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The effect of ranking and binary tournament selection on the distribution
of fitnesses and genetic correlation is calculated for a finite population.
The results are different for continuous and discrete fitness functions.
Results for both situations are obtained. These exact results are compared
to a previously obtained approximation up to the third cumulant and
shown to be in good agreement. Tournament and ranking selection are
compared with Boltzmann selection for which exact finite population
effects are already known.

1. Introduction

One of the important practical and intellectual challenges facing genetic
algorithm (GA) researchers is to put our present heuristic understand-
ing on a more secure theoretical basis. One approach to this has been
to model the dynamics of GAs using tools from statistical mechan-
ics [1–3]. In this formalism the state of the system is modeled by a
number of macroscopic variables. The dynamics is then found by cal-
culating how the macroscopic variables are changed by operators such
as selection, mutation, and crossover. The approach is approximate as
the macroscopic variables are not sufficient to describe all the details of
the system. However, in practice, it has been found that this approach
can give a very accurate description of the dynamics. More significantly,
the model can capture the most important features of a GA, thus reveal-
ing how various operators contribute to the search. Although our goal
in modeling is to obtain an understanding, rather than to be accurate,
it is nevertheless important to understand the sources of errors in our
models as this may reveal some new process at work. In this paper, we
focus on the role of selection in changing the distribution in the fitness
of members of the population.

Binary tournament selection and ranking selection are among the
most popular selection schemes used in GAs. It is well known that bi-
nary tournament selection and ranking selection (using roulette wheel
selection) give the same results on average. Their effect on an infinite
population, starting from a gaussian, was calculated by Blickle and
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Figure 1. The exact and approximate second (Κ̄s
2) and third cumulant (Κ̄2

3) are
plotted as a function of the population size P, starting from a zero mean unit
gaussian.

Theile [4]. More recently an approximation valid for finite populations
was given by Rogers and Prügel-Bennett [5,6]. This allowed comparison
of different selection strategies, such as, steady-state, generation gap [7],
CHC models [8], and evolutionary strategies and stochastic universal
sampling [9]. However, the approximation, although physically plausi-
ble, is not systematic. That is, there are no bounds on the errors, nor
can we obtain higher order corrections.

In this paper we calculate the effect of ranking (or tournament) selec-
tion for finite populations exactly. The derivation depends on whether
the fitnesses are continuous-valued or discrete. We calculate the correc-
tions in both cases and show that there is a term by term correspondence
between the two cases. We briefly re-derive the approximation given
in [5,6] and extend it to include the third cumulant. For the first cumu-
lant (i.e., the average fitness) the approximation agrees with the exact
result. The effect of selection on the second cumulant (i.e., the vari-
ance), and the third cumulant starting from a gaussian are shown in
Figure 1. The approximation is seen to capture the qualitative behavior
of the exact results even for very small populations. For any reasonable
sized population the approximation is within a few percent of the exact
result.

As well as changing the distribution of fitnesses, selection correlates
the population. We can compute the effect of selection on the correlation
directly. This provides another perspective into the effect of selection.
We conclude the paper with a brief comparison between ranking selec-
tion and Boltzmann selection for which the finite population corrections
have been calculated previously [2,3].

The paper is organized as follows. Section 2 sets up the framework
for discussing the effect of selection. Section 3 presents the exact re-
sults for continuous and discrete fitness functions. The approximation
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scheme developed in [5,6] is presented in section 4 and compared with
the exact results. In section 5 we discuss the correlation produced by
selection. Section 6 gives a comparison of ranking and Boltzmann se-
lection. Conclusions are given is section 7.

2. Effects of selection

Before going into the calculation, we must decide the form of the an-
swer we seek. Selection depends only on the fitness of the member of
the population and not on the details of the string they represent. We
will concern ourselves mainly with what happens to the fitnesses of the
members in the population, although in section 5 we discuss correla-
tions. For convenience we assume that an initial population is drawn
from a fitness distribution Ρ(F). The distribution can be described by
a set of statistics such as its mean and variance. For a more accurate
model we can include higher order statistics such as the third cumulant
(related to the skewness) and the fourth cumulant (related to the kurto-
sis). Our aim is to calculate the statistical properties of the population
after selection.

For an infinite population, selection is deterministic and it is relatively
straightforward to calculate the statistics of the distribution of fitnesses
after selection. However, in a finite population, selection will be stochas-
tic so the effect of selection is not so simple to describe. To incorporate
this stochasticity into our description we consider an ensemble of pop-
ulations. It simplifies the analysis to describe the populations in terms
of an infinite population distribution from which a finite population is
drawn. We can envision the selection process as a four stage process
shown in Figure 2.

These stages are:

1. start from some distribution Ρ(F);

2. draw a finite population at random from Ρ(F);

3. a new finite population is drawn from the finite distribution;

4. to complete the cycle return to a distribution Ρs(F), such that a randomly
drawn sample from Ρs(F) would have the same statistics on average as the
ensemble of finite populations in stage 3.

There are two sources of stochasticity in this process. The first comes
in drawing a finite population from Ρ(F). As each sample will typically
contain a different set of fitnesses we would expect different results for
each sample. The second cause of stochasticity comes from selection—
each time we perform selection we obtain a slightly different result. We
can eliminate this second source of stochasticity by selecting an infinite
population. This is equivalent to going straight from stage 2 to stage 4.
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Figure 2. Schematic overview of the selection procedure. Starting from an initial
distribution Ρ(F) we draw a finite population at random. A new population is
selected from this finite population using ranking or tournament selection. We
finally go back to a distribution Ρs(F) which describes the ensemble of selected
populations.

If we wish to model the finite population after selection we can draw
at random a finite population from Ρs(F) (i.e., we can go back from
stage 4 to stage 3). We will show explicitly that we can go to stage 4
directly from stage 2 or via stage 3. For every finite population at
stage 2 we have a unique distribution at stage 4, but we can have many
different finite populations at stage 3. In this scheme the real source of
stochasticity is in going from stage 1 to stage 2; that is, in drawing a
random sample from the distribution Ρ(F). Because of this, there will
be many different distributions at stage 4 corresponding to the different
finite population we draw as stage 2. If we wish to accurately model
selection we must describe this ensemble of distributions. In this paper
we will just consider the ensemble average of the first few cumulants of
Ρs(F). A more complete analysis including the ensemble covariance has
been carried out for Boltzmann selection in [3].

We denote the cumulants of the original distribution Ρ(F) by Kn and
those of the distribution after selection by Ks

n. We need also to dis-
tinguish between statistics describing a finite population and those de-
scribing a distribution from which a sample is drawn. We denote the
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cumulants describing the finite population by Κn. Thus

Κ1 $
1
P

P!
Α$1

FΑ

Κ2 $
1
P

P!
Α$1

F2
Α &

'(((((
)

1
P

P!
Α$1

FΑ

*+++++
,

2

and so on. On average a finite population drawn from a probability
distribution has different cumulants than the probability distribution.
The average first four cumulants for a sample of P individuals is

Κ̄1(P) $ K1 (1)
Κ̄2(P) $ P2K2 (2)
Κ̄3(P) $ P3K3 (3)

Κ̄4(P) $ P4K4 &
6
P
P2K2

2 (4)

where P2 $ (1&1/P), P3 $ P2(1&2/P), and P4 $ P2(1&6/P-6/P2). We
use the bar to denote the sample average. Inverting these equations we
can obtain unbiased estimates for the cumulants of a distribution from
a sample. These unbiased estimates are Fisher’s k-statistics [10]. (If we
are to treat the fourth cumulant we must also include information on the
ensemble covariance, since the average cumulants for a finite population
are no longer linear in the distribution cumulants. More details can be
found in [3]. In the present paper we restrict our attention to the first
three cumulants.)

We will focus our investigation on ranking selection where we assign
a rank of 0 to the least fit member of the population, a rank 1 to the
next least fit member of the population, and so on. The fittest member
of the population will therefore be assigned a rank P & 1. An individual
Α is selected with a probability

pΑ $
2rΑ

P(P & 1)
(5)

where rΑ is the rank of member Α. If some members have the same fitness
we have a choice of assigning an arbitrary ranking order or else assigning
them an average group rank. This choice will affect how often we select
individuals with the same fitness, but will not affect the distribution of
fitnesses after selection as individuals with the same fitness are identical
as far as the distribution of fitness is concerned. We will consider roulette
wheel selection where we draw the new population with replacement
from the old populations. A superior selection method, leading to less
fluctuations, is stochastic universal sampling [9]. This has been modeled
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using the approximation scheme of [6]. That paper also extends the
analysis to the case where pΑ . rΑ -c, where c is a constant that controls
the strength of selection.

Binary tournament selection can be regarded as a mechanism for
achieving (roulette wheel) ranking selection. In binary tournament se-
lection we randomly pick two different members of the population and
select the fitter one. The probability of selecting a member Α will be
proportional to the number of individuals less fit than it, but this is just
its rank rΑ. Thus binary tournament selection gives rise to exactly the
same probability of selection as in equation (5) for ranking selection.

3. Selection in a finite population

In this section we present the exact result of ranking selection on the
first few cumulants. We start this section with a reminder of the infinite
population result of Blickle and Theile [4] (their results are extended to
include the third cumulant). We then discuss sampling corrections due to
the randomness in the selection procedure. Finally, we have to calculate
the sampling corrections due to drawing the initial population from a
distribution Ρ(F). The calculations differ for continuous and discrete
fitness functions. We present the continuous case first and derive the
exact results for the first three cumulants. For the discrete case we have
calculated only the first two cumulants. Note that we are calculating
the stochastic effects in the reverse order to how they occur in Figure 2.

Infinite population

In an infinite population, starting from a population with a fitness dis-
tribution Ρ(F), the distribution after selection would be given by

Ρ/s(F) $ 2Ρ(F)R(F) (6)

where

R(F) $

F"
&/

Ρ(F) dF. (7)

The cumulants after selection are given by

K/s
n $

0
0Γn log#" eΓFΡ/s(F) dF$%%%%%%%Γ$0

. (8)

For a general distribution we would have to perform the integral
numerically. If we start from a distribution where we know only the
first M cumulants we need to model the distribution. One possible
model is provided by the Gram–Charlier expansion

Ρ(E) 2
e&(E & K1)2/2K2&

2Π K2

'(((((
)
1 -

M!
n$3

Kn

Kn/2
2

hn#E & K1&
K2
$*+++++
,

(9)
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where h3(x) $ (x3 & 3x)/3!, h4(x) $ (x4 & 6x2 - 3)/4!, and so on, are
related to the Hermite polynomials. They can be generated from the
recurrence relation

hn(x) $
1
n

(xhn&1(x) & hn&2(x))

with h0(x) $ 1 and h1(x) $ x. Note that for this expansion the first M
cumulants are correct but the function is not guaranteed to be positive
everywhere. Using a Gram–Charlier expansion with three cumulants
we find

K/s
1 $ K1 -

'
K2

Π
#1 &

s2

96
$ (10)

K/s
2 $ K2 #1 &

1
Π

-
s

2
&

Π
-

s2

48Π
&

s4

9216Π
$ (11)

K/s
3 $ K3/2

2 # 1
2
&

Π
#4
Π

& 1$ - s #1 &
3
2Π
$ & s2

192
&

Π
#12

Π
- 1$

-
s3

64Π
-

s4

1536Π3/2 &
s6

442368Π3/2 $ (12)

where s $ K3/K3/2
2 is the skewness of the distribution. The cumulants

for a gaussian are obtained by setting s $ 0.
One of the reasons why the statistical mechanics approach is ap-

proximate is that we do not keep sufficient statistics to describe the
distribution of fitnesses exactly. Modeling the dynamics using a trun-
cated set of cumulants is usually a good approximation provided Kn/Kn/2

2

is small for the higher cumulants. Crossover has the effect of reducing
the higher cumulants, thus making the modeling process easier.

Fluctuations in selection
We now consider the effect of selection on a finite population. The first
three cumulants for a finite population after selection are given by

Κs
1 $

1
P

P!
Α$1

nΑFΑ (13)

Κs
2 $

1
P

P!
Α$1

nΑF2
Α &

'(((((
)

1
P

P!
Α$1

nΑFΑ

*+++++
,

2

(14)

Κs
3 $

1
P

P!
Α$1

nΑF3
Α &

3
P2

P!
Α,Β$1

nΑnΒF
2
ΑFΒ

-
2
P3

P!
Α,Β,Γ$1

nΑnΒnΓFΑFΒFΓ (15)
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where nΑ is the number of times we select member Α. We assume roulette
wheel sampling (or equivalently, binary tournament selection) so that the
probability of selecting n1 samples of member 1, n2 samples of member
2, and so on, is given by the multinomial probability distribution

P(n1, n2, . . . , nP) $ P!
P(

Α$1

p
nΑ
Α

nΑ!

566666666667

P!
Α$1

nΑ $ P

89999999999:

where we have used the convention

)predicate* $ + 1 if predicate is true
0 if predicate is false

to denote an indicator function (in this case the indicator function is a
Kronecker delta). We can average over all ways of performing selection
(we denote this average by!). For a multinomial distribution we find

nΑ $ PpΑ

nΑ nΒ $ P(P & 1)pΑ pΒ - P pΑ )Α $ Β*
where ,!- denotes the average over all ways of performing selection.
Using this we find

Κs
1 $

P!
Α$1

pΑFΑ (16)

Κs
2 $ P2

'(((((
)

P!
Α$1

(pΑ & p2
Α)F2

Α &!
Α;Β

pΑ pΒ FΑ FΒ

*+++++
,

(17)

Κs
3 $ P3

'(((((
)

P!
Α$1

(pΑ & 3p2
Α - 2p2

Α)F3
Α & 3!

Α;Β

(pΑ pΒ & 2p2
Α pΒ)F

2
Α FΒ

-2!
Α;Β

pΑ pΒ pΓ FΑ FΒFΓ

*+++++
,

(18)

where P2 and P3 are the finite population correction factors given
above. From these cumulants for the finite population we can cal-
culate k-statistics for a distribution Ρs(F). These are just .Ks

1/ $ .Κs
1/,.Ks

2/ $ .Κs
2/ /P2, and .Ks

3/ $ .Κs
3/ /P3. We could have arrived at these

results directly from equations (13) through (15). If we select an infi-
nite population then the number of times nΑ that we select Α would be
PpΑ. Substituting this into equations (13) through (15) we would have
obtained equations (16) to (18) except without the finite population
corrections P2, P3, and so on. Referring to Figure 2, this illustrates the
direct way to go from stage 2 to stage 4.

So far we have calculated the result of selection starting from a par-
ticular population. We now have to average over all ways of drawing
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a finite population from a distribution Ρ(F), with cumulants Kn. This
calculation depends on whether Ρ(F) represents a continuous or discrete
distribution. We first present the case when Ρ(F) is continuous.

Sampling fluctuation in a continuous distribution

We begin by relabelling the members of the population according to
their rank. Thus the first three cumulants are given by

Ks
1 $

1
Z

P&1!
r$0

rFr (19)

Ks
2 $

P&1!
r$0

# r
Z

&
r2

Z2 $ F2
r &

1
Z2 !

r;r<

r r< Fr Fr< (20)

Ks
3 $

P&1!
r$0

# r
Z

&
3r2

Z2 -
2r3

Z2 $ F3
r & 3!

r;r<

# r r<

Z2 &
2r2r<

Z3 $ F2
r Fr<

-
2

Z3 !
r;r<;r<<

r r< r<< Fr Fr< Fr<< (21)

where Fr is the fitness of the rank r member of the population and
Z $ P(P & 1)/2 is a normalization constant. We now average over all
ways of drawing a finite sample from Ρ(F) (we denote this average by,!-). The sample average for the first cumulant is therefore given by

K
s
1 $ .Ks

1/ $ 1
Z

P&1!
r$0

r .Fr/ (22)

where

.Fr/ $ /"
&/

Fpr(F) dF. (23)

For a finite population the fitness distribution of the rth ranked indi-
vidual, drawn from a population Ρ(F), is given by

pr(F) dF $ P #P & 1
r
$Rr(F) 01 & R(F)1P&r&1 dR(F) (24)

where R(F) is defined in equation (7), so that dR(F) $ Ρ(F) dF. The first
factor of P arises because the rth ranked individual may be any member
of the population. The remaining members of the population consist
of r with F = Fr and P & 1 & r with F > Fr. The number of ways of
dividing the P&1 remainder into the two groups is given by the binomial
coefficient (P & 1)!/(r!(P & 1 & r)!). Finally, Rr(F)(1 & R(F))P&r&1Ρ(F) dF
gives the probability that the rth ranked individual has fitness F. It is
simple to check that pr(F) is properly normalized when averaging over
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Figure 3. Probability distributions for four samples drawn from a gaussian dis-
tribution with mean 0 and variance 1. pr(F) shows the distribution for the rth
ranked sample.

all F and over all r. In Figure 3 we show pr(F) for a population of size
4, starting from a gaussian with zero mean and unit variance.

From equations (22) and (23) we find

K
s
1 $

2
P(P & 1)

/"
&/

F
P&1!
r$0

rpr(F) dF (25)

where we have inverted the order of integration and summation. Using
equation (24) we find

P&1!
r$0

r pr(F) $ P(P & 1)Ρ(F)R(F).

Thus equation (25) reduces to

K
s
1 $

/"
&/

FΡ/s(F) dF (26)

where

Ρ/s(F) $ 2Ρ(F) R(F) (27)

is the probability distribution after selection for an infinite population
(c.f. equation (6)). The average effect of selection on the first cumulant
(average fitness) is exactly the same for a finite population as it is for an
infinite population.

The calculation for higher order cumulants follows similarly, al-
though in this case we obtain a finite population correction. The second
cumulant is given by

K
s
2 $

P&1!
r$0

# r
Z

&
r2

Z2 $ .F2
r / & 1

Z2 !
r;r<

r r< .Fr Fr</ . (28)
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The term proportional to r is similar to what we have already calculat-
ed. The term proportional to r2 involves the sum

P&1!
r$0

r2pr(F) $ Ρ(F) 0P3R2(F) - P2R(F)1
where we have used the notation

Pn $ P(P & 1)!(P & n - 1) $
P!

(P & n)!
. (29)

The first term in equation (28) gives

P&1!
r$0

# r
Z

&
r2

Z2 $ .F2
r / $ I2,1 &

2(P & 2)I2,2 - 2I2,1

P(P & 1)

where we define the integral

In,m $ 2

/"
&/

Fn Rm(F) Ρ(F) dF. (30)

Using this notation K
s
1 $ I1,1. We can write the second term in equa-

tion (28) as

1
Z2 !

r;r<

r r< .Fr Fr</ $ 2
Z2

P&2!
r$0

P&2&r!
s$0

r(r - s - 1) .Fr Fr-s-1/
where

.Fr Fr-s-1/ $ /"
&/

/"
&/

Fr Fr-s-1 pr,s(Fr, Fr-s-1) dFr-s-1 dFr.

Thus to calculate this term we need the joint probability distribution for
the fitnesses of the rank r and rank r - s - 1 members of the population.
This is given by

pr,s(F1, F2) $ P(P & 1) Cr,s(R1, R2) Ρ(F1) Ρ(F2) )F1 > F2*
where we use the shorthand Rn $ R(Fn) and

Cr,s(R1, R2) $
(P & 2)!Rr

1(R2 & R1)s(1 & R2)P&2&r&s

r!s!(P & 2 & r & s)!
.

Straightforward but tedious algebra gives

!
r;r<

r r< .Fr Fr< / $ P4I1,1?1,1 - 2P3I1,1?1,0
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where

Ii,j?k,l $ 2

/"
&/

Fi
1 Rj(F1)

'((((((((
)

/"
F1

Fk
2 Rl(F2) Ρ(F2) dF2

*++++++++
,

Ρ(F1) dF1.

By symmetry,

Ik,n?k,n $
1
4

Ik,nIk,n

so that I1,1?1,1 $ I2
1,1/4.

Collecting together terms we find the change in the second cumulant
is given by

K
s
2 $ I2,1 &

P4

(P2)2 I2
1,1 &

2P3

(P2)2 04I1,1?1,0 - I2,21 & 2I2,1

P2 . (31)

For a gaussian we can perform the integrals exactly. Starting from a
gaussian with variance K2, the average variance after selection is given by

K
s
2

K2
$ 1 &

1
Π

& #7
3

&
5
Π

-
6&
3Π
$ 1

P
- #2

3
&

6
Π

-
12&
3Π
$ 1

P2 . (32)

The calculation of the third cumulant follows a similar pattern. The
calculation is presented in the appendix.

Sampling fluctuation in a discrete distribution

The solution above is given in terms of integrals. When the fitness values
are discrete these integrals should become sums, but it is not obvious
how to do this. One complicating factor is that for discrete fitnesses
a finite population will typically contain many individuals of the same
fitness. We assume that individuals with the same fitness are assigned
an arbitrary ranking. In this section we derive the change in the first
two cumulants for discrete fitness functions.

We assume that the initial fitness function p(F) is given, but with
F @ Ÿ. (To be more general we could consider a fitness function with
fitnesses Fi, with i @ Ÿ. The generalization is straightforward, but for
simplicity we restrict our attention to the case when the fitnesses take
on integer values.) A finite population is now drawn from p(F). We
denote the number of individuals with fitness F by n(F). The number of
individuals with fitness less than F we denote by

S(F) $
F&1!

F<$&/

n(F<).

The probability of selecting an individual Α is given by

pΑ $
rΑ
Z

$
2

P(P & 1)
(S(FΑ) - iΑ)
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where iΑ @ A0, 1, . . . , n(FΑ) & 1B is the ranking within the group of in-
dividuals with fitness FΑ. The probability of selecting a member with
fitness F is thus given by

ps(F) $
2

P(P & 1)

n(F)&1!
i$0

(S(F) & i)

$
n(F)

P(P & 1)
02S(F) - n(F) & 11 . (33)

Note that we would obtain the same result if we assigned the average
rank to each member of the group.

From equations (19) and (20), summing over members with the same
fitness we find the first two cumulants after selection are

Ks
1 $

/!
F$&/

F ps(F)

Ks
2 $

/!
F$&/

F2 0ps(F) & ps(F)21
&2

/!
F$&/

/!
F<$F-1

F F< ps(F) ps(F<).

So far we have considered a particular finite population. We now aver-
age over all ways of drawing a finite population from a discrete distri-
bution p(F). The average fitness after selection is given by

K
s
1 $

/!
F$&/

F .ps(F)/ (34)

where .ps(F)/ is the average probability for selecting a member of fitness
F. From equation (33) we find

.ps(F)/ $ 1
P2 02 ,n(F) S(F)-- .n(F)2/ & ,n(F)-1 .

But the probability of drawing n(F) individuals is given by a multinomial
distribution

P(An(F)B) $ P!
'(((((
)

/(
F$&/

p(F)n(F)

n(F)!
*+++++
,

566666666667
!

F

n(F) $ P

89999999999:

so that,n(F)- $ Pp(F).n(F)2/ $ P2p(F)2 - Pp(F)
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and so on. To compute the average ,n(F) S(F)- we expand S(F)

,n(F) S(F)- $ F&1!
F<$&/

.n(F) n(F<)/ $ P2p(F) P(F)

where

P(F) $
F&1!

F<$&/

p(F<).

Combining these averages together we find.ps(F)/ $ p/s $ p(F) 02P(F) - p(F)1 .
Substituting this back into equation (34) we find

K
s
1 $

/!
F$&/

Fp(F) 02P(F) - p(F)1 .
This is the infinite population result for a discrete population. As with
the continuous case there is no finite population correction in the first
cumulant.

The calculation of the second cumulant follows a similar pattern to
that of the first cumulant, although it involves many more terms. We
find

K
s
2 $ S2,1 &

P4

(P2)2 S2
1,1 &

2P3

(P2)2 04S1,1?1,0 - S2,21 & 2S2,1

P2 (35)

where

Sn,1 $
/!

F$&/

Fnp/s(F)

Sn,2 $
/!

F$&/

Fnp(F) 02P(F)2 - 6p(F)P(F) - 2p(F)21
S1,1?1,0 $

/!
F$&/

F p/s(F)
/!

F<$F-1

F<p(F<).

Comparing this with equation (31) for a continuous fitness distribution
we see a term by term correspondence. The terms Sn,1 and S1,1?1,0
are exactly what we would get by replacing the sums by integrals and
replacing R(F) by P(F) - p(F)/2. The term Sn,2 is, however, not obtained
by a simple discretization of In,2.

4. Approximation scheme

An approximation for ranking selection has been introduced in [5, 6].
The idea behind the approximation is to model ranking selection as a
two stage process.
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1. Starting from Ρ(F) we generate the distribution

Ρ/s(F) $ 2Ρ(F)" F

&/
Ρ(F<) dF<

which would arise from an infinite population.

2. We draw a random sample of P individuals from Ρ/s(F) and perform
tournament or ranking selection on this finite population, but we assign
a random rank to each member of the population.

On average each member of the population will be drawn with a prob-
ability proportional to its expected rank. However, errors arise because
the fluctuations due to selection in a finite population are assumed to
be uncorrelated with the fitness values. The approximation appears
physically plausible, but it is uncontrolled.

In contrast to the exact expressions, the approximation is relatively
simple to calculate and gives simple correction factors. Furthermore it
is straightforward to extend the calculation to include variations which
are often used in practice. Many extensions are given in [5, 6]. Here
we re-derive the approximation, extending the published results to the
third cumulant. This allows us to compare the approximation to the
exact results given above.

Derivation
We start from equations (13) through (15), but now we assume FΑ is
drawn from Ρ/s(F) and nΑ is independent of FΑ. We can now aver-
age over all possible selections (again we denote this average by !).
The expressions now involve terms such as nΑ, n2

Α, and so on. These
can be simplified using the identities (arising from the conservation of
population size)

nΑ $ 1

nΑnΒ $
P & n2

Α

P & 1
(36)

and so on. The equations then simplify to

Κs
1 $ K/s

1 (37)

Κs
2 $

'(((((
)
1 &

n2
Α

P

*+++++
,

K/s
2 (38)

Κs
3 $

'(((((
)
1 &

3n2
Α

P
-

2n3
Α

P2

*+++++
,

K/s
3 (39)

where K/s
n is the infinite population result, equations (10) through (12).

The first cumulant is identical to the infinite population result, in agree-
ment with the exact calculations given above.
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198 A. Prügel-Bennett

For roulette wheel selection the number of times we draw an individ-
ual Α is given by the binomial probability

P(nΑ) $ # P
nΑ
$ pnΑ

Α (1 & pΑ)P&nΑ

so that

nΑ $ PpΑ

n2
Α $ P2p2

Α - PpΑ

n3
Α $ P3p3

Α - 3P2p2
Α - P pΑ.

These results are for a particular pΑ corresponding to a particular rank.
In addition we need to average over all assignments of a rank to an in-
dividual Α. Substituting these averages into equations (37) through (39)
we obtain.Κs

2/ $ P2 01 & P .p2
Α/1K/s

2

.Κs
3/ $ P3 01 & 3P .p2

Α/ - 2P .p3
Α/1K/s

3

where

.pn
Α/ $ 1

P

P&1!
r$0

2 r
Z
3n .

These are straightforward to compute giving

K
s
1 $ K/s

1

K
s
2 $ #1 &

4P & 2
3P(P & 1)

$K/s
2

K
s
3 $ #1 &

12P & 10
P(P & 1)

$K/s
3 .

Comparison of these results with the exact results starting from a
gaussian with mean 0 and variance 1 is shown in Figure 1 at the be-
ginning of this paper. The qualitative behavior of this approximation is
the same as the exact result. For large populations the approximation
overestimates the variance and the third cumulant. As we would expect,
the approximation becomes increasingly accurate as the population in-
creases.

5. Correlations

In a finite population, selection produces a genetic correlation due to
duplication of the fitter individuals. The correlation is in addition to
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the natural correlation we would expect because fit strings tend to be
correlated. The correlation plays an important role in determining the
dynamics of GAs with recombination. The effect of combining two
members of the population will depend on the correlation of the strings.
Crossover will restore the variance in the fitness of the population pro-
vided the strings are not too correlated.

Modeling the dynamics of GAs using the genetic correlation as a
macroscopic variable was first carried out for Boltzmann selection in [11,
12]. For tournament selection it has been calculated in [6]. We briefly
re-derive this result.

The correlation between binary strings
4
SΑ $ (SΑ

1, SΑ
2, . . . , SΑ

L) with SΑ
i @

A1, &1B is defined by

qΑΒ $
1
L

L!
i$1

SΑ
i SΒ

i . (40)

The mean correlation of the population is given by

q $
2

P(P & 1)!
Α<Β

qΑΒ.

The mean correlation after selection is given by

q< $
1

P(P & 1)!
Α,Β

q<
ΑΒ &

1
P

$
1

P(P & 1)!
Μ,Ν

nΜnΝqΜΝ &
1
P

$
1

P(P & 1)
'((((
)
!
Ν

n2
Ν & P

*++++
,
-

2
P(P & 1)!

Μ<Ν

nΜnΝqΜΝ

where nΜ is the number of times we select member Μ. Using equation (36)
we can write these equations as

1 & q< $ Σ(1 & q) &
2

P(P & 1)!
Μ<Ν

nΜnΝ(qΜΝ & q) (41)

where

Σ $
P & .n2/
P & 1

, .n2/ $ 1
P!

Μ

n2
Μ.

The first term in equation (41) represents the correlation due to dupli-
cation, while the second term represents the natural correlation. Note
that, in the limit P F /, the duplication factor Σ goes to 1 so that the
only correlation comes from the second term. On the other hand, if we
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perform neutral selection, where the number of times we select an indi-
vidual does not depend on its fitness (and hence on qΜΝ) then the second
term vanishes, so the only correlation comes from the duplication term.

The natural correlation will depend on the improvement in the aver-
age fitness. Fitter individuals tend to be correlated with each other. It
will, however, depend on the particular problem being tackled. In con-
trast, the duplication term is problem independent and is an intrinsic
property of the selection scheme. For ranking selection or tournament
selection we can calculate the duplication factor exactly; it is

Σ $
3P2 & 7P - 2

3P(P & 1)
.

Generalization of this formula for ranking selection with a parameter
controlling the strength of selection is given in [6].

6. Boltzmann selection

In Boltzmann selection the probability of selecting an individual with
fitness FΑ is

pΑ $
e&ΒFΑ

Z
, Z $

P!
Α$1

FΑ

where Β is a parameter which controls the selection strength. If Β $ 0
all members of the population are chosen with equal probability, while
if Β $ / only the fittest member of the population is chosen.

In an infinite population, Boltzmann selection takes a gaussian to a
gaussian of the same width, but shifted by ΒK2. In contrast to ranking
selection there is no loss in the variance. This is not true in a finite
population. Finite population corrections are much more significant
in Boltzmann selection than in ranking selection because it is the only
source of convergence.

Finite size corrections for Boltzmann selection have been calculated
previously in [1–3]. The calculation can be performed exactly, although
the solution is in terms of a double integral which has to be performed
numerically. Figure 4 shows the change in the first two cumulants as a
function of the selection strength Β for P $ 25, 210, and 220.

When Β
&

K2 is small we can find an expansion for the cumulants after
selection. Two types of expansion are possible depending on how we
sum up the terms. The first is an expansion in 1/P (this has been given
previously in the literature [1–3])

K
s
n $

0n

0Βn

'(((((
)
!
m$1

KmΒm

m
&

1
2P

exp
'(((((
)
!
l$2

(2l & 2)KlΒ
l

l!
*+++++
,

*+++++
,

. (42)
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Figure 4. The curves show changes in the first and second cumulant, starting
from a gaussian, as a function of Β for P $ 25, 210, and 220.

Keeping together terms of order Β we obtain a second expansion

K
s
n $!

m$0

Κ̄n-m(P)Βm

m!
(43)

where Κ̄n(P) is the expected nth cumulant for a random sample of P
individuals drawn from a distribution Ρ(F). They are just what we gave
in equations (1) through (4) above. (Equation (43) has not appeared
before in the literature.)

We can calculate the correlation due to duplications for Boltzmann
selection. Unlike ranking and tournament selection this will depend on
the distribution of fitnesses. The correlation term

Σ $
P & .n2/
P & 1

can be calculated in terms of multiple integrals. We can compute these
integrals numerically. Figure 5 shows Σ starting from a gaussian. To
leading order in 1/P

Σ $ 1 &
eΚ2Β

2

P
.

To compare Boltzmann selection with ranking or tournament selec-
tion we should take the gain in the first cumulant to be the same. For
a gaussian this gain is

&
K2/Π. For a reasonable sized population this

gain can be achieved using Boltzmann selection with a selection strength
of Β $ 1/

&
ΠK2. From equation (42) we see that the second cumulant

is reduced by a factor of approximately 1 & (1 - 1/Π) exp(1/Π)/P. This
compares with a reduction factor given by equation (32). Note that the
reduction in the second cumulant is a finite size effect for Boltzmann se-
lection, while, even in an infinite population, ranking selection reduces
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Figure 5. The duplication term Σ is shown as a function of Β for populations of
size P $ 2n, with n $ 5, 10, and 20.

the variance by a factor of 1&1/Π. The correlation from the duplication
term is approximately Σ 2 1&exp(1/Π)/P 2 1&1.375/P for Boltzmann se-
lection compared to 1&7/3P for ranking or tournament selection. By all
these measures Boltzmann selection seems superior to ranking and tour-
nament selection. However, Boltzmann selection causes a negative third
cumulant or skewness. Ranking selection by contrast causes a small
positive skewness. Negative skewness reduces the gain in the fitness.
As the evolution proceeds negative skewness can build up, reducing the
effectiveness of Boltzmann selection. Thus, to compare Boltzmann and
ranking selection we must consider the full evolution.

7. Conclusions

The statistical mechanics approach to studying evolving populations
has been developed over the past six years. Many of the important
intuitions that have been obtained from this formalism come through
using crude approximations [1, 5, 6, 11–18]. However, the validity of
these approximations rely on more careful analysis [2, 3]. This careful
analysis can lead to important results, such as the exact solution of a
GA assuming linkage equilibrium [19].

This paper presents a number of new results. In particular it gives
exact finite size corrections for ranking or tournament selection. Un-
fortunately the results are not in a particularly simple form. However,
the results have been used to validate the approximation first developed
in [5, 6]. The approximation is much easier to generalize and would
appear to be sufficiently accurate for most modeling purposes.

We have also compared ranking selection with Boltzmann selection.
A complete comparison is not possible since selection affects the higher
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cumulants which will influence the evolution of the lower cumulants.
Thus it would be necessary to model the complete dynamics to perform
a comprehensive comparison, but this would introduce a problem de-
pendence. Nevertheless, the evidence seems to suggest that Boltzmann
selection may be superior to ranking and tournament selection.
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Appendix

A. Exact third cumulant calculation

The third cumulant is made up of three terms

Ks
3 $

Κs
3

P3
$ T1 - T2 - T3

where

T1 $
P&1!
r$0

# r
Z

&
3r2

Z2 -
2r3

Z3 $ F3
r

T2 $ &3!
r;r<

# r r<

Z2 &
2r2r<

Z3 $ F2
r Fr<

T3 $
2

Z3 !
r;r<;r<<

r r< r<<Fr Fr< Fr<< .

Following the same procedure as for the first two cumulants we find

T1 $
1

P3(P & 1)3 0P3 0P2 & P & 41 0(P - 1)I3,1 & 6I3,21 - 8 P4 I3,31 .
The second term is

T2 $
&3

P3(P & 1)3 0P6I1,1I2,1 & 4P5I1,1I2,2 - 8P4(4I2,1?1,1 & 3I2,2?1,0)

- 4P3(P2 & P & 8)I1,1?2,0 - 4P3(P2 & P & 4)I2,1?1,01
while the third term is

T3 $
2

P3(P & 1)3 0P6I3
1,1 - 48P5(I1,1?1,0?1,1 - 2I1,1?1,1?1,0)

- 144P4I1,1?1,0?1,01
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where

Ii,j?k,l?m,n $ 2

/"
&/

/"
F1

/"
F2

Fi
1 R

j
1 Fk

2 Rl
2 Fm

3 Rn
3 dR1 dR2 dR3

and where we have used I1,1?1,1?1,1 $ I3
1,1/6. The third cumulant after

selection, starting from a gaussian, is plotted on the right-hand graph in
Figure 1.

References
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[13] A. Rogers and A. Prügel-Bennett, “The Dynamics of a Genetic Algo-
rithm on a Model Hard Optimization Problem,” Complex Systems, 11
(6) (1997) 437–464.

[14] M. Rattray and J. L. Shapiro, “Noisy Fitness Evaluations in Genetic Al-
gorithms and the Dynamics of Learning,” in Foundations of Genetic Al-
gorithms 4, edited by R. K. Belew and M. D. Vose (Morgan Kaufmann,
San Francisco, 1997).

[15] S. Bornholdt, “Probing Genetic Algorithm Performance of Fitness Land-
scapes,” in Foundations of Genetic Algorithms 4, edited by R. K. Belew
and M. D. Vose (Morgan Kaufmann, San Francisco, 1997).
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