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Inspired by a model first studied by W. Li in [7], scaling properties of the
correlation function for expansion-modification systems are developed.
The existence of several characteristic exponents is proved and the rela-
tionship of this fact with long-range correlations in DNA is established.
Comparison between theoretical exponents and those obtained from nu-
merical experiments and real biological sequences is also included.

1. Introduction

The discovery of the DNA molecule has revolutionized our way of
thinking about biological evolution [1]. One of the most important
challenges of our times is the understanding of its dynamics, because,
notwithstanding the huge amount of sequenced base pairs, the rate of
understanding the function of this data is far behind its rate of acquisi-
tion.

The studies of long-range correlation in DNA [2–5, 8–17] have been
a fruitful line of research in recent years. A symbolic sequence is said
to have long-range correlations if its power spectrum scales as 1/dc,
where d is the distance between symbols in the sequence and c " 1.
It is well known that the power-law correlation function is equivalent
to the power-law power spectrum [19]. Hence, sometimes long-range
correlations are defined in terms of a power-law spectrum.

Most of the papers about this subject report experimental evidence
on long-range correlations [3–5, 8, 9, 14, 16]. Among them, accurate
numerical studies have shown that the spectrum of real sequences [3],
as well as those simulated by computers [8, 9], do not fit very well to
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a power-law function. In [3] the existence of three spectral regimes
corresponding to relatively high-frequency, middle-frequency, and low-
frequency scaling regions are reported. Li’s simulations [7, 19] also
suggest that power spectrums possess more than one exponent and the
analytical approximation of the real exponent [19] does not fit very well
to data. In general, for low frequencies as well as for the high ones, the
power spectrum “breaks” [3] and a better fit is obtained with a function
of the type !i 1/f ci where f stands for frequency.

Only a few papers have developed theoretical models designed to
explain long-range correlations and, as far as we know, nothing has been
done to understand the existence of several regimes in power spectrums
and hence in correlation functions.

The aim of this paper is to prove that for the model proposed in
[19], the correlation function has behavior of the form !i Ki/d

Φi(d). We
obtain constants Ki and asymptotic upper and lower bounds for the
functions Φi(d). We also prove that one of these exponents has a more
important contribution to correlation functions than the others and
show its fitness with respect to those obtained in simulations and in real
sequences.

The structure of this paper is as follows. In section 2 we present the
model and develop our main results. We obtain a closed form for the
correlation function and also asymptotic expressions for its exponent.
Section 3 is for discussion and section 4 for conclusions. All the heavy
calculations can be found in the appendices.

2. Fundamental results

The evolution of nucleotide sequences is an instance in which two com-
peting processes play an important role in determining the statistical
properties of the sequences. Among the group of modifications that
DNA sequences experience, replications and point mutations are, in
some sense, antagonistic mechanisms. Replications insert substrings
in several sites creating long-range correlations, while point mutations
tend to destroy them. If the evolution of DNA consisted just of repli-
cations, the limiting sequence would be periodic; if on the other hand
the point mutation rate was too high, the limiting sequence would be
random. Only when the two processes are in an appropiate balance
do the nucleotide sequences show nontrivial long-range correlations as
observed in nature.

Hence, a model which describes that feature of real sequences should
take into account replication and point mutation. We will consider in
our work binary sequences. This fact does not reduce the scope of our
conclusions because there are several ways of coding DNA sequences
using binary digits [3]. Moreover, that kind of coding has been used to
study long-range correlations in DNA.
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Figure 1. A realization of the expansion-modification process.

The simplest expansion-modification system [17] is the two-symbol
system in which the expansion process rewrites one symbol into two
identical symbols and the modification process switches one symbol to
another different symbol. This process captures the mechanism behind
point mutations and insertions and is in good agreement with some
experimental facts [11] about the length of inserted strings and some
features of the point mutation dynamics.

We first introduce some notations. Let xt % !Αt
oΑ

t
1! be a binary

sequence. It is mapped in xt'1 %!Αt'1
0 Αt'1

1 ! by means of the following
rules: each symbol Αt

i is substituted by two identical symbols with prob-
ability 1 ( p or switches to the other symbol with probability p, that is,

0 ) "00 1 ( p
1 p * 1 ) " 11 1 ( p

0 p.

A particular realization of this process is shown in Figure 1. If Α+ and
Β+ represent two symbols of xt separated by distance d+, upon applying
the rewriting rule, this symbol pair would lead to another symbol pair
Α, Β in xt'1 separated by a longer distance d. Let Pt

Α,Β(d) be the joint
probability of having the symbol pair Α, Β separated by the distance d.

Assuming that the transition probability from an Α+, Β+ pair initially
at distance d+ to an Α, Β pair at distance d is T(Α+, Β+, d+ ) Α, Β, d), the
joint probability satisfies the dynamical equation:
-................./

Pt'1
0,0 (d)

Pt'1
0,1 (d)

Pt'1
1,0 (d)

Pt'1
1,1 (d)

0111111111111111112

%
d#

d+%[d/2]

-.............../

T(00 ) 00) . . T(11 ) 00)
. . . .
. . . .

T(00 ) 11) . . T(11 ) 11)

01111111111111112

-................/

Pt
0,0(d+)

Pt
0,1(d+)

Pt
1,0(d+)

Pt
1,1(d+)

011111111111111112

, (2.1)

where we have written T(Α+, Β+ ) Α, Β) instead of T(Α+, Β+, d+ ) Α, Β, d)
for simplicity. From now on, the square brackets [.] stand for the integer
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part of a real number. The summation index in equation (2.1) begins
at d+ % [d/2] because symbols Α+, Β+ initially at a distance smaller than
[d/2] cannot transform into Α, Β at distance d.

The transition probabilities T(Α+, Β+, d+ ) Α, Β, d) can be grouped into
three types.

T0(d+, d, p): Keep both symbols unchanged, for instance: T(0, 0 ) 0, 0).

T1(d+, d, p): Change one symbol, for instance: T(0, 1 ) 1, 1).

T2(d+, d, p): Change both symbols, for instance: T(1, 1 ) 0, 0).

Hence, equation (2.1) can be written as:

Pt'1(d) %
d#

d+%[d/2]

T(d+, d, p)Pt(d+) (2.2)

where

Pt(d) %

-................/

Pt
0,0(d)

Pt
0,1(d)

Pt
1,0(d)

Pt
1,1(d)

011111111111111112

T(d+, d, p) %

-.............../

T0 T1 T1 T2
T1 T0 T2 T1
T1 T2 T0 T1
T2 T1 T1 T0

01111111111111112

.

In this matrix we have written TS instead of TS(d+, d, p) in order to
simplify notation.

Suppose there is a time invariant condition in the t ) '3 limit and
the superscript can be dropped [19]. Then equation (2.2) takes the
following form:

P(d) %
d#

d+%[d/2]

T(d+, d, p)P(d+) (2.3)

or

P(d) % (I ( T(d, d))(1
d(1#

d+%[d/2]

T(d+, d, p)P(d+). (2.4)

Equation (2.4) is a recursive definition for vector P(d) that is difficult to
handle. We now obtain a closed form expression for P(d). Let G(d, n) be
the multiple-index set (i1, . . . , in) which holds the following conditions.

1. i1 % 1, in % d.

2. i1 < i2 <! < in.

3. For every l % 1, . . . , n ( 1: [il'1/2] 4 il.
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Then it can be proved (see appendix A1 for the details) that:

P(d) %
56667666
8

d#
n%2

#
(i1,...,in)9G(d,n)

M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1) (2.5)

where I(d) % (I ( T(d, d, p))(1 and M(d+, d) % I(d)T(d+, d, p). We ignore
the dependence of M(d+, d) on p just for simplicity. As we also show
in appendix A1, the summation in equation (2.5) could begin at n %
1 ' [log2 d]. See equation (A1.9) and the discussion above.

We would like to stress the meaning of the G(d, n) sets. Matrix
M(d+, d) is in some sense a transition matrix. Therefore the product
M(in(1, in) . . .M(i1, i2) is the transition probability matrix from an Α+, Β+

pair initially side by side to reach the distance d in n time steps (recall
that i1 % 1 and in % n always). Then G(d, n) represents the set of ways
to reach a distance d starting from distance 1 in n time steps.

Note that P(d) depends on P(1). In sequences of four symbols (such
as DNA sequences), P(1) is related to the dimers structure. As we
have shown [11, 20] P(1) distinguishes the noncoding regions of the
DNA molecule. That is why we use it in [11] as a fitness function for an
evolutionary model studied there. Because the matrices in equation (2.5)
depend on M(d+, d) our next step is to study the structure of matrix
T(d+, d, p). It can be proved that:

T(d+, d, p) %

-.............../

T0 T1 T1 T2
T1 T0 T2 T1
T1 T2 T0 T1
T2 T1 T1 T0

01111111111111112

% Q

-.............../

Π1 0 0 0
0 Π2 0 0
0 0 Π2 0
0 0 0 Π3

01111111111111112

Q(1 % QDQ(1

where:

Π1 % T0 ' 2T1 ' T2* Π2 % T0 ( T2* Π3 % T0 ( 2T1 ' T2 (2.6)

Q %

-.............../

1 (1 0 1
1 0 (1 (1
1 0 1 (1
1 1 0 1

01111111111111112

* Q(1 %

-.............../

1/4 1/4 1/4 1/4
(1/2 0 0 1/2

0 (1/2 1/2 0
1/4 (1/4 (1/4 1/4

01111111111111112

.

In the same way:

I(d) % Q

-.............../

(1 ( v1)(1 0 0 0
0 (1 ( v2)(1 0 0
0 0 (1 ( v2)(1 0
0 0 0 (1 ( v3)(1

01111111111111112

Q(1 % Q>Q(1

where v1, v2, and v3 are the eigenvalues of the matrix T(d, d, p). Using
the above expression, equation (2.5) can be written as:

P(d) % Q
56667666
8

d#
n%[log2 d]'1

#
(i1,...in)9G(d,n)

?(in(1, in) . . .?(i1, i2)
:666;666
<

Q(1P(1) (2.7)

where ?(ik(1, ik) % >(ik)D(ik(1, ik).
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Denote by:

H(d) %
d#

n%[log2 d]'1

#
(i1,...,in)9G(d,n)

?(in(1, in) . . .?(i1, i2)

H(d) %

-.............../

H1(d) 0 0 0
0 H2(d) 0 0
0 0 H2(d) 0
0 0 0 H3(d)

01111111111111112

where

Hk(d) %
d#

n%[log2 d]'1

#
(i1,...,in)9G(d,n)

∆k(i1, . . . , in) (2.8)

∆k(i1, . . . , in) %
Πk(in(1, in) . . .Πk(i1, i2)
(1 ( v(in)) . . . (1 ( v(i2))

. (2.9)

Equation (2.5) allows us to have closed expressions for PΑ,Β(d) and
hence for the correlation function A(d) [21]. As proven in the following
result, A(d) only depends on H1(d) and H3(d) for almost all sequences.

Proposition 1. Let B % !Α(1Α0Α1Α2! be an infinite string of binary
symbols. Let us denote by P0(B), P1(B) the densities of zeros and ones
respectively in string B. Then if P1(B) C 1/2 we have H2(d) D 1.

Proof. We will use some properties of probabilities PΑ,Β(d) in strings of
binary symbols [21]. For every d E 1:

P0,1(d) % P1,0(d)
P0,0(d) % 1 ( 2P1(B) ' P1,1(d)
P1,0(d) % P1(B) ( P1,1(d).

It is not difficult to see that:
-.............../

P0,0(d)
P0,1(d)
P1,0(d)
P1,1(d)

01111111111111112

%
1
4

M(P1(B), P1,1(1))

-.........../

H1(d)
H2(d)
H3(d)

0111111111112
(2.10)

where

M(P1(B), P1,1(1)) %

-.............../

1 2(1 ( 2P1(B)) 1 ( 4P1(B) ' 4P1,1(1)
1 0 ((1 ( 4P1(B) ' 4P1,1(1))
1 0 ((1 ( 4P1(B) ' 4P1,1(1))
1 (2(1 ( 2P1(B)) 1 ( 4P1(B) ' 4P1,1(1)

01111111111111112

.

Now because of P00(d) % 1( 2P1(B) ' P1,1(d), from equation (2.10) we
have:

(1 ( 2P1(B))H2(d) % 1 ( 2P1(B).

This completes the proof.

Complex Systems, 12 (2000) 207–240



Multiscaling in Expansion-modification Systems 213

Therefore we could write the correlation function as

A(d)%H1(d)'(1(4P1(B)'P1,1(d))H3(d)((P2
1(B)(4P1(B) ' 2). (2.11)

Our next step is to obtain the upper and lower bounds for H1(d) and
H3(d) as a function of ∆k(i1, . . . , in). Hence upper and lower bounds for
∆k(i1, . . . , in) would become the upper and lower bounds for H1(d) and
H3(d). We briefly introduce some notations.

Let (i1, . . . , in) 9 G(d, n) and d0 9 N. Let us denote by l(i1, . . . , in) the
set of indices which are smaller than d0 and by u(i1, . . . , in) those which
are bigger:

l(i1, . . . , in) % Fir 9 (i1, . . . , in)G ir < d0H
u(i1, . . . , in) % Fir 9 (i1, . . . , in)G ir E d0H.

It can be proved (see appendix A2 for details) that:

Lj(p, d0, d, n) E ∆j(i1, . . . , in) 4 Uj(p, d0, d, n) j % 1, 3

where

Lj(p, d0, d, n) % cj(i1, . . . , in)I
j
l(p, d0, d, n)

e($ 1(p
2p S(d,n)%

M(d, n)
(2.12)

Uj(p, d0, d, n) % cj(i1, . . . , in)Ij
u(p, d0, d, n)

e($ p
2(1(p) S(d,n)%

M(d, n)
(2.13)

I
j
l(p, d0, d, n) % &

l(i(1,...,in)

Φ
j
l(p)

1 ( vj(ik)

Ij
u(p, d0, d, n) % &

l(i1,...,in)

Φ
j
u(p)

1 ( vj(ik)

S(d, n) % #
u(i1,...,in)

(ik ( 1)

M(d, n) % &
u(i1,...,in)

(ik ( 1)

Φ1
l (p) %

e$ 1
2(1(p) % ' (1 ( p)2e($ 3

2p % ' 2(1 ( p)'
2Πp(1 ( p)

Φ1
u(p) %

e$ 1
p % ' (1 ( p)2e$ 3

1(p % ' 2(1 ( p)'
2Πp(1 ( p)

Φ3
l (p) %

e$ 1
2(1(p) % ' (1 ( 2p)2e($ 3

2p % ( 2(1 ( 2p)'
2Πp(1 ( p)

Φ3
u(p) %

e$ 1
p % ' (1 ( 2p)2e$ 3

1(p % ' 2(1 ( 2p)'
2Πp(1 ( p)

.
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Remark. It is easy to see that Φ3
l (p) E 0 if 0.0716 4 p. In all that follows

we suppose that p satisfies the above mentioned condition. Notice that
the allowed values of p covers 92.84 percent of the interval [0, 1].

We would also like to note that, as shown in equations (2.12) and
(2.13), upper and lower bounds for ∆j(i1, . . . , in) depend on S(d, n)
and M(d, n). We will obtain upper and lower bounds for S!(d, n) %!(i1,...,in)9G(d,n)(ik ( 1) and M!(d, n) % J(i1,...,in)9G(d,n)(ik ( 1), which to-
gether with equations (2.12) and (2.13), will be used to obtain uniform
bounds for ∆j(i1, . . . , in) on G(d, n).

The expression S!(d, n), as well as M!(d, n), reach their maximum
values in those members of the set G(d, n) in which the last elements are
consecutive, for example, in % d, in(1 % d ( 1, in(2 % d ( 2, and so on.
This condition constrains the first ones to be as sparse as possible, but
fulfilling the condition [ik'1/2] % ik, for example,

(i1, i2, . . . , in(r(1, in(r, . . . , in) % (1, 3, . . . , 2n(r(1 ( 1, d ( r, . . . , d).

Therefore we should find an index r such that:" (d(r
r ) 4 2n(r(1 ( 1

2n(r(2 ( 1 < (d(r(1
2 ) . (2.14)

If d ( r is even, the above conditions are equivalent to:

"d ' 2 4 2n(r ' r
2n((r'1) ' r ' 1 4 d.

(2.15)

If d ( r is odd, the conditions of equation (2.14) are equivalent to:

"d ' 1 4 2n(r ' r
2n((r'1) ' r ' 1 4 d ' 1.

(2.16)

In order to obtain such an index r we will solve the equation

2n(r ' r % d ' 1. (2.17)

Figure 2 shows the graph of the difference between solutions of the
equations:

2n(r ' r % d
2n(r ' r % d ' 2

as a function of d. This justifies the search of index r using equa-
tion (2.17).

It can be proved that the only feasible solution of equation (2.17) can
be expressed by means of the following series expansion:

r %
3#

k%1

1
k!

(ln 2)kPk(d)
(d ln 2 ( 1)2k(1 *n ( ln d

ln 2+k (2.18)
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Figure 2. Difference between solutions of equations 2n(x ' x % d and 2n(x ' x %
d ' 2 for n % 15. As can be seen, this difference tends to zero as d tends to
infinity. This justifies the use of equation (2.17).

where Pk(d) is a polynomial in d of degree k ( 1. The expression
n ( (ln d/ ln 2) is always positive because n E [log2 d] ' 1.

The above series could be written as:

r %
3#

k%1

1
k!

Pk(d)
(d ln 2 ( 1)k(1 *n ln 2 ( ln d

d ln 2 ( 1
+ .

Let us note that

0 4
n ln 2 ( ln d
d ln 2 ( 1

4
d ln 2 ( ln d
d ln 2 ( 1

and it is easy to see that

lim
d)3

Pk(d)
(d ln 2 ( 1)k

%
1

ln 2
.

Therefore, as a solution of equation (2.17) we will use the approxima-
tion done by the first term of the series in equation (2.18):

ru %
d ln 2

d ln 2 ( 1
*n ( ln d

ln 2
+ . (2.19)

We want to remark on the accuracy of this approximation. In Table 1
are shown some couples of (d, n), the exact values of n ( r, and the
approximation obtained from equation (2.19) (labeled n ( ru).

Complex Systems, 12 (2000) 207–240
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d n n ( r n ( ru

30 10 5 4.64
30 20 4 4.14
33 11 5 4.77
60 20 6 5.55
60 40 5 5.06
62 7 6 5.92
80 13 7 6.19
81 18 7 6.12

120 40 7 6.50
120 80 6 6.01
240 80 8 7.47
240 160 7 6.98

Table 1. Exact values of n ( r and their estimates n ( ru.

From the results obtained we could have upper bounds for S!(d, n)
and M!(d, n):

S!(d, n) 4 Su(d, n) and M!(d, n) 4 Mu(d, n) (2.20)

where:

Su(d, n) % dK1(
n

d ln d L ' 2d *n ' 2 (
ln d
ln 2
+ ' ln d

ln 2
*2n ( 1 '

ln d
ln 2
+ (2.21)

Mu(d, n) % 2$ (n(ru)(n(ru(1)
2 % d!

(d ( ru ( 1)!
. (2.22)

We proceed in the same way for the lower bounds. The expression
S!(d, n), as well as M!(d, n), reach their minimum values in those mem-
bers of the set G(d, n) in which the last elements are as sparse as possible.
This condition constrains the first ones to be consecutive, because the
condition ik < ik'1, k % 1, . . . , n ( 1 must be fulfilled:

(i1, . . . , ir, ir'1, . . . , in) % (1, . . . , r, ir'1, . . . , in)

where:, il'1

2
- 4 il* l % r ' 1, . . . , n ( 1.

Therefore, we should find an index r such that:

"2n((r'1)(r ' 1) < d ' 1
d ' 1 < 2n(rr.

(2.23)

To obtain such an index, we will solve the equation

2r(n ( r) % d ' 1. (2.24)

Complex Systems, 12 (2000) 207–240
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It can be proved that the only feasible solution of equation (2.24) is
expressed by means of the following series expansion:

r %
3#

k%1

1
k!

(ln 2)kPk(d)
(d ln 2 ( 1)2k(1

(d ( n)k (2.25)

where Pk(d) is a polynomial of degree k ( 1. More precisely:

Pk(d) % (k ( 1)!(ln 2)k(2dk(1 '! ' d.

Besides, it is not difficult to see that

0 4
d ln 2 ( n ln 2

d ln 2 ( 1
4

d ln 2 ( ln d
d ln 2 ( 1

4 1

and

lim
d)3

Pk(d)
(d ln 2 ( 1)k

%
1

ln 2
.

Hence, for d large enough:

r "
1

ln 2

3#
k%1

1
k
*d ln 2 ( n ln 2

d ln 2 ( 1
+k % 1

ln 2
ln .d ln 2 ( 1

n ln 2 ( 1
/ . (2.26)

We will take this as an approximation to the solution of equation (2.24).
In Figure 3 we present the graphs of the whole series (upper plot) and
the approximation by equation (2.26) (lower plot) for d % 1024 and
11 4 n 4 1000. In Table 2 we present some couples of (d, r), the
corresponding values of r, and the approximation obtained from equa-
tion (2.26) (labeled rl).

From all of the above:

S!(d, n) E Sl(d, n)* M!(d, n) E Ml(d, n) (2.27)

where

Sl(d, n) %
(n ( rl)(n ( rl ( 1) ( 2n

2
' (d ' 1)" (d ( n) ln 2 ( 1

2d ln 2 ( 1
0

(
1

ln 2
ln .d ln 2 ( 1

n ln 2 ( 1
/ ' 1 (2.28)

Ml(d, n) % d(n ( rl ( 1)!(d ' 1)rl2($ rl (rl'1)
2 %eK 2

d'1 (2rl(1)L. (2.29)

We finally have all the elements to construct upper and lower bounds
for Hj(d). Let us denote the following:

cu
j (d0, n) % max

(i1,...,in)9G(d,n)
cj(i1, . . . , in)

cl
j(d0, n) % min

(i1,...,in)9G(d,n)
cj(i1, . . . , in)
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Ql(d0, n) % min
(i1,...,in)9G(d,n)

Wl(i1, . . . , in)

Qu(d0, n) % max
(i1,...,in)9G(d,n)

Wu(i1, . . . , in)

Wl(i1, . . . , in) % &
l(i1,...,in), kC1

1
ik ( 1e$ 1(p

2p !l(i1,...,in)(ik(1)%

Wu(i1, . . . , in) % &
l(il ,...,in), kC1

1
ik ( 1e$ p

2(1(p) !l(i1,...,in)(ik(1)%.

Figure 3. Graph of the whole series (upper plot) and the approximation (lower
plot) for d % 1024 and 11 4 n 4 1000.

d n n ( r n ( rl

30 10 9 8.26
30 20 20 19.37
33 11 11 9.27
60 20 19 18.34
60 40 40 39.39
62 7 4 3.55
80 13 11 10.23
81 18 16 15.73

120 40 39 38.77
120 80 80 79.40
240 80 79 78.34
240 160 160 159.41

Table 2. Exact values of n ( r and their estimates n ( rl.
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Then it can be proved (see appendix A3 for the details) that:

Hj(d) 4
d#

n%[log2 d]'1

cu
j (d0, n)Qu(d0, n)e(Εu(d,n,p) (2.30)

Hj(d) E
d#

n%[log2 d]'1

cl
j(d0, n)Ql(d0, n)e (2.31)

where

Εu(d, n, p) % Εau(d, n, p) ' o *1
d

,
1
n
+ (2.32)

Εl(d, n, p) % Εal (d, n, p) ' o *1
d

,
1
n
+ (2.33)

Εau(d, n, p) %
pd

4(1 ( p)
'

n2

2
' n .2 ln n ' *1 ' 1

ln 2
+ (ln n ( ln d)

(
5 ( 2p

2(1 ( p)
/ ' 1

2
*1 ' 1

ln 2
+ * ln d

ln 2
+2

Εal (d, n, p) %
d
2
.1 ' (2n ' 5) *1 ( p

p
+/

'
1
2

ln d
ln 2
.n ' 1 ( p

p
*1 ( d

2
+ ( ln 2

2
/ ' 1

2
(2n ( 1)

1 ( p
p

.

Note that each term of the sums in equations (2.30) and (2.31) corre-
spond to different G(d, n) sets. Each of them has associated exponents
Εu(d, n, p) and Εl(d, n, p). As we prove below, certain sets of G(d, n)
make a major contribution to the function Hj(d). We also prove the
uniqueness of such a set G(d, n).

If the symbols Α, Β are at distance d+, then between them there are d+(1
other symbols. Taking into account the six possible cases mentioned in
appendix A2, it is easy to prove that the expected values for the distance
is d % (d+ ( 1)(2 ( p) ' 2. Therefore, for a certain value of n there exists
an element (i1, . . . , in) 9 G(d, n), such that, for every k % 1, . . . , n ( 1:
ik'1 % [(2 ( p)(ik ( 1) ' 2].

Let d 9 N and 0 < p < 1. Let n(d, p) be the positive integer such
that the set G(d, n(d, p)) contains the element (i1, . . . , in(d,p)) which holds
the following condition: for every k % 1, . . . , n(d, p) ( 1: ik'1 % [(2 (
p)(ik ( 1) ' 2]. The set G(d, n(d, p)) represents, given d and p, the most
probable ways that two symbols reach the distance d along the sequence
in n(d, p) steps.

Proposition 2. For p ) 0 and d ) 3 we have:

n(d, p) % 1 ' . ln(d(1 ( p) ' p)
ln(2 ( p)

/ . (2.34)
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Proof. Although ik'1 % [(ik ( 1)(2 ( p) ' 2], we have:

ik'1 % (2 ( p)ik ' p ' Εk,

where 0 4 Εk < 1. It can be proved by induction that:

ik % (2 ( p)n(1 ' p" (2 ( p)n(1 ( 1
1 ( p

0 ' Ε1(2 ( p)n(2 '! ' Εk(1.

In particular, for k % n(d, p),

d % (2 ( p)n(d,p)(1 ' p" (2 ( p)n(d,p)(1 ( 1
1 ( p

0
'Ε1(2 ( p)n(d,p)(2 '! ' Εn(d,p)(1.

From this equation and the condition imposed on Εi we have:

n(d, p) 4 1 '
ln(d(1 ( p) ' p)

ln(2 ( p)
< n(d, p)

'
1

ln(2 ( p)
"ln 2 ' ln *1 ( 1

2(2 ( p)n(d,p)(1 +0 .

From this expression and for d ) 3, p ) 0 we obtain equation (2.34).

Remark. Let us note that:

lim
p)0

n(d, p) % 1 ' . ln d
ln 2
/ % 1 ' [log2 d]

lim
p)1

n(d, p) % d

in agreement with the fact: 1 ' [log2 d] 4 n 4 d. It also agrees with the
interpretation of p. If p ) 0 then 1 ( p ) 1 and expansion happens
more often than modification, hence few steps are needed for a pair of
symbols Α+, Β+ initially side by side on the sequence to reach the distance
d. If p ) 1 then modification happens more often than expansion and
many steps are needed to reach the distance d.

3. Discussion

We have obtained a good agreement with numerical simulations. In
Figure 4 we show the graph of Εau(d, n(d, p), p) for p % 0.1 (lower plot)
and that obtained from averaging 10 simulations with the same values of
p (upper plot) assuming that only the term corresponding to G(d, n(d, p))
exists in the simulation, for example, A(d) " K/dΕau(d,n,p) and n % n(d, p).
We want to remark on the coincidence in the shape of both plots. In
fact, the difference between them is related with the terms that were
not taken into account, for example, those with n < n(d, p) and for
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Figure 4. Graph of Εau(d, n(d, p), p) (lower plot), Εal (d, n(d, p), p) (upper plot) for
p % 0.1, and that obtained from averaging 10 simulations with the same values
of p (middle plot).

n > n(d, p). In [4] a magnitude inversely proportional to the correlation
function is studied. For that magnitude a fitness of the form F(d) % dΦ(d)

is obtained. In Figure 1 of that paper a plot of the exponent Φ(d) is
shown. We also want to emphasize the coincidence in shape of that
exponent and the lower plot in Figure 4 of our present work.

In Figure 1 of [3] the graph of the averaged power spectrums for all
33301 coding and for all 29453 noncoding sequences of the GENBANK
larger than 512 bp is shown. As the authors remark, there are three
spectral regimes. In our opinion, the existence of several exponents is
the best explanation for that behavior.

Furthermore, the middle-frequency scaling region reported by Buldy-
rev et al. [3] corresponds to the terms in equation (2.5) related with
G(d, n(d, p)) and some close neighbors (n " n(d, p)).

4. Conclusion

We have studied the correlation function of an expansion-modification
system, which grasps the main features of the mutational process occur-
ring in the evolution of the DNA molecule. We obtain bounds for the
exponent in the correlation function and show the resemblance between
the theoretical exponent and those obtained from simulation. We also
give an explanation for the existence of several regions in the power
spectrums of real sequences.
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We have studied more complicated models with an alphabet of three
symbols. A generalization of the rule studied in this paper might be:

0 )
56667666
8

00 1 ( p1 ( p2
1 p1
2 p2

1 )
56667666
8

11 1 ( p1 ( p2
2 p1
0 p2

2 )
56667666
8

22 1 ( p1 ( p2
0 p1
1 p2

.

The difficulties to obtain analytical results are enormous. In that
case, transition matrices T(d+, d, p1, p2) are of order 9 N 9. However,
we have made computer simulations and very interesting results arise
[23]. At some distance d(p1, p2), which depends on the selection of the
probabilities p1 and p2, the correlation function has a positive maxi-
mum. Interestingly, this type of behavior is observed in real intergenic
sequences [23].
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Appendix A1

Here we prove equation (2.5). First we give some definitions.

Definition A1.1. Let d E n > 1 be integers. Let G(d, n) be the set of
elements of the form (i1, . . . , in) 9 F1, . . . , dHn which hold the following
conditions.

1. i1 % 1, in % d.

2. i1 < i2 <! < in.

3. For every l % 1, . . . , n ( 1: [il'1/2] 4 il.

Examples of such sets are:

G(3, 2) % F(1, 3)H
G(4, 3) % F(1, 2, 4), (1, 3, 4)H
G(d, d) % F(1, 2, . . . , d)H
G(4, 2) % O.
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In general, G(d, 2) % O for every d E 4. To prove this, let us note
that G(d, 2) % F(1, d)H and as condition 3 of Definition A1.1 must hold,
then [d/2] 4 1, which is only possible for d 4 3.

Definition A1.2. Let d > k E n > 1 be integers which satisfy the follow-
ing conditions.

1. [d/2] 4 k.

2. n E [log2 k] ' 1.

Let us denote by (k, d)2G(k, n) the set of elements of the form (i1, . . . , in, d)
such that (i1, . . . , in) 9 G(k, n).

Lemma A1.1. Let d > n > 1. Denote:

u(d, n) % minFd ( 1, 2n ( 1H
l(d, n) % maxF[d/2], nH.

Then:

G(d, n ' 1) %
u(d,n)3
l(d,n)

(k, d) 2G(k, n). (A1.1)

Proof. Consider (i1, . . . , in, d) 9 (k, d) 2G(k, n). This implies that k E n
from Definition A1.1; [d/2] 4 in % k from condition 1 of Definition A1.2;
k 4 d ( 1 from Definition A1.2, and k 4 2n ( 1 from condition 2
of Definition A1.2. Hence we have l(d, n) 4 k 4 u(d, n). Besides
(i1, . . . , in) 9 G(k, n). Let us show that (i1, . . . , in, d) 9 G(d, n ' 1). Ob-
viously (i1, . . . , in, d) 9 F1, . . . , dHn'1; i1 % 1 because (i1, . . . , in) 9 G(k, n)
and also in'1 % d. The above guarantees condition 1 of Definition A1.1.
Besides, i1 < ! < in because (i1, . . . , in) 9 G(k, n) and k % in < d.
Hence, condition 2 of Definition A1.1 also holds. Lastly, condition 3 of
Definition A1.1 holds for l % 1, . . . , n ( 1 because (i1, . . . , in) 9 G(k, n).
From condition 1 of Definition A1.2, condition 3 of Definition A1.1
holds for l % n. Hence (i1, . . . , in, d) 9 G(d, n ' 1). Let us see the
opposite inclusion.

Let (i1, . . . , in'1) 9 G(d, n ' 1). This implies that in'1 % d. Let
k be the element in. From condition 3 of Definition A1.1 we have
[d/2] 4 k, therefore, condition 1 of Definition A1.2 holds. Obviously
k 4 d ( 1. On the other hand, k E n because 1 % i1 < ! < in % k.
Let us prove that (i1, . . . , in) 9 G(k, n). First, (i1, . . . , in) 9 F1, . . . , kHn

because (i1, . . . , in'1) 9 G(d, n ' 1). Consequently condition 1 of Def-
inition A1.1 holds. As already stated, condition 2 also holds. Condi-
tion 3 of Definition A1.1 is true for l % 1, . . . , n ( 1 because once again
(i1, . . . , in'1) 9 G(d, n'1). All the above implies that (i1, . . . , in) 9 G(k, n)
and therefore n E [log2 k] ' 1. Hence l(d, n) 4 k 4 u(d, n).
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As (i1, . . . , in) 9 G(k, n) then (i1, . . . , in'1) 9 (k, d)2G(k, n) for certain
k. But this implies that

G(d, n ' 1) P
u(d,n)3
l(d,n)

(k, d) 2G(k, n)

and completes the proof.

Remarks

1. If u(d, n) % 2n ( 1, then for 2n ( 1 < k 4 d ( 1 we have G(k, n) % O. It
is not difficult to prove that G(k, n) C O if and only if n E [log2 k] ' 1.
Hence, if 2n ( 1 < k we have G(k, n) % O.

2. Let us note that it is not possible for u(d, n) % 2n ( 1 and l(d, n) % n. If
d ( 1 > 2n ( 1 then [d/2] > 2n(1, but 2n(1 E n for n E 2, therefore it is
impossible that [d/2] < n.

From the above remarks, we obtain that the equation

G(d, n ' 1) %
d(13
k%n

(k, d) 2G(k, n) (A1.2)

is also true.

Corollary A1.1. Let Θ(d, n) % card G(d, n). Then we have:

Θ(d, n ' 1) %
u(d,n)#

k%l(d,n)

Θ(k, n). (A1.3)

Proof. It is straightforward from equation (A1.1) and the fact that
G(d, n) sets do not intersect each other.

Remark. From the remarks following Lemma A1.1, the expression

Θ(d, n ' 1) %
d(1#
k%n

Θ(k, n) (A1.4)

is also true.

Table 3 shows the values of Θ(d, n) for 2 4 d 4 13 and 2 4 n 4 13. It
can be proved (see appendix B for the details) that:

Θ(d, k) 4
(2d ( k ( 3)

k ( 3
*d ( 4
d ( k + . (A1.5)

Let us denote I(d) % (I ( T(d+, d))(1 and M(d+, d) % I(d)T(d+, d). Then
we have Theorem A1.1.
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d/n 2 3 4 5 6 7 8 9 10 11 12 13 14
2 1
3 1 1
4 0 2 1
5 0 2 3 1
6 0 1 5 4 1
7 0 1 6 9 5 1
8 0 0 6 15 14 6 1
9 0 0 6 21 29 20 7 1

10 0 0 4 26 50 49 27 8 1
11 0 0 4 30 76 99 76 35 9 1
12 0 0 2 31 105 175 175 111 44 10 1
13 0 0 2 33 136 280 350 286 155 54 11 1
14 0 0 1 30 165 415 630 636 441 209 65 12 1

Table 3. Values of cardinals of G(d, n) sets.

Theorem A1.1. For every d 9 N, d E 2:

P(d) %
56667666
8

d#
n%2

#
(i1,...,in)9G(d,n)

M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1). (A1.6)

Proof. The proof will be by induction on d. The property is true for
d % 3:

P(3) %
56667666
8
#

(i1,i2)9G(3,2)

M(i1, i2) ' #
(i1,i2,i3)9G(3,3)

M(i2, i3)M(i1, i2)
:666;666
<

P(1).

Let suppose that it is true for k % 2, . . . , d ( 1 and prove that it is also
true for k % d:

P(d) % I(d)
d(1#
k%2

T(k, d)P(k)

% I(d)
d(1#
k%2

T(k, d)
56667666
8

k#
n%2

#
(i1,...,in)9G(k,n)

M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1)

%
56667666
8

d(1#
k%2

k#
n%2

#
(i1,...,in)9G(k,n)

M(k, d)M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1). (A1.7)

Let us denote by:

Σ(k, n) % #
(i1,...,in)9G(k,n)

M(k, d)M(in(1, in) . . .M(i1, i2).
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Then it is not difficult to see that:
d(1#
k%2

k#
n%2

Σ(k, n) %
d(1#
n%2

d(1#
k%n

Σ(k, n).

Hence equation (A1.7) can be written as:

P(d) %
56667666
8

d(1#
n%2

d(1#
k%n

#
(i1,...,in)9G(k,n)

M(k, d)M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1). (A1.8)

Now the multiple-index of the product M(k, d)M(in(1, in) . . .M(i1, i2) is
(i1, . . . in, d). From Lemma A1.1 we have: (i1, . . . in, d) 9 (k, d)2G(k, n) P
G(d, n ' 1). From equation (A1.2) we can write:#

(i1,...in'1)9G(d,n'1)

M(in, in'1) . . .M(i1, i2)

%
d(1#
k%n

#
(i1,...in)9G(k,n)

M(k, n)M(in(1, in) . . .M(i1, i2).

Therefore, equation (A1.8) can be written:

P(d) %
56667666
8

d(1#
n%2

#
(i1,...in'1)9G(d,n'1)

M(in, in'1) . . .M(i1, i2)
:666;666
<

P(1).

Now making the change of variable n % m(1 the above expression can
be written as:

P(d) %
56667666
8

d#
m%3

#
(i1,...im)9G(d,m)

M(im(1, im) . . .M(i1, i2)
:666;666
<

P(1).

We could add the term for m % 2 because G(d, 2) % O for every d E 4
and the inner sum would be zero. Finally:

P(d) %
56667666
8

d#
n%2

#
(i1,...in)9G(d,n)

M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1)

where we have changed m by n. This completes the proof.

Remark. Some terms of equation (A1.6) are equal to zero. As we have
pointed out, G(d, n) C O if and only if n E [log2 d] ' 1. Besides:

#
(i1,...in)9G(d,n)

M(in(1, in) . . .M(i1, i2) % 0

if n < [log2 d] ' 1 because in each product M(in(1, in) . . .M(i1, i2) there
exists at least a couple ir(1, ir which does not satisfy condition 3 of
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Definition A1.1 and therefore M(ir(1, ir) % 0. This explains why we
could add the term for n % 2 at the end of the proof of Theorem A1.1.
Hence the following expression remains true:

P(d) %
56667666
8

d#
n%[log2 d]'1

#
(i1,...,in)9G(d,n)

M(in(1, in) . . .M(i1, i2)
:666;666
<

P(1). (A1.9)

Appendix A2

In this appendix we will obtain upper and lower bounds for ∆j(i1, . . . , in).
The first step will be to obtain upper and lower bounds for vk(d) and
Πk(d+, d) as functions of d, d+, and p. First, we give some definitions
which can be found in [19]. There, in Figure 10, all the possible cases
in which two binary symbols previously separated at distance d+ would
be at distance d in the next time step are shown. These cases are labeled
as A1, A2, A3, B1, B2, and C. Their probabilities are (see Equation B5
of Appendix B in [19]):

P(A1) % (1 ( p)2 * d+ ( 1
2d+ ( d ' 1 +p2d+(d'1(1 ( p)d(d+(2 (A2.1a)

P(A2) % (1 ( p)2 * d+ ( 1
2d+ ( d + p2d+(d(1 ( p)d(d+(1 (A2.1b)

P(A3) % (1 ( p)2 * d+ ( 1
2d+ ( d ( 1 +p2d+(d(1(1 ( p)d(d+ (A2.1c)

P(B1) % p(1 ( p) * d+ ( 1
2d+ ( d + p2d+(d(1 ( p)d(d+(1 (A2.1d)

P(B2) % p(1 ( p) * d+ ( 1
2d+ ( d ( 1 +p2d+(d(1(1 ( p)d(d+ (A2.1e)

P(C) % p2 * d+ ( 1
2d+ ( d ( 1 + p2d+(d(1(1 ( p)d(d+ . (A2.1f)

The coefficients of matrix T(d+, d, p) can be built in terms of their prob-
abilities (see also appendix B):

T0(d+, d, p) % P(A1) ' 2P(A2) ' P(A3) (A2.2a)
T1(d+, d, p) % P(B1) ' P(B2) (A2.2b)
T2(d+, d, p) % P(C). (A2.2c)

Now from equations (2.6), (A2.2a), (A2.2b), and (A2.2c) we have:

Π1(d+, d, p) % p2d+(d(1(1 ( p)d(d+ 4A(d+, d)p2

'2B(d+, d)p ' C(d+, d)5 (A2.3a)

Π2(d+, d, p) % p2d+(d(1(1 ( p)d(d+ 4A(d+, d)p2

'2B(d+, d)p(1 ( p) ' C(d+, d)(1 ( 2p)5 (A2.3b)
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Π3(d+, d, p) % p2d+(d(1(1 ( p)d(d+ 4A(d+, d)p2

'2B(d+, d)p(1 ( 2p) ' C(d+, d)(1 ( 2p)25 (A2.3c)

where:

A(d+, d) % * d+ ( 1
2d+ ( d ' 1 +

B(d+, d) % * d+ ( 1
2d+ ( d +

C(d+, d) % * d+ ( 1
2d+ ( d ( 1 + .

It is not difficult to see that if d+ % d, then the only possible cases are
A3, B2, and C. Therefore the eigenvalues of matrix T(d+, d+, p) are:

v1(d+) % pd+(1 (A2.4a)

v2(d+) % pd+(1(1 ( 2p) (A2.4b)

v3(d+) % pd+(1(1 ( 2p)2. (A2.4c)

Theorem A2.1. Let Π1(d+, d, p), Π3(d+, d, p) be as defined by equa-
tions (A2.3a) and (A2.3c). Then if d+ is big enough and 0 4 p < 1/2 we
have:

Φ1
l (p)

e($ (d+(1)(1(p)
2p %'

d+ ( 1
4 Π1(d+, d, p) 4 Φ1

u(p)
e($ (d+(1)p

2(1(p) %'
d+ ( 1

(A2.5a)

Φ3
l (p)

e($ (d+(1)(1(p)
2p %'

d+ ( 1
4 Π3(d+, d, p) 4 Φ3

u(p)
e($ (d+(1)p

2(1(p) %'
d+ ( 1

(A2.5b)

where:

Φ1
l (p) %

e$ 1
2(1(p) % ' 1(1 ( p)2e($ 3

2p % ' 2(1 ( p)'
2Πp(1 ( p)

Φ1
u(p) %

e$ 1
p % ' (1 ( p)2e$ 3

1(p % ' 2(1 ( p)'
2Πp(1 ( p)

Φ3
l (p) %

e$ 1
2(1(p) % ' (1 ( 2p)2e($ 3

2p % ( 2(1 ( 2p)'
2Πp(1 ( p)

Φ3
u(p) %

e$ 1
p % ' (1 ( 2p)2e$ 3

1(p % ' 2(1 ( 2p)'
2Πp(1 ( p)

.

Proof. Let d0 9 N such that for every d E d0, the approximation of the
local limit theorem remains valid:

*dr + pr(1 ( p)d(r "
11

2Πp(1 ( p)d
e
(
STTTT
U

1
2 * r(dp'

dp(1(p)
+2VWWWW
X

Complex Systems, 12 (2000) 207–240



Multiscaling in Expansion-modification Systems 229

(d0 could be 25, see page 84 of [22]). Then from equations (A2.3a),
(A2.3c), and under the supposition that d+ E d0, we have:

Π1 %
'

w'
2Πp(1 ( p)

e($ u2
2wp(1(p) % "e($ w'2u

2(1(p) %
'(1 ( p)2e($ w(2u

2(1(p) % ' 2(1 ( p)0 (A2.6a)

Π3 %
'

w'
2Πp(1 ( p)

e($ u2
2w(1(p) % "e($ w(2u

2(1(p) %
'(1 ( 2p)2e($ w'2u

2(1(p) % ( 2(1 ( 2p)0 (A2.6b)

where:

u % 1 (
2d+ ( d

p(d+ ( 1)
* w %

1
p(d+ ( 1)

.

From condition 3 of Definition A1.1 we have d+ '1 4 d 4 2d+ '1, hence:

(
1

p(d+ ( 1)
4

2d+ ( d
p(d+ ( 1)

4
1
p

and then:

e($ 3
2p % 4 e($ w(2u

2(1(p) % 4 e$ 3
1(p %e$ 1

2(1(p) % 4 e($ w'2u
2(1(p) % 4 e$ 1

p %.
From the above inequalities and equations (A2.6a) and (A2.6b) we could
obtain:

Φ1
l (p)

e($ u2
2w(1(p) %'

d+ ( 1
4 Π1(d+, d, p) 4 Φ1

u(p)
e($ u2

2w(1(p) %'
d+ ( 1

(A2.7a)

Φ3
l (p)

e($ u2
2w(1(p) %'

d+ ( 1
4 Π3(d+, d, p) 4 Φ3

u(p)
e($ u2

2w(1(p) %'
d+ ( 1

. (A2.7b)

Let us note that:

u2

2w(1 ( p)
%

p(d+ ( 1)
2(1 ( p)

*1 ( 2d+ ( d
p(d+ ( 1)

+2 .

It is not difficult to prove that if d+ ' 1 4 d 4 2d+ ' 1, then:

1 4
66666661 ( 2d+ ( d

p(d+ ( 1)

6666666 4 1 ( p
p

.

The above condition, along with equations (A2.7a) and (A2.7b) com-
plete the proof.
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Definition A2.1. Let (i1, . . . , in) 9 G(d, n) and d0 9 N. Let us denote by
l(i1, . . . , in) the set of indices which are smaller than d0 and by u(i1, . . . , in)
those which are bigger:

l(i1, . . . , in) % Fir 9 (i1, . . . , in)G ir < d0H
u(i1, . . . , in) % Fir 9 (i1, . . . , in)G ir E d0H.

Definition A2.2. Let (i1, . . . , in) 9 G(d, n). Denote by:

cj(i1, . . . , in) % &
l(i1,...,in)

Πj(ik, ik'1, p)
1 ( v(ik'1)

j % 1, 3.

Corollary A2.1. Under the conditions of Theorem A2.1 we have:

Lj(p, d0, d, n) 4 ∆j(i1, . . . , in) 4 Uj(p, d0, d, n) (A2.8)

where:

Lj(p, d0, d, n) % cj(i1, . . . , in)I
j
l(p, d0, d, n)

e($ 1(p
2p S(d,n)%

M(d, n)
(A2.9a)

Uj(p, d0, d, n) % cj(i1, . . . , in)Ij
u(p, d0, d, n)

e($ p
2(1(p) S(d,n)%

M(d, n)
(A2.9b)

I
j
l(p, d0, d, n) % &

l(i1,...,in)

Φ
j
l(p)

1 ( vj(ik)

Ij
u(p, d0, d, n) % &

l(i1,...,in)

Φ
j
u(p)

1 ( vj(ik)

S(d, n) % #
u(i1,...,in)

(ik ( 1)

M(d, n) % &
u(i1,...,in)

(ik ( 1).

Proof. The expression ∆j(i1, . . . , in) can be written:

∆j(i1, . . . , in) % &
l(i1,...,in)

Πj(ik, ik'1)
1 ( vj(ik'1) &

u(i1,...,in)

Πj(ik, ik'1)
1 ( vj(ik'1)

,

therefore:

∆j(i1, . . . , in) % cj(i1, . . . , in) &
u(i1,...,in)

Πj(ik, ik'1)
1 ( vj(ik'1)

.
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Now from equations (A2.5a) and (A2.5b) we have:

I
j
l(p, d0, d, n)

e($ 1(p
2p S(d,n)%

M(d, n)
4 &

u(i1,...,in)

Πj(ik, ik'1)
1 ( vj(ik'1)

Ij
u(p, d0, d, n)

e($ p
2(1(p) S(d,n)%

M(d, n)
E &

u(i1,...,in)

Πj(ik, ik'1)
1 ( vj(ik'1)

which completes the proof.

Appendix A3

Here we obtain upper and lower bounds for Hj(d). Let us first give
some definitions.

Definition A3.1. Let us denote for:

cu
j (d0, n) % max

(i1,...,in)9G(d,n)
cj(i1, . . . , in)

cl
j(d0, n) % min

(i1,...,in)9G(d,n)
cj(i1, . . . , in).

Proposition A3.1. The following inequalities hold:

Lj(p, d0, d, n) E cl
j(d0, n)I

j
l(p, d0, d, n)Ql(d0, n)

e($ 1(p
2p Su(d,n)%

Mu(d, n)
(A3.1)

Uj(p, d0, d, n) 4 cu
j (d0, n)Ij

u(p, d0, d, n)Qu(d0, n)
e($ p

2(1(p) Sl(d,n)%
Ml(d, n)

(A3.2)

where:

Ql(d0, n) % min
(i1,...,in)9G(d,n)

Wl(i1, . . . , in)

Qu(d0, n) % max
(i1,...,in)9G(d,n)

Wu(i1, . . . , in)

Wl(i1, . . . , in) % &
l(i1,...,in), kC1

1
ik ( 1e$ 1(p

2p !l(i1,...,in)(ik(1)%

Wu(i1, . . . , in) % &
l(i1,...,in), kC1

1
1k ( 1e$ p

2(1(p) !l(i1,...,in)(ik(1)%.
Proof. From equations (A2.9a) and (A2.9b) we have:

Lj(p, d0, d, n) E cl
j(d0, n)I

j
l(p, d0, d, n)Wl(i1, . . . , in)

e($ 1(p
2p S!(d,n)%

M!(d, n)

Uj(p, d0, d, n) 4 cu
j (d0, n)Ij

u(p, d0, d, n)Wu(i1, . . . , in)
e($ p

2(1(p) S!(d,n)%
M!(d, n)

.
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From these inequalities and equations (2.20) and (2.27) we have equa-
tions (A3.1) and (A3.2).

Proposition A3.2. If 0.08 4 p 4 0.25, then for d large enough and
j % 1, 3:

Ij
u(p, d0, d, n) 4 e

n*2 ln 2' 1
p'

pd0
1(p +(2Π(1 ( p)p)(K

n
2 L % Bu(p, d0, n) (A3.3)

I
j
l(p, d0, d, n) E (2Π(1 ( p)p)(K

1
2 Le$ 1

2(1(p)(ln 5% % Bl(p, d0, n). (A3.4)

Proof. If p < 0.25, we could prove that

Φj
u(p) 4 4eK

1
4 L(2Π(1 ( p)p)(K

1
2 L.

Besides, from:

1 ( pk % eln(1(pk ) % e(pk'o(pk)

we have, for d large enough,

&
u(i1,...,in)

(1 ( pik) E e((pd0 '! ' pd) ' o(pd0 ) % e
(* pd0

1(p 'o(pd0 )+
.

Therefore:

Ij
u(p, d0, d, n) 4 e

n*2 ln 2' 1
p'

pd0
1(p +(2Π(1 ( p)p)(K

n
2 L.

If 0.08 < p, then:

1
5

(2Π(1 ( p)p)K
1
2 Le$ 1

2(1(p) % 4 Φj
l(p)

and from the above:

(2Π(1 ( p)p)(K
1
2 Le$ 1

2(1(p)(ln 5% 4 Ij
l(p, d0, d, n).

This completes the proof.

Proposition A3.3. Under the same conditions of Proposition A3.2 we
have:

#
(i1,...,in)9G(d,n)

∆j(i1, . . . , in) 4 Ku(p, d0, n)
e($ p

2(1(p) Sl(d,n)%
Ml(d, n)

(2d ( n ( 3)
n ( 3

*d ( 4
n ( 4 + (A3.5)

#
(i1,...,in)9G(d,n)

∆j(i1, . . . , in) E Kl(p, d0, n)
e($ 1(p

2p Su(d,n)%
Mu(d, n)

(A3.6)
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where:

Ku(p, d0, n) % cu
j (d0, n)Bu(p, d0, n)Qu(d0, n)

Kl(p, d0, n) % cl
j(d0, n)Bl(p, d0, n)Ql(d0, n).

Proof. Let (i1, . . . , in) 9 G(d, n). Then from Corollary A2.1 and Propo-
sitions A3.2 and A3.3 we have:

∆j(i1, . . . , in) 4 Ku(p, d0, n)
e($ p

2(1(p) Sl(d,n)%
Ml(d, n)

(A3.7)

∆j(i1, . . . , in) E Kl(p, d0, n)
e($ 1(p

2p Su(d,n)%
Mu(d, n)

. (A3.8)

From equation (A3.8) we obtain equation (A3.6) straightforwardly.
From equations (A3.7) and (B.9) we obtain equation (A3.5) to com-
plete the proof.

Equations (A3.5) and (A3.6) can be written as:

#
(i1,...,in)9G(d,n)

∆j(i1, . . . , in) E cl
j(d0, n)Ql(d0, n)e(Εl(d,n,p) (A3.9)

#
(i1,...,in)9G(d,n)

∆j(i1, . . . , in) 4 cu
j (d0, n)Qu(d0, n)e(Εu(d,n,p) (A3.10)

where:

Εu(d, n, p) % Ε1u(d, n, p) ' Ε2u(d, n, p) ' Ε3u(d, n, p) ' Ε4u(d, n, p) (A3.11)

Ε1u(d, n, p) %
p

2(1 ( p)
(d ' 1) . (d ( n) ln 2 ( 1

d ln 2 ( 1
/

'
1

ln 2
ln .d ln 2 ( 1

n ln 2 ( 1
/ "ln(d ' 1)

(
1
2
.ln *d ln 2 ( 1

n ln 2 ( 1
+ ' ln 2/ ( p

1 ( p
0

Ε2u(d, n, p) % (n ( rl ( 1) 7n ( rl

2
' ln(n ( rl ( 1)8 ' p

1 ( p
(1 ( n)

'(d ( n)"ln(d ( n) '
2

d ' 1
* ln 2

n ln 2 ( 1
+0

Ε3u(d, n, p) % ln d '
1
2

ln(n ( rl ( 1) '
ln(d ( n)

2

' ln(n ( 4) *n ( 7
2
+ ' ln(n ( 3)
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Ε4u(d, n, p) % (" ln(d ( 4)
2

' (d ( 4) ln(d ( 4) ' ln(2d ( n ( 3)

'n *2 ln 2 '
1
p
'

pd0

1 ( p
+0

Εl(d, n, p) % Ε1l (d, n, p) ' Ε2l (d, n, p) ' Ε3l (d, n, p) (A3.12)

Ε1l (d, n, p) %
1 ( p

p
"dK1(

n
d ln d L ' 2d *n ' 2 (

ln d
ln 2
+

'
ln d
ln 2
*2n ( 1 '

ln d
ln 2
+0

Ε2l (d, n, p) %
ln 2
4

(n ( ru)(n ( ru ( 1) '
ln d
2

'
d ln d

2
' (d ( ru ( 1)

Ε3l (d, n, p) % (
1
2
Fd ' ln(d ( ru ( 1) ' (d ( ru ( 1) ln(d ( ru ( 1)H.

It can be proved that when d ) 3 the following asymptotic expansions
hold:

Εu(d, n, p) % Εau(d, n, p) ' o *1
d

,
1
n
+ (A3.13)

Εl(d, n, p) % Εal (d, n, p) ' o *1
d

,
1
n
+ (A3.14)

where:

Εau(d, n, p) %
pd

4(1 ( p)
'

n2

2
' n .2 ln n ' *1 ' 1

ln 2
+ (ln n ( ln d)

(
5 ( 2p

2(1 ( p)
/ ' 1

2
*1 ' 1

ln 2
+ * ln d

ln 2
+2

Εal (d, n, p) %
d
2
.1 ' (2n ' 5) *1 ( p

p
+/ ' 1

2
ln d
ln 2
.n ' 1 ( p

p
*1 ( d

2
+

(
ln 2
2
/ ' 1

2
(2n ( 1)

1 ( p
p

.

Now from equation (2.8) and equations (A3.9) and (A3.10) we have:

Hj(d) 4
d#

n%[log2 d]'1

cu
j (d0, n)Qu(d0, n)e(Εu(d,n,p) (A3.15)

Hj(d) E
d#

n%[log2 d]'1

cl
j(d0, n)Ql(d0, n)e(Εl(d,n,p). (A3.16)
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From the preceding inequalities and equation (2.11) the upper and lower
bounds for the correlation function can be obtained.

Appendix B: The proof of equation (A1.5)

Lemma B.1. Under the same conditions of Lemma A1.1, let S be the
set:

S % F(n, d) 9 N2 G d > n > 1, [d/2] E n, d evenH

then:

Θ(d, n ' 1) % " Θ(d ( 1, n) ' Θ(d ( 1, n ' 1) ( Θ(d/2 ( 1, n) (n, d) 9 S
Θ(d ( 1, n) ' Θ(d ( 1, n ' 1) (n, d) Y S.

Proof. We analyze several cases.

I. If u(d, n) % d ( 1, then:

Θ(d, n ' 1) %
d(2#

k%l(d,n)

Θ(k, n) ' Θ(d ( 1, n). (B.1)

I.1. If l(d, n) % n; then from u(d, n) % d ( 1, it follows straightforwardly
that u(d ( 1, n) % d ( 2 and because l(d ( 1, n) % l(d, n) we have:

Θ(d ( 1, n ' 1) %
d(2#

k%l(d,n)

Θ(k, n). (B.2)

Now from equation (A.1) we have:

Θ(d, n ' 1) % Θ(d ( 1, n ' 1) ' Θ(d ( 1, n). (B.3)

I.2. If l(d, n) % [d/2]; then it is not difficult to see that:

[(d ( 1)/2] % "d/2 ( 1 d is even
[d/2] d is odd.

(B.4)

From the above it follows that if d is odd: l(d, n) % l(d ( 1, n) and
therefore we obtain equations (B.2) and (B.3).
If d is even, we analyze two cases.

I.2.1. If d/2 % n; then d/2 ( 1 < n and:
l(d ( 1, n) % n % d/2 % l(d, n)

from this equation we obtain equations (B.2) and (B.3).
I.2.2. If d/2(1 E n; then l(d(1, n) % d/2(1 therefore l(d(1, n) %

l(d, n) ( 1. From the previous equation we have:

Θ(d ( 1, n ' 1) ( Θ(d/2 ( 1, n) %
d(2#

k%l(d,n)

Θ(k, n).

Now, from equation (B.1):
Θ(d, n ' 1) % Θ(d ( 1, n) ' Θ(d ( 1, n ' 1) ( Θ(d/2 ( 1, n).
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II. Let us suppose that u(d, n) % 2n ( 1. Hence 2n 4 d. Besides, from
Remark 2 following Lemma A1.1 we have: l(d, n) % [d/2]. We analyze
two cases.

II.1. 2n % d; then u(d, n) % d ( 1 and we are in case I.

II.2. 2n < d; then: n 4 [log2(d ( 1)] and therefore: Θ(d ( 1, n) % 0.

Besides, because 2n < d, l(d ( 1, n) % [(d ( 1)/2] we have:

Θ(d ( 1, n ' 1) %
2n(1#

k%[(d(1)/2]

Θ(k, n) % " Θ(d ( 1, n ' 1) d is odd
Θ(d ( 1, n ' 1) ( Θ(d/2 ( 1, n) d is even.

We obtain the above condition from equation (B.4). This completes the
proof.

From Lemma B.1 we have: Θ(d, n'1) 4 Θ(d(1, n)'Θ(d(1, n'1). In
order to obtain an upper bound for Θ(d, n) we will study the following
sequence defined recursively:

Ω(d, n) % Ω(d ( 1, n ( 1) ' Ω(d ( 1, n) (B.5)

with the following boundary conditions:

C1. Ω(d, 2) % 0 [d E 4;

C2. Ω(d, d ( 1) % d ( 2 [d E 3.

It is not difficult to see that Θ(d, n) 4 Ω(d, n). Now we obtain some
properties of Ω(d, n).

Let us consider the vector [Ω(d, d(1),Ω(d, d(2), . . . ,Ω(d, 3)]t. From
equation (B.5) and conditions C1 and C2 we have:

-.........../

Ω(d, d ( 1)
"

Ω(d, 3)

0111111111112
%

-.........../

d ( 2
"
0

0111111111112
' .B11 B12

B21 B22
/
-.............../

0
Ω(d ( 1, d ( 2)

"
Ω(d ( 1, 3)

01111111111111112

where:

B11 % [0]1N1

B12 % [ 0 . . . 0 ]1N(d(4)

B21 % [ 0 . . . 0 ]t
1N(d(4)

B22 %

-.............../

1 1 0
# #
# 1

0 1

01111111111111112(d(4)N(d(4).
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Lemma B.2. Let d E 5. Then we have:
-.............../

Ω(d, d ( 1)
Ω(d, d ( 2)

"
Ω(d, 3)

01111111111111112

% bd(4 '
d(5#
k%0

Ad(4Ad(5 . . .Ad(k(4bd(k(5 (B.6)

where:

Ad(r % .B11 B12
B21 B22

/
B11 % [0](r(3)N(r(3)* Bt

21 % B12 % [ 0 ! 0 ](r(3)N(d(r)

B22 %

-.............../

1 1 0
# #
# 1

0 1

01111111111111112(d(r)N(d(r)

bd(r % [ 0 ! d ( r ' 2 ! 0 ]t
1N(d(r)

where the nonzero element of bd(r is in position r ( 3.

Proof. The proof will be by induction on d.
For d % 5 we have:

.Ω(5, 4)
Ω(5, 3) / % . 30 / ' . 0 0

0 1 / . 0
Ω(4, 3) / .

Let us suppose that it is true for d and prove that it is also true for d'1:
-.................../

Ω(d ' 1, d)
Ω(d ' 1, d ( 1)

"
"

Ω(d ' 1, 3)

011111111111111111112

%

-.................../

d ( 1
0
"
"
0

011111111111111111112

'

-.................../

0 0 0 ! 0
0 1 1 ! 0
0 0 1 ! 0
" " " # "
0 0 0 ! 1

011111111111111111112

-.................../

0
Ω(d, d ( 1)
Ω(d, d ( 2)

"
Ω(d, 3)

011111111111111111112

.

From the hypothesis of induction, the last d(3 components of the vector
[ 0 Ω(d, d ( 1) ! Ω(d, 3) ]t can be written by using equation (B.6)
as:

-.........../

Ω(d ' 1, d)
"

Ω(d ' 1, 3)

0111111111112
%

-.........../

d ( 1
"
0

0111111111112
' Ad(3

56667666
8
bd(4 '

d(5#
k%0

Ad(4 . . .Ad(k(4bd(k(5

:666;666
<

.

We have added to the element of bd(4'!d(5
k%0 Ad(4 . . .Ad(k(4bd(k(5 a row

and/or a column of zeros to obtain the same dimension. This completes
the proof.

Lemma B.3. Under the same conditions of Lemma B.2 let aij, 1 4 i,
and j 4 d ( 3 be the coefficients of matrix Ad(4 . . .Ad(r, then:
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aij %

56666667666666
8

* r ( 4
i ( 2 + 2 4 i 4 r ( 2 and j % r ( 2

* r ( 3
r ( 3 ( j ' i + r ( 1 4 j 4 d ( 3 and j ( r ' 3 4 i 4 j

0 in the other cases.

(B.7)

Proof. The proof will be by induction on r. The property is obviously
true for r % 4. Let us suppose that it is true for r and prove that it is
also true for r'1. Let us denote by bij the coefficient of matrix Ad((r'1),
then:

bij %
56667666
8

1 i % j* j % r ( 1, . . . , d ( 3
1 i % j ( 1* j % r ( 1, . . . , d ( 3
0 in the other cases.

Let cij be the coefficients of matrix Ad(4 . . .Ad(rAd((r'1). Then, if j % r(1:

ci(r(1) %
d(3#
k%1

aikbk(r(1) % ai(r(1)b(r(1)(r(1) % * r ( 3
r ( 3 ( (r ( 1) ' i + % * r ( 3

i ( 2 +
for 2 4 i 4 r ( 1. In the other cases ci(r(1) % 0. Besides, if r 4 j 4 d ( 3
then:

cij %
d(3#
k%1

aikbkj % ai(j(1)b(j(1)j ' aijbjj

% * r ( 3
r ( 2 ( j ' i + ' * r ( 3

r ( 3 ( j ' i + % * r ( 2
r ( 2 ( j ' i +

for j(r'2 4 i 4 j. In the other cases cij % 0. This completes the proof.

Corollary B.1. Under the same assumptions as Lemma B.3:

Ad(4 . . .Ad(rbd((r'1) %

-...................................../

0
(d ( r ' 1) * r ( 4

0 +
(d ( r ' 1) * r ( 4

1 +
"

(d ( r ' 1) * r ( 4
r ( 4 +

"
0

011111111111111111111111111111111111112

.

Proof. The only nonzero element of vector bd((r'1) is in position r ( 2
and has the value d(r'1. From Lemma B.3, the column r(2 of matrix
Ad(4 . . .Ad(r is:

,0 * r ( 4
0 + * r ( 4

1 + ! * r ( 4
r ( 4 + ! 0 -t .

This completes the proof.
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Proposition B.1. Let d E 5. Then:

Ω(d, d ( 1) %
d(5#

n%i(2

(d ( n ( 3) * n
i ( 2 + for i E 2. (B.8)

Proof. From Lemma B.2 and Corollary B.1 we have:

-............................/

Ω(d, d ( 1)
Ω(d, d ( 2)

"
"
"
"

Ω(d, 3)

011111111111111111111111111112

%

-............................/

d ( 2
0
"
"
"
"
0

011111111111111111111111111112

'
d(5#
k%0

(d ( k ( 3)

-................................./

0*k0 +
"
"*kk +
"
0

01111111111111111111111111111111112

.

From this expression we immediately obtain the result.
From equation (B.8 ) it can be proved that for k E 3:

Ω(d, k) %
(2d ( k ( 3)

k ( 3
*d ( 4
d ( k + .

And from the above result and the definition of Ω(d, k) we have:

Θ(d, k) 4
(2d ( k ( 3)

(k ( 3)
*d ( 4
d ( k + . (B.9)
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