 0 1,

V(X(Τ)s) #
(N2 $ 1)h2

12g2 )1 $
(N2 $ 1)h2

3(2H0 & (N $ 1)h)2 *
#

H2
1

12g2

12222222223
1 $

H2
1

3(2H0 & H1)2

45555555556
. (12)

The above assumptions are not satisfiable, in general, and this fact will
be considered when equations (11) and (12) are used in section 3.5. The
mean E(Xs) is addressed to obtain the potential function in section 3.4.

Next, simple mutation is considered. When one bit is mutated, the
change (e.g., $1 for 1 7 0) has the probability distribution with mean
pm(1$2l(t)/L) and variance pm $p2

m(1$2l(t)/L)2. Hence, by the central
limit theorem, Xm has approximately the gaussian distribution with

E(Xm) # pm(1 $ 2l(t)/L) # pm(1 $ 2E(Xs)) (13)

and

V(Xm) # [pm $ p2
m(1 $ 2l(t)/L)2]/L # pm/L (14)

for pm 8 1 and L 0 1.
Finally, we consider the effect of crossovers. Simple crossover does

not change the number of 1s within two parents. Thus X, and further-
more E(X) by equation (9), are independent of crossover. However, the
evaluation of the contribution to the variance V(X) is more complicated.
Suppose that the genotypes of the parents are i and j and the substrings
subdivided by the crossover in an individual have lengths u and L $ u,
respectively. Here u represents a random variable which has a uniform
distribution with the probability P(u) # P(L $ u) # 1/L. Moreover, let
yi,1 and yi,2 be the number of 1s in the first and second substrings of
genotype i, respectively. Then yi,2 # li $ yi,1, and yi,1 can be considered
as a random variable. The probability of P(yi,1) is

P(yi,1) # ! u
yi,1
" ! L $ u

li $ yi,1
" !L

li
"$1

(15)

According to the binomial theorem (1& z)u # &y + uy , zy [16], and we can
obtain

#
yi,1

yi,1P(yi,1) # u !L $ 1
li $ 1
" !L

li
"$1

#
uli
L

# uxi. (16)
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Next, in the same way, we can obtain

#
yi,1

y2
i,1P(yi,1) # )u !L $ 2

li $ 1
" & u2 !L $ 2

li $ 2
"* !L

li
"$1

#
(uL $ u2)xi & (u2 $ u)Lx2

i

L $ 1
. (17)

The detail of the derivation can be found in appendix B.
The phenotype of a child is determined by a random variable x% #

(yi,1 & yj,2)/L. The phenotype of the other child has the same probability
distribution as x%, since the function of unitation is invariant if the order
is reversed for a bit string. For simplicity, we now replace yi,1 and yj,2
with y1 and y2. Because the random variables u, xi, xj, y1, and y2 are
mutually independent, the mean value of (y1 & y2) is determined by

#
y1,xi ,y2,xj,u

P(u)P(xi)P(y1)P(xj)P(y2)(y1 & y2)

##
xi,u

P(u)P(xi)uxi &#
xj,u

P(u)P(xj)(L $ u)xj

##
u

P(u)uE(X) &#
u

P(u)(L $ u)E(X)

# LE(X). (18)

And the mean of (y1 & y2)2 is

#
y1,xi,y2,xj,u

P(u)P(xi)P(y1)P(xj)P(y2)(y1 & y2)2

#
(L & 1)E(X)

3
&

L(2L $ 1)E(X2)
3

&
(L2 $ 1)E2(X)

3
. (19)

Hence, the variance of x% is

1
L2 ) (L & 1)E(X)

3
&

L(2L $ 1)E(X2)
3

&
(L2 $ 1)E2(X)

3
$ L2E2(X)*

#
(L & 1)E(X)(1 $ E(X))

3L2 &
(2L $ 1)

3L
V(X)

#
E(X)(1 $ E(X))

3L
&

2
3

V(X) (20)

when L 0 1. Finally, the variance V(Xc) is

V(Xc) #
E(Xs & Xm)(1 $ E(Xs & Xm))

3L
$

V(Xs & Xm)
3

. (21)

For every u, the values of yi,1/u and yj,2/(L$u) may be different from
xi and xj as the 1s can be gathered into one substring. The first term of
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the right-hand side of equation (21) represents these probabilistic fluctu-
ations and has the same form as the variance of a binomial distribution.
If the binomial fluctuations are small enough, the second term causes
V(X) to decrease.

3.4 Potential function

The precise form of the potential function is helpful in designing the
simulation and in understanding the population dynamics. Consider
the process where a child individual is produced by SGA operations and
inserted into the population replacing an old one. When genotypes of
the child and the old individual are i and j, respectively, this replacement
corresponds to the changing from strategy j to i for an agent in CEs.
The fitness function also corresponds to the payment function of the CE
even though fitness is independent of the population state, in general.
If Ρi is interpreted as the probability that a child with the genotype i
may be produced, the SGA with the generation gap 1/N is a special
case of a CE. Even when the generation gap is 1, if X does not change
considerably for a generation, we can use equation (4) without change
since Α is the average number of replacements for an individual, as it is
for the CE. Hence, from equation (4),

d$X(t)%
Αdt

#
R#

i#1

xi($Ρi(r(t))% $ $ri(t)%)
# E(Xs & Xm & Xc) $ E(X) (22)

using &R
i#1 xi$ri(t)% # $X% # E(X).

Considering only roulette wheel selection, Ρi(r(t)) # f (xi)ri/f where
f # &R

i#1 f (xi)ri. Whether or not a particular individual has the genotype
i is a random event of a Bernoulli distribution and individual selections
are independent of each other since the generation gap is 1. The number
ni then has a binomial distribution and, for a sufficiently large N, the
ratio ri # ni/N can be approximated by a gaussian distribution whose
variance is proportional to 1/N. This implies that when the population
size N is large enough, ri is contained in a narrow band around $ri%;
hence, we can adopt mean field approximation. Mean field approxi-
mation works very well for a situation where each individual interacts
with each of the other individuals through global parameters and the
population size is large [17]. Hence, the selection part of equation (22) is

E(Xs) $ E(X) #
R#

i#1

xi ! f (xi)$ri%
f ($r%) $ $ri%" # (x $ x)f

f
(23)

where the population means are taken over $r%. When the conditions of
section 3.2 are satisfied and V(X) is considerably small, f can be linearly
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expanded as follows:

f (x) # f (x) & (x $ x)f %(x). (24)

Replacing f in equation (23) with equation (24),

R#
i#1

xi ! f (xi)$ri%
f ($r%) $ $ri%" # sX($r%) f %(x($r%))

f (x($r%)) (25)

where f # f (x) by equation (24).
Mutation and crossover, however, are highly dependent on the defini-

tions of the phenotype and fitness function. We use the fitness function
of unitation; hence, the effect of crossovers to $X% is zero, as mentioned
in section 3.3. The effect of mutations to $X% can be included in equation
(22) using equation (13), which results in

d$X(t)%
Αdt

# (E(Xs) $ E(X)) & E(Xm)

# sX($r%) f %(x($r%))
f (x($r%)) & pm(1 $ 2x($r%)) (26)

where E(Xs) is replaced by E(X) # x($r%) for pm 8 1.
If t # t0 then x($r%) # $X% # X resulting in

a(X(t0)) #
d$X(t)%

dt
# Α )V(X)

f %(X(t0))
f (X(t0))

& pm(1 $ 2X(t0))* (27)

where sX($r%) is replaced by V(X(t0)) using equation (10). Assuming
that V(X) is independent of X, we obtain the outline of F

F(X) 9 $Α[V(X) log f (X) & pm(X $ X
2
)] (28)

using the definition F%(X) # $a(X).

3.5 Ensemble variance

Boundedness and the general features of ensemble variance V(X) are
addressed in this section. If the population approaches the potential
barrier, H0 of equation (12) decreases. This implies that (V(X)$V(Xs))
increases due to equations (11) and (12) while V(Xm) does not change.
The result is, therefore, a smaller V(X) in the next generation. Thus the
ensemble variance is bounded by Ve:

V(X) < Ve (29)

for V(X) in the basin of attraction of the metastable state.
We now find the ensemble variance Ve in the metastable state, tem-

porarily ignoring crossover. While in the metastable state, V(X) is
approximately constant over time t and the decrement due to selections
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and the increment due to mutations cancel out; V(X) $ V(Xs) # V(Xm)
where V(X) # Ve. Notice that the decrement due to selection is in-
dependent of N and pm, as mentioned in the simplified calculation of
section 3.3. Hence, from equations (11), (12), and (14), we can obtain

Ve #
H2

1

12g2 #
3(2H0 & H1)

H2
1

pm

L
. (30)

The linear approximation of the fitness function in section 3.3 is
acceptable when the conditions of section 3.2 are satisfied. However, we
cannot assert that equation (30) is exactly correct, since the assumption
of a population having a uniform distribution over a linear fitness slope
is not justifiable. What we can learn from equation (30) are just a
few generalizable features of Ve. Even in general cases, the distribution
of a population can be approximated by an accumulation of mutually
independent uniform distributions each of which has its own H0 and
H1. Hence, the independence of N and the proportionality to pm remain
unaffected for various distributions of populations. Finally, we obtain
the general features of Ve without crossover as follows.

1. Ve is independent of N.

2. Ve ) pm.

The general features remain nearly unaffected even when we consider
crossover. Once V(X) and E(X) are determined, the change of V(X) due
to crossover is independent of N, as shown in equation (21). Hence the
first feature does not change. The second feature needs to be modified
a little since it is influenced by equation (21). The value of E(X) in the
metastable state, which we will now call Ee, is determined by a(Ee) # 0
from equation (27). However, it is very complicated to calculate Ee
exactly since Ve is a function of pm and Ee. When pm # 0, Ee is
determined by f %(Ee) # 0 for which the fitness is maximal. If pm > 0, Ee
moves toward 1/2 due to the mutation. Provided the domain of pm is
small enough, Ee can be approximated by a linear function of pm. This
is not an unusual assumption because pm itself is very small, in general.
Furthermore, if fitness is maximal at x # 0, Ee is proportional to pm
and, also, so small that Ee(1 $ Ee) # Ee. The terms of V(Xc) are then
proportional to either pm or V(Xs), where V(Xs) is also proportional
to Ve. Hence, the general features of Ve with crossover are modified as
follows.

1. Ve is independent of N.

2. Ve ) pm for the small domain of pm, when the fitness is maximal at x # 0.

Consider again now the process where the next generation is pro-
duced by applying SGA operators separately: V(X(Τ)) 7 V(Xs(Τ)) 7
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V(Xs(Τ) & Xm(Τ)) 7 V(Xs(Τ) & Xm(Τ) & Xc(Τ)) # V(X(Τ & 1)). As men-
tioned in section 3.3, every step of this process is independent of N.
Hence V(X(Τ & 1)) is independent of N if V(X(Τ)) is independent of
N. Furthermore, suppose that V(X(Τ)) ) pm. The analyses of the SGA
operators in section 3.3 then result in V(X(Τ & 1)) ) pm.

The metastable state is frequently reached by the population until
the transition to the stable state occurs. Thus, the values of V(X) are
independent of N and proportional to pm in the basin of attraction of
the metastable state. Let V! be the representative value of the ensemble
variances until the transition occurs such that

T ) exp !2DN
V!
" . (31)

This equation originates from equation (2) where " #
-

V(X)/N by
equations (1) and (8). Then V! # Kmpm where Km is a function of ∆.
This ∆ is a measure of the depth of the fitness barrier and defined in
section 4. Finally, the duration is

T ) exp ! 2DN
Kmpm

" . (32)

Note that D is also a function of ∆.

4. Simulation

4.1 Bistable landscapes

Punctuated equilibria can be observed if F has a landscape which satisfies
the conditions of section 2.1. In addition, if f satisfies the conditions
of section 3.2, the theoretical analysis of the previous section can be
applied. Considering these conditions, the fitness function is defined by

f (x) #
;<<<=<<<
>

1 $ 3∆x if 0 ? x < 1/3
1 $ 2∆ & 3∆x else if 1/3 ? x ? 1
0 otherwise

(33)

where ∆ is the depth of the barrier in the f landscape. Hence f consists
of two linear slopes whose gradients have the same absolute values.

In the simulation, we use several guidelines for the domain of the SGA
parameters as follows. First, the length L of an individual string should
be large enough so that f can be approximated to be continuous and that
the central limit theorem can be applied to obtain equations (13) and
(14). Second, the mutation probability pm must satisfy pm 8 1 since
approximations to the first order of pm are used in the analysis. When
this condition is satisfied, the domain of pm is also so small that it can
justify the second general feature of Ve with the crossover in section 3.5.
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Figure 1. Potential functions obtained from equation (28) for various fitness
barrier depths. The unit of the y-axis is Α. From down to up, ∆ # 0.3, 0.5, 0.7,
and 0.9 respectively. The other parameters are set by s2

X # 0.002 and pm # 0.01.

Third, the population size N should be large enough to apply the central
limit theorem in section 3.2. We take samples of size N $ 30.

Typical potential landscapes are shown in Figure 1. Notice that there
is only one minimum in the potential landscape when ∆ is small. For the
analysis to be applicable, the potential landscape needs to be bistable.
Thus we choose ∆ within (0.4, 1] for the simulation.

4.2 Punctuated equilibria

Figure 2 shows typical punctuated equilibria observed in the running of
the SGA with pc # 0 and pc # 1 respectively. The population starts from
the state x # 0, converges quickly into the metastable state, and shows
perturbations around it. After a long duration, x suddenly transits the
potential barrier and then fluctuates around the stable state.

Beginning with the population state of x # 0, we record the dura-
tion T of metastability versus some parameters, where T is defined as
the number of generations until the transition occurs. The parameters
considered are the population size N, the mutation probability pm, and
the fitness barrier depth ∆. Figures 3(a), (b), and (d) show that T is a
rapidly increasing function of N and ∆. Figure 3(c) shows that T is a
rapidly decreasing function of pm. Figure 3 also shows that crossover
makes the duration longer. The interpretation of Figure 3 is discussed
in detail in section 5.1.

5. Discussion

5.1 Duration of metastability

Figures 3(a) and (b) support the theoretical result that T is exponential
of the population size N by the linear feature of the log-scale graphs for
pc # 1. However, exponentiality is weakened for pc # 0 bending down
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Figure 2. Punctuated equilibria on the graph of population mean x of phenotype.
Graphs (a) and (b) represent x and s2

X respectively, when L # 30, N # 40, pc # 0,
pm # 0.013, and ∆ # 0.7. Graphs (c) and (d) represent x and s2

X respectively,
when L # 30, N # 40, pc # 1.0, pm # 0.02, and ∆ # 0.7.

the graph in the domain of N $ 60. The theoretical analysis of this
paper assumes that the population can be considered macroscopically
as a rigid ball rolling on a solution space. This assumption breaks down
when the population size is so large that it is comparable to the size of
the basin of attraction of the metastable state, which is 1024 # 2L/3 for
the simulation. For a large N, there may appear more individuals in
the stable area by mutation thus accelerating the transition. This is the
microscopic effect of the SGA operators. However, when pc # 1, the
individuals in the stable area are immediately eliminated by crossover, as
discussed in section 5.2 and, hence, the microscopic effect is considerably
weakened. Hence, exponentiality can be more explicitly observed for
pc # 1 even when N is considerably large.

For the mutation probability pm, the linear feature of the log-scale
graph of Figure 3(c) corresponds with equation (32). However, linearity
is a little disturbed when pm is large.

For Figure 3(d), equation (32) cannot be directly used since the barrier
depth ∆ is the quantity of the f landscape. The potential barrier is
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Figure 3. The duration T of metastability versus some parameters. Each point
is an average of 100 runs. Default parameter values are L # 30, N # 40,
pm # 0.01, and ∆ # 0.7 except that pm # 0.012 and pm # 0.022 for (a) and (b)
respectively.

D # F(1/3)$F(xe). Assuming that V(X) is almost insensitive to ∆, which
can be confirmed experimentally through the simulation, the major
contribution of ∆ to T is from the term F(1/3). Hence, the duration is,
from equation (28), T @ exp($K∆ log(1$∆)) # (1$∆)$K∆ for ∆ $ 0.5 where
K∆ is a constant. This is a very rough approximation but corresponds
well with the log-log graph of Figure 3(d) which is linear in the domain
of (1 $ ∆) % 0.5. When ∆ is small, D is also so small that there is no
effective barrier between the stable and metastable domains, breaking
down the condition of bistability of the potential landscape.

5.2 Effect of crossovers for the functions of unitation

In a bistable problem using the fitness function of unitation, individuals
can be divided into two types according to which basin of attraction
they belong to: A- and B-type, respectively, in a metastable and stable
area. Let rA and fA be the ratio and the average fitness of A-type
individuals respectively, and rB and fB be defined for B-types, likewise.
If the population contains only A-type individuals, the B-type cannot be
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produced by selection only. Suppose that the probability of the B-type
individual being produced by mutation or crossover is so small that
rB # 0 for most generations. Once rB becomes positive at generation Τ,
the rB of the next generation is

rB(Τ & 1) #
fB

f
rB(Τ) $

fB

f
rB(Τ)

fA

f
rA(Τ) (34)

where f # fArA & fBrB, because the term of r2
A(Τ) and the contribution

of the mutation is negligibly small. This equation implies that if one
A-type and one B-type parent crossover, the children would be around
the barrier and then quickly eliminated through succeeding selections.
That is, crossover not only encourages the appearance of the B-type but
also suppresses it provided that fitness is the function of unitation. The
condition in order for rB to decrease is, from equation (34),

fB
-

rB < f . (35)

This is also a sufficient condition for crossover to remove the rival. Since
we have assumed that rB 8 1, this condition is satisfied even when fB is
considerably larger than fA.

For the simulation, the effects of the SGA operations are shown
in Table 1. The returns to the domain of [1/3, 7/15] are mainly due to
crossover while selection plays a major role in returning to the domain of
[0, 1/3). As a whole, crossover makes a major contribution to removing
the appearance of the B-type. This also explains the longer durations of
the graphs for pc # 1 in Figure 3.

If the children of crossover are not too inferior, suppression may
be replaced by enhancement. Crossover is highly dependent on the
definitions of the phenotype and the fitness function. We discuss the
range of fitness functions to which the analysis of this paper can be
applied in section 5.3.

5.3 Range of fitness functions

When fitness is the function of unitation, bistable problems can be cat-
egorized into two classes according to the infinite population dynamics
[3, 4]. Let the ratio of the population in the global optimum be rG. Be-
cause of the crossover effect discussed in section 5.2, the subpopulation
in the global optimum decreases unless rG is larger than a criterion rc.

Class I consists of the fitness functions for which rc # 0. In this case,
the population transits the fitness barrier quickly, once an elite individual
is produced in the global optimum. Let the number of generations
necessary to produce the first elite in the global optimum be called T1.
Then T1 # T for class I fitness functions. When the population size is
infinite, the elite is produced immediately in the global optimum and T1
is 1. However, if the population size is finite, T1 may be much longer.
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Escape Number of Number of returns by
by escapes selection crossover mutation

selection 0 0 0 0
mutation 333.9 217.8 108.2 7.4
crossover 190.5 110.8 59.7 19.5

sum 524.4 328.6 167.9 26.9

(a)

Escape Number of Number of returns by
by escapes selection crossover mutation

selection 0 0 0 0
mutation 12.5 4.8 6.8 0.5
crossover 8.8 2.9 3.7 1.6

sum 21.3 7.7 10.5 2.1

(b)

Table 1. The number of escapes from and returns to the local optimum due
to SGA operations in a potential landscape. The individual with the maximal
phenotype in the population is traced after each SGA operation. It sometimes
escapes (from the local optimum) and returns (to the local optimum) across
the particular phenotype criterion due to each operator. The criterion is 1/3
for (a), and 7/15 for (b). The numbers of escapes and returns due to each GA
operation is counted until the transition occurs, and then averaged over 100
runs. Parameter values are L # 30, N # 40, pc # 1, pm # 0.02, and ∆ # 0.7.

This finite population effect on T1 was studied in [11] of which the
analysis is based on the GA dynamics developed by [18–20]. According
to their results, as the population grows large, the population variance
increases and, hence, T1 decreases. They also calculated correlations in
the genotype, which is a measure of the similarity within population.
When the population size is large, the correlation is small and, hence,
crossover makes the population variance large. The effect of crossover
is consistent with the theoretical proof of [10] and the simulation result
of Table 1 where the number of escapes is contributed by crossover.
However, these finite population effects are relatively small for class II
fitness functions. This explains why the smaller population is more
likely to escape from the local optimum of a class II function, even
though the population variance is smaller according to those effects.

Class II is composed of fitness functions for which 0 < rc < 1. When
the population size is infinite, the ratio rG changes almost deterministi-
cally. As rG # 0 initially, the population remains in the local optimum
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forever during which the GA operators balance each other in equilib-
rium. This equilibrium can be disturbed if the population size is finite.
Since each GA operator has some probabilistic parameters, the result of
GA operations may be different each time if the population size is finite.
This induces probabilistic fluctuations and can punctuate the equilib-
rium. In this case, when the population size is small, the disturbance
is large and T decreases to a finite value. The major disturbance is not
from the population variance but from the variance of the population
mean. Thus the effect of the finite population is seemingly opposite to
that of class I.

Since the stasis observed during a GA run for a class I function
does not originate from an equilibrium between GA operators, we can
bring the focus on class II functions when the punctuated equilibrium
is studied. Among them, when rc grows closer to 1, the analysis of this
paper is better applied. It is not simple to calculate rc exactly for a given
fitness function. But, if the barrier is high and wide, and the difference
in the fitness between local and global optima is not too large, the fitness
function can be expected to belong to class II.

The relation between T and the population size N obtained in this
paper is consistent with the result about natural genetic drift from which
the term “punctuated equilibrium” has originated. The effect of finite
population and crossover to the population variance can be found in
Figure 4. When the populations are small there is a little increment in the
population variance, as shown in graphs for which N # 32 and N # 64.
However, comparing the graphs for which N # 64 and N # 320, we
can see that the increment of the population variance is nearly ignorable
when the populations are large. When crossover is used, the population
variance increases a little, but this effect is also negligibly small when the
populations are large, as shown by the graphs for which N # 320. The
more significant change is diminution of fluctuations in the graphs as
the population increases. This implies diminution of $s2

X% in equilibrium
and is related with diminution of $X̄% caused by the central limit theorem
[12]. For the central limit theorem to be applied, we need N $ 30 and
this too is one of the reasons why the finite population effect is not
significantly large. Of course, to obtain the more accurate analysis, the
finite population effect must be considered in the future.

6. Conclusion and future work

The punctuated equilibria observed in natural evolution are well mod-
eled by a stochastic process in which a rigid ball is driven downward
along a bistable potential landscape with small perturbations. The ball
represents the population mean x of the individual character x which is
regarded as an instance of a random variable X. The perturbations are
measured by a constant ". When the ball is captured in the metastable
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Figure 4. Population variance s2
X of a typical SGA run in equilibrium for various

population sizes. Default parameter values are L # 30, pm # 0.01, and ∆ # 0.7
except that pc # 0 and pc # 1 for (a) and (b) respectively.

state, the perturbation enables the ball to escape out of the basin of
attraction of the metastable state after a long duration of equilibrium.
The duration T is proportional to exp(1/"2) according to mathematical
studies on this stochastic process [8].

To apply the theory of punctuated equilibria to SGAs, a few con-
ditions need to be satisfied. First, the conditions of section 3.2 are
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necessary to make a continuous model from a discrete SGA. Next, the
fitness functions of unitation are used to approximate the population to
a rigid ball by suppressing the microscopic effect.

Under these conditions, our theoretical analysis achieved several re-
sults. First, "2 # V(X)/N when the population size N is large enough to
apply the central limit theorem. Second, the ensemble variance V(X) is
upper-bounded by Ve which is the value of V(X) in the metastable state.
Third, Ve is independent of N and proportional to the mutation proba-
bility pm. Next, V(X) is also independent of N and satisfies V(X) ) pm
after the metastable state is reached and before escape occurs. Finally,
we obtained T ) exp(N/pm).

In the simulation, the duration T, which is defined by the number
of generations until the transition occurs, was recorded versus N and
pm. The simulation result was observed to be compatible with the
theoretical result. The relation between T and the depth of the fitness
barrier was also observed to be consistent with a rough theoretical
calculation.

If we consider the microscopic effect only, it is expected that dura-
tion shortens as population size enlarges. We ignored the microscopic
effect in this paper since that is relatively small for punctuated equilib-
ria. But, to obtain a more accurate analysis, the microscopic effect must
be considered in the future. We suggest that dividing a large population
into mutually isolated subpopulations can be a strategy for obtaining
both microscopic and macroscopic effects. This can be one of the the-
oretical bases for the good performance of parallel GAs. On the other
hand, equation (32) confirms the fact that larger mutation probabil-
ity and smaller fitness barrier depth encourage the global optimization
of SGAs. This reminds us of the basic idea of simulated annealing
[21].

The results obtained in this paper could possibly be extended in
various ways. First, the results on duration could be expanded to cases
where F has more than two peaks, or x is multidimensional with some
restrictions added to the potential landscape [8, 22]. Also, since GAs
have direct relations with CEs, results obtained from studies on CEs
could be applied to GAs. These include the issues of cooperation,
competition, chaos, and delayed global information [17, 23].
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Appendix

A. Derivative of !ri"
The change of the probability during sufficiently small time -t is

P(n, t & -t) $ P(n, t)
Α-t

# $P(n, t)#
i.j

njΡi &#
i.j

P(n[j,i], t)(nj & 1)Ρ[j,i]
i . (A.1)

By applying -t * 0, we obtain

dP(n, t)
Αdt

# $P(n, t)#
i.j

njΡi &#
i.j

P(n[j,i], t)(nj & 1)Ρ[j,i]
i . (A.2)

Now we derive d$nk%/dt using this equation. Since nk itself is indepen-
dent of t,

d$nk%
dt

#
d
dt#

n

P(n, t)nk ##
n

dP(n, t)
dt

nk. (A.3)

The derivative of $nk% is, replacing dP/dt,

d$nk%
Αdt

# $#
n

nkP(n, t)#
i.j

njΡi &#
n

nk#
i.j

P(n[j,i], t)(nj & 1)Ρ[j,i]
i

##
i.j

;<<=<<
>
$#

n

P(n, t)njΡink &#
n

P(n[j,i], t)(nj & 1)Ρ[j,i]
i nk

A<<B<<
C

. (A.4)

The terms satisfying i . k and j . k are counterbalanced by each other.
The remaining terms are

d$nk%
Αdt

##
k.j

;<<=<<
>
$#

n

P(n, t)njΡknk &#
n

P(n[j,k], t)(nj & 1)Ρ
[j,k]
k nk

A<<B<<
C

&#
i.k

;<<=<<
>
$#

n

P(n, t)n2
kΡi &#

n

P(n[k,i], t)(nk & 1)Ρ[k,i]
i nk

A<<B<<
C

##
k.j

;<<=<<
>
$#

n

P(n, t)njΡknk &#
n

P(n, t)Ρknj(nk & 1)
A<<B<<
C

&#
i.k

;<<=<<
>
$#

n

P(n, t)n2
kΡi &#

n

P(n, t)Ρink(nk $ 1)
A<<B<<
C

##
k.j

#
n

P(n, t)Ρknj $#
i.k

#
n

P(n, t)Ρink
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##
n

P(n, t)
DEEEEEE
F
#

j

Ρknj $#
i

Ρink

GHHHHHH
I

##
n

P(n, t)(NΡk $ nk)

# N$Ρk% $ $nk%. (A.5)

We finally obtain, dividing by N,

d$rk%
Αdt

# $Ρk% $ $rk%. (A.6)

B. Derivation of equations (16) and (17)

The probability of P(yi,1) is

P(yi,1) # ! u
yi,1
" ! L $ u

li $ yi,1
" !L

li
"$1

.

According to the binomial theorem (1 & z)u # &y + uy , zy [16], we can
obtain

uz(1 & z)u$1 ##
y

y !u
y
" zy. (B.1)

Multiplying by (1 & z)L$u,

uz(1 & z)u$1(1 & z)L$u # uz(1 & z)L$1

# uz#
y
!L $ 1

y
" zy

# #
y1,y2

y1 ! u
y1
" !L $ u

y2
" zy1&y2 . (B.2)

Extracting terms of order zl,

uz !L $ 1
l $ 1

" zl$1 # #
y1&y2#l

y1 ! u
y1
" !L $ u

y2
" zl. (B.3)

Letting z # 1,

u !L $ 1
l $ 1

" ##
y1

y1 ! u
y1
" !L $ u

l $ y1
" . (B.4)

We can now obtain

#
yi,1

yi,1P(yi,1) # u !L $ 1
li $ 1
" !L

li
"$1

#
uli
L

# uxi. (B.5)
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Next, in the same way, we can obtain

uz(1 & uz)(1 & z)u$2 ##
y

y2 !u
y
" zy. (B.6)

Multiplying by (1 & z)L$u,

uz(1 & uz)(1 & z)u$2(1 & z)L$u # uz(1 & uz)(1 & z)L$2

# uz(1 & uz)#
y
!L $ 2

y
" zy

# #
y1,y2

y2
1 ! u

y1
" !L $ u

y2
" zy1&y2 . (B.7)

Extracting terms of order zl,

uz !L $ 2
l $ 1

" zl$1 & u2z2 !L $ 2
l $ 2

" zl$2

# #
y1&y2#l

y2
1 ! u

y1
" !L $ u

y2
" zl. (B.8)

Setting z # 1,

u !L $ 2
l $ 1

" & u2 !L $ 2
l $ 2

" ##
y1

y2
1 ! u

y1
" !L $ u

l $ y1
" . (B.9)

Hence, we can obtain

#
yi,1

y2
i,1P(yi,1) # )u !L $ 2

li $ 1
" & u2 !L $ 2

li $ 2
"* !L

li
"$1

#
(uL $ u2)xi & (u2 $ u)Lx2

i

L $ 1
. (B.10)
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