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Proteins are complex adaptive systems. Their functional and structural
units, termed domains, are conserved and recombined during evolution.
Domains are thermodynamically stable and fold independently within the
context of the whole protein, and can arguably be seen as stable units of
evolution. New domain functions evolve within the constraints of main-
taining thermodynamic stability and autonomous folding capability. This
gives rise to a complex interplay of molecular organization and evolution-
ary dynamics, which is still a largely unexplored area of research. The
major aim of this paper is to approach this problem from a perspective
informed by recent developments in complexity theory. This work em-
ploys distributed representation by neural networks in modeling protein
domain evolution.

1. Introduction

1.1 The changing vision of modern biology

The history of science has provided wide-ranging evidence for the power
of conceptual shifts, simultaneously transforming accepted modes of
inquiry and standards of explanation in a given discipline. From our
contemporary perspective on biology, two such shifts stand out above all
others. The first was the formulation of the theory of evolution, marked
by the publication of Darwin’s The Origin of Species in 1859 and the
second occurred a century later with the birth of molecular biology,
precipitated by Watson and Crick’s determination of the structure of
DNA in 1953. During the second shift, as biology changed its focus
from organisms to biomolecules, biological systems were conceptualized
as chemical and mechanical devices whose components were thought to
interact in a relatively simple fashion. Consequently, the functioning
of the organism was to be explained on the basis of the chemistry
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and physics of its constituent parts, and molecular interactions were
charted in mostly linear pathways. Concomittantly, the evolution of
these constituent parts, in other words, molecular evolution, became
an overriding concern in evolutionary thought. This “molecular vision
of life” [1] has proved tremendously successful for the identification
of a vast number of components and mechanisms present in biological
systems, at higher and higher levels of resolution. The sequencing of the
human genome, the exponentially growing number of three-dimensional
protein structures determined by crystallography and NMR, and the
biochemical elucidation of metabolic and signaling pathways in cells
are among the successes of this research focus.

As these endeavors reach their culmination, we are already in the
middle of a third conceptual shift that is rapidly gaining momentum. A
new “global biology” is emerging that aims at understanding the systems
properties of cells and organisms at various levels. At present, attention
has become focused on the level of the genome (genomics), the level of
“transcribed messages,” that is, expressed genes (transcriptomics), and
the level of the complete set of proteins (proteomics) [2–5]. Some of
the questions raised are, for example: What can global gene expression
patterns in model organisms teach us about the order and logic of the
genetic “program?” How do genomes and other biological systems
evolve? How do large-scale networks of molecular interactions integrate
biological signals within cells? It is expected that, in the future, the
systems properties of biomolecules will also become a focus for new
research.

Of paramount importance to this current conceptual shift to “sys-
tems thinking” is the focus on the information processing properties of
biological systems. Simplistically put, biological entities are now seen as
information processing machines. The central concepts underpinning
this change are biological information, signaling, and complex interac-
tion networks. The most ambiguous of these is biological information;
it can be equally applied to a stretch of DNA (a gene), a hormone, or the
information content of a molecular structure, however one may want to
measure this. These issues aside, most generally, explanations are sought
as to how the spatial and temporal organization of mixed populations
of molecules gives rise to the “smart” properties of biological systems.
Such smartness is in evidence at all levels of organismal complexity. It
is evidenced, at the level of single molecules, by signal-mediated activa-
tion of proteins by conformational change, for example, and at the level
of complex networks, by the complexities of signal processing during
mammalian development, and by consciousness itself.

We are faced with profound challenges, both of an empirical and
theoretical nature, as we attempt to study the information processing
properties of biological systems. It is becoming widely accepted that
biological systems are not merely complicated, but that they are com-
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plex. Whilst all biological processes are consistent with the physical
and chemical laws of our universe, and in this sense can ultimately be
“reduced” to chemistry and physics, there is a growing awareness that
biological phenomena require an appproach that equally addresses the
problem of emergence. How do living systems emerge from the laws
of physics and chemistry? In complex systems, emergent phenomena
result from the rule-governed, nonlinear interactions of a large number
of components occurring in a highly context-dependent manner. To
come back to the example of consciousness, it arises out of the unimag-
inably densely connected interactions of billions of neurons (and their
constituent molecules), and is not a property of any one brain region, let
alone of the neurons themselves. Consciousness is an emergent property
of the brain as a whole. Beyond this special case, information processing
can be seen as an emergent property of complex biological systems in
general. The enormous task before us then is nothing short of identify-
ing the rules of the underlying interactions and the logic embedded in
the organization of living matter.

However, a theoretical framework and methodology for the inves-
tigation of complexity and emergence in biology are still largely unde-
veloped. Whilst the study of complex systems has undergone vigorous
expansion over the past decade, with contributions from a wide range
of disciplines, biology has so far remained almost untouched by these
developments. If a new “systems vision of life” is to be placed on a
robust foundation, a concerted effort to bridge this gap is both timely
and urgent.

One possible strategy, aimed at achieving such an integration, is to
re-examine biological phenomena we think we already understand rea-
sonably well from a perspective of complexity theory. This approach
is grounded in the expectation that it will give us valuable knowledge
about the kinds of questions that can be asked, and the kind of an-
swers that can be arrived at, when working from within a “complex
systems” framework. Importantly, it would allow analysis of whether
these questions and answers are truly new, in the sense that they would
be inaccessible from within other conceptual frameworks. If this turns
out to be the case, the knowledge gained would support the development
of new methods of investigation.

This strategy is here applied to proteins, and, more specifically, to the
problem of protein evolution. Proteins are by far the most abundant and
diverse class of biomolecules and mediate the vast majority of biochem-
ical processes. The molecular evolution of proteins has been extensively
studied and is most often conceptualized as a series of independent state
changes at single sites. Consequently, investigations of functional evolu-
tion commonly focus on mutational changes in a closely circumscribed
part of the protein structure, such as the catalytic site in enzymes or the
hormone-binding site in a receptor, while other parts of the structure
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are thought to make little or no contribution. There is, however, exper-
imental evidence indicating that function can be diminished or altered
by mutations distant from the classic “functional” site [6–8]. Another
example of great clinical relevance, the emergence of drug resistance in
human immunodeficiency virus 1 (HIV-1) protease, involves amino acid
mutations distant from the active site where the inhibitor binds [9,10].
Importantly, the success of engineering new function can crucially de-
pend on modifications of regions spatially distant from, but functionally
linked to, the catalytic site [11–14]. The question then arises whether
a deeper understanding of this phenomenon can be gained by studying
protein functional evolution at the systems level. To address this, the aim
of the work presented here was to develop a framework and method-
ology that allow the study of proteins as complex adaptive systems.
General characteristics of complex systems as they apply to proteins
will be discussed first. Protein structural evolution will then be con-
ceptualized and modeled as a form of parallel-distributed information
processing using a classic feedforward artificial neural network (ANN).

1.2 Proteins are complex adaptive systems

With the recent explosion of protein sequence data from all three king-
doms of life, the archea, prokarya, and eukarya, we have come to even
more fully appreciate the modular nature of proteins, and the complex
ways in which their functional and structural units, termed domains, are
conserved and recombined during evolution. Domains are thermody-
namically stable and fold independently within the context of the whole
protein. Novelty in protein function often arises as a result of the gain
or loss of domains, or by reshuffling existing domains along the linear
amino acid sequence. Thus, protein domains can arguably be seen as
stable units of evolution.

New domain functions evolve within the constraints of maintaining
thermodynamic stability and autonomous folding capability. The work
presented here employs a complex systems approach for the study of
the interrelationships between functional diversification of homologous
protein domains and conservation of thermodynamic stability. In order
to approach domain evolution from this perspective, the first question
to be addressed is whether protein domains can legitimately be classed
as complex adaptive systems. Although a formal consensus on the
characteristics of complex systems has yet to emerge, the following
characteristics have found general agreement ([15], p. 3) and are present
in protein domains [16].

Complex systems consist of a large number of elements. At the atom
level, protein domains typically consist of thousands of elements. At a
higher level of description, the amino acid level, they are comprised of
up to several hundred elements. Whilst description and modeling at the
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atom level is computationally intractable at present, domain systems can
be modeled at the amino acid level. In this work, the positions along the
protein sequence, rather than the amino acids themselves, are defined as
the elements (agents) of the systems. These elements can be in one of 20
different states (be filled by one of the 20 amino acids). The state of an
element can change, that is, positions can mutate to a different amino
acid.

The elements of a complex system interact in a dynamic fashion and
these interactions change over time. Dynamic interactions between amino
acids (primary sequence positions in certain states) mediate the folding
process and a stable pattern of interactions subsequently determines the
three-dimensional fold of the domain. Dynamic interactions are also
fundamental to domain functions that are mediated by conformational
changes. During evolution, the pattern of interactions between fold posi-
tions changes as a consequence of amino acid substitutions (gain or loss
of hydrogen bonds, salt bridges, or van der Waals interactions).

The interactions between elements are richly connected—any one element
influences, and is influenced by, a large number of others. In a domain
fold, amino acid positions along the linear protein sequence are engaged
in multiple local (involving positions that are close in the linear sequence)
and nonlocal (involving positions that are distant in the linear sequence)
physical interactions. With the exception of neutral positions, each fold
position makes an individual fitness contribution and simultaneously af-
fects the fitness of many other positions within the domain. Fitness is here
defined as the capacity of the domain to maintain its structural integrity
and to carry out a specific function(s).

The interactions between elements are nonlinear. Small causes can have
large results, and vice versa. Complexity results from the patterns of
richly connected interactions between the elements. Complex systems
exhibit so-called “emergent properties,” properties that are only seen in
systems of an equivalent degree of complexity. One of the key processes
responsible for emergence is self-organization ([15], p. 89; [17], p. 115
and p. 225). This behavior results from the nonlinear interactions of
system components which lead to collective effects. Self-organization
also leads to spontaneous transitions into new collective states, at times
as adaptive responses to changes in the environment. The nonlinearity of
interactions between amino acid positions is a major reason why certain
amino acid substitutions at only one or a few positions may unravel a
domain fold. And, conversely, is a reason why amino acid sequences
can at times diverge from homologous sequences beyond any statistically
significant similarity, while the shared domain fold is still conserved intact.
We are unable to explain or predict these phenomena (at least for now),
and so they also illustrate how nonlinearity severely limits predictability.
Another related issue is the persistent elusiveness of a solution to the
“folding problem,” despite three decades of intensive efforts.

The interactions between elements are relatively short-range. Physical
constraints and information are mostly transmitted between immediate
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neighbors. However, this does not mean that there cannot be long-range
influences. In a richly connected network, the path between two ele-
ments can usually be covered in a small number of steps. Influences
can be enhanced, suppressed, or modulated in some way along the path.
Amino acids in domain cores are packed in an engergetically favorable
arrangement, and strong local constraints on amino acid variation are
present. The network of amino acids that are in contact with each other
collectively constrains mutational change. Although this mechanism is
mediated by local interactions, it can propagate throughout the domain
to distant sites via “chains of local interactions” [18]. Nonlinear con-
straint modulation along such interaction chains occurs due to the rich
connectivity between elements (multiple physical interactions and mutual
constraints).

There are recurrent interaction pathways. The effects of a state change
at one element can feed back on itself, either directly or via a number
of intervening states. The feedback can be either enhancing or inhibit-
ing. Depending on its nature, a mutation (state change) at one domain
position may enhance or inhibit the probability of accepted mutations at
coevolving positions. These subsequent mutations may in turn enhance
or inhibit the likelihood of further accepted substitutions occurring at the
first position.

Complex systems have a history. They evolve through time, and their
present state is constrained by their past. Present-day protein domains
have evolved from ancestral domains. Domain evolution can only oc-
cur within the constraints of maintaining thermodynamic stability and
autonomous folding capability.

2. Protein domain evolution as a parallel-distributed process

2.1 An information-theoretic approach to protein domain evolution

Partial gene duplication and recombination are thought to be the pri-
mary mechanisms for the generation of protein domain diversity. In
this process, the portion of a gene encoding a given domain is dupli-
cated, and, subsequently, one copy maintains the original function while
the other is free to evolve new functions. The concept of a functional
space, as an abstract representation of all possible functions that can
evolve within the structural constraints of a domain fold, is useful for
the investigation of domain evolution. Within this conceptual frame-
work, the emergence of new functions can be understood as the result of
adaptive walks in sequence space. During this adaptive evolution, dupli-
cated gene portions accumulate successive mutations that progressively
enhance the new function.

In this work, the positions along the linear amino acid sequence of
the domain are conceptualized as the elements, or “agents,” of the sys-
tem that can each assume one of 20 different states (i.e., the 20 amino
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AGENTS

STATESA Y Q Q I L R G S

Figure 1. The positions along the linear amino acid sequence of the domain
constitute the agents of the system, and can each assume one of 20 different
states. An arbitrary state sequence AYQ. . . is here shown as an example (amino
acids in single letter code).

(a)

(b)

multiple
alignment

class

THA

THB

RRG

RRA

RRB

DHIRIFQEQVEKLKAL...
DHIRIFQEQVEKLKAL...
EHIFKLQEFCNSMVKL...
EHIFKLQEFCNSMVKL...
2113321132232331...

Figure 2. The evolutionary history of a protein domain family is contained in
a multiple sequence alignment. (a) Short section of a multiple sequence align-
ment. Classes: 1, completely conserved position; 2, conserved physicochemical
property (e.g., charge, hydrophobicity); 3, highly variable. (b) Example of a
phylogenetic tree. Phylogenetic relationships can be ascertained from a multiple
sequence alignment. This tree depicts the evolutionary relationships between
ligand-binding domains of thyroid hormone and retinoic acid receptors.

acids) (Figure 1). Four classes of fold positions can be distinguished
in domains that are descended from a common ancestral domain (Fig-
ure 2(a)): (i) positions with conserved amino acid identities; (ii) po-
sitions with conserved physicochemical properties; (iii) positions with
highly variable physicochemical properties; and (iv) unconstrained po-
sitions accumulating neutral mutations. Positions in the coevolutionary
distributed network to be modeled by neural networks belong to class
(ii) or (iii) (section 3).
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The evolutionary history of a domain, contained in a sequence align-
ment, is a record of successful mutagenesis experiments carried out by
nature (Figure 2(a)). A multiple sequence alignment indicates the extent
to which specific residues may be changed without destroying domain
structure. At the same time the alignment can identify those residues
that need to be changed in order to create a new function within a
similar structural framework.

Coevolving positions can be identified from a sequence alignment of
a domain family using mutual information, a measure of correlation
for discrete symbols. A formal measure of variability at position i is the
Shannon entropy, H(i). H(i) is defined in terms of the probabilities P(si),
of the different symbols s that can appear at a sequence position (i.e.,
for amino acid sequences s # 20, for the 20 possible states of amino
acid occurrence) [19]. H(i) is defined as

H(i) # $!
s

P(si) log P(si). (1)

Mutual information is defined in terms of entropies involving the joint
probability distribution P(si, s%j ) of occurrence of symbol s at position i,
and s% at position j. The associated entropies for each position i and j
are

H(i) # $!
si

P(si) log P(si) (2)

H(j) # $!
s%j

P(s%j) log P(s%j). (3)

And the joint entropy is defined as

H(i, j) # $!
si,s
%
j

P(si, s%j ) log P(si, s%j). (4)

The mutual information M(i, j) is defined as

M(i, j) # H(i) &H(j) $H(i, j). (5)

If the positions are independent, their mutual information is zero. If, on
the other hand, the positions are correlated, their mutual information is
positive and achieves its maximum value if there is complete covariation.

Given a set of sequences that are assumed to be independent and
identically distributed samples from a probability distribution, one can
independently estimate each pairwise probability distribution for every
pair of positions by frequency counting. However, sequences belonging
to a domain family are not independent samples, but are related through
shared ancestry described by a phylogenetic tree (Figure 2(b)). If two
mutations occur independently in an ancestral sequence and these are
subsequently inherited by many of the descendants further down the
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tree, the two positions involved will receive a high mutual information
score. To estimate the mutual information content between position
pairs that is created by tree inheritance alone, and not by covariation,
a simulation experiment can be performed. [18,20]. This procedure
simulates the evolution of sequences by random mutations along a phy-
logenetic tree obtained from the domain sequence alignment. Using the
outgroup as a seed, random sequences are evolved following the phylo-
genetic tree obtained from the real data set. During simulated random
mutation of sequences, the state of the sequence is duplicated at a bi-
furcation point in the tree, and the two copies are then independently
evolved. Every amino acid can mutate with equal probability to any
other amino acid. The procedure is repeated numerous times, and signif-
icance threshold values are determined from the frequency distributions
of the mutual information scores in the control and real data sets. These
threshold values indicate the probability of any given mutual informa-
tion score not being due to inheritance through the tree. Depending on
the problem to be addressed, values may be set at different levels.

2.2 An example study: Evolution of hormone-binding domains in nuclear
receptors

Using the ligand-binding domains of steroid receptors as an example,
this section will illustrate how a complex systems approach can further
our understanding of the evolution of new functions in protein domain
families. Ligand-binding sites in protein domains sharing a common
ancestor can diverge greatly during evolution. This poses a particularly
interesting problem in those cases where the ligand-binding site is situ-
ated in, or close to, the domain core, or where ligand-docking induces
dramatic conformational changes. These features are present in many
receptors and enzymes; the hormone-binding domain present in the re-
ceptors for steroids and retinoids exhibits both characteristics. How do
binding sites for diverse ligands evolve in core regions of structurally
dynamic domains? Are evolutionary changes locally restricted to the
ligand-binding site, or are they distributed throughout the domain?

Steroid, thyroid, and retinoid hormones comprise the broadest class
of gene-regulatory ligands known. Their receptors belong to the diverse
superfamily of nuclear receptors (NRs) and are present in all metazoans
from cniderians onward. NRs have had a central part in the evolution
of biological complexity since the Cambrian explosion [21,22]. As
ligand-inducible transcription factors, they play essential roles in the
regulatory pathways that transmit signals, originating from the extra-
and intra-cellular environment, to large genetic networks through a
complex sequence of molecular interactions.

The ligand-binding domain of NRs possesses a unique fold that is
partly disordered in the absence of ligand, termed the antiparallel Α
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helical sandwich. The helices are grouped into three layers around an
internal ligand-binding core. Crystallographic studies of ligand-bound
receptors suggest a structural role for ligand that is fundamental to the
allosteric control mechanisms found in the ligand-binding domain. The
ligand is completely buried within the domain interior and contributes to
the hydrophobic core of the active conformation of the receptor (for ref-
erences, see [20]). Therefore, ligand binding directs the alignment of the
secondary structural elements critical for receptor function, and strongly
constrains the conformational freedom of the ligand-binding domain.

During the evolution of the nuclear receptor superfamily, the ligand-
binding pocket has evolved to allow binding of ligands possessing strik-
ingly diverse chemical structures. In [21] it is proposed that the ancestor
of the superfamily was an orphan receptor without ligand-binding ca-
pability. Their study of NR evolution suggests that liganded receptors
have arisen relatively recently and have gained the ability to bind lig-
ands independently. Since the ligand-contacting residues line the binding
pocket in the domain core, they perform a dual role; a functional role in
ligand recognition and a structural role as core residues. With respect
to ligand recognition, they can be seen to constitute an “interior interac-
tion surface.” In principle, this would allow extraordinary scope for the
evolution of the ligand-binding pocket. However, since the hydrophobic
ligand is an integral part of the domain core in the active conformation,
the ligand and the ligand-binding residues combined need to be able
to maintain structural stability and domain dynamics (conformational
changes). How is this potential conflict between structural constraints
and functional diversity resolved within the domain fold? Is evolution-
ary change locally confined to the ligand-binding pocket or does it also
involve distant coevolving positions?

Mutual information analysis can be used to reveal coevolutionary
relationships between the amino acid positions in domain families. Fig-
ure 3(a) depicts a network of coevolving positions that are distributed
throughout the NR ligand-binding domain. This network is character-
ized by a low noise-to-signal ratio due to a high confidence threshold set
at 80 (80% confidence that the mutual information score was not due
to tree inheritance). Interestingly, 72% of coevolving pairs involve po-
sitions in the ligand-binding pocket: 36% of the pairs involve positions
that make direct ligand contacts, and a further 36% contain positions
that are adjacent to ligand-contacting positions (Figure 3(b)). This sug-
gests that the coevolutionary network in this domain family is closely
associated with the evolution of ligand-binding. It was also observed
that five out of a total of 36 covarying pairs show an i, i & 2 or i, i & 4
periodicity. Covariation between these sites may be due to local con-
straints at the level of secondary structure, as these types of correlations
reflect the hydrophobic periodicity of amino acids seen in amphipathic
Α helices [23].
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(a)

(b)

(c)

Figure 3. Two perspectives on coevolution in the nuclear receptor ligand-binding
domain. (a) A distributed network of coevolving positions can be identified by
mutual information analysis of the multiple domain alignment. For illustration,
the network is shown mapped onto the retinoic acid receptor X-ray structure
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Figure 3. (continued)
(stereo view, Protein Data Bank code 2lbd.pdb). The significance threshold
value was set at 80. Only alignment positions having less than 40% amino acid
identity, and displaying at least four “states” (four different amino acids), were
included. (b) 72% of coevolving pairs involve positions in the ligand-binding
pocket. 36% of the pairs involve positions that make direct ligand contacts, and
a further 36% contain positions that are adjacent to ligand-contacting positions.
Black, ligand-contacting positions (within 4.5 C) (Α-carbons, spacefill mode);
dark gray, positions adjacent to ligand contacts; light gray, covarying positions;
white, other covarying positions (not linked to ligand pocket). The ligand is
shown in black (stick mode). (c) The network with the significance threshold set
at 60 to allow detection of covarying pairs that are restricted to NR functional
subfamilies, mapped onto the retinoic acid receptor. Retinoic acid-contacting
positions and first-order covarying positions in the ligand-binding domain of the
retinoic acid receptor are shown. Ligand contacts are shown in black, covarying
positions are shown in gray. See [20] for details on threshold calculation and
higher-order coevolutionary relationships between domain positions.

It is important to remember that the high confidence threshold chosen
to characterize this network may have excluded valid coevolving pairs.
Whilst desirable from a statistical point of view, a high cut-off value may
cause relationships that are linked to evolution in domain subfamilies to
be overlooked. This is because mutual information scores for positions
that coevolve only in a subset of family members will be lower than
those for pairs coevolving in the entire family and may be classed as
noise (false-negatives). To detect these relationships, the confidence
threshold needs to be set at a lower level with a concomitant trade-off
between sensitivity (minimizing false-negatives) and inclusion of false-
positives that are due to tree inheritance, not coevolution. When the
method is used to define the data set for modeling a coevolutionary
network by ANNs, one may be prepared to tolerate a small proportion
of false-positives in order to increase sensitivity (see section 3). The cost
of this would be that the ANN size is increased by inclusion of these
false-positives.

To increase sensitivity, the confidence threshold was next set at 60.
Figure 3(c) depicts the resultant network, involving more than 90% of
all known ligand-contacting positions. In an earlier report it was shown
that the ligand-contacting residues in the hormone-binding pocket are
evolutionarily linked to an extensive, hierarchically organized network
of coevolving positions [20]. Coevolving positions are likely to compen-
sate for the destabilization resulting from the binding of diverse ligands
and to preserve the structural integrity and the conformational dynamics
of the ligand-binding domain. In conclusion, a distributed evolution-
ary mechanism, involving the domain fold as a whole, is present in the
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ligand-binding domains of nuclear hormone receptors. It is suggested
that this mechanism maintains a thermodynamically favorable interplay
between molecular organization and evolutionary dynamics.

3. Neural network models of protein domain evolution

Constraint satisfaction within coevolutionary networks can be under-
stood as a form of biological information processing. Coevolutionary
relationships can have very high interconnectivity, where each position
in the coevolutionary network constrains, and is constrained by, many
other positions. This was the case in the nuclear receptor ligand-binding
domain [20]. Each amino acid is uniquely defined by its physicochem-
ical properties, such as shape, volume, polarity, hydrophobicity, and
charge among many additional, less well understood properties. De-
pending on the location of coevolving positions within the network,
different physicochemical properties may be crucial in determining the
pattern of coevolution. As has been learnt from homologous domain
alignments, in many cases volume conservation is of paramount impor-
tance [24], while other properties are less constrained. In other cases,
the hydrophobicity value or charge may be crucial; or a combination
of several properties. Presumably, the greater the number of properties
involved, or the more restricted the allowed range of a single prop-
erty, the stronger will be the mutual constraints on allowed states for
each position. All these factors combined result in constraints of high
dimensionality. ANNs can represent the complexity, and the parallel-
distributed nature, of this evolutionary process.

ANNs are computer algorithms that attempt to model information
processing and adaptive learning executed by ensembles of biological
neurons. One particularly valuable and intriguing characteristic of in-
formation processing in biological brains seems to also be present in
ANNs—the ability to make decisions based on very complex, noisy,
irrelevant, and/or partial information. An ANN is composed of a large
number of highly interconnected processing elements that are analo-
gous to neurons and are tied together with weighted connections that
are analogous to synapses. Interconnected neurons, whether biological
or artificial, have certain neuro-“logical” properties and can be seen as
logic gates: They receive input signals from a large number of other
neurons, process these signals according to specified transformation
functions, and produce an output signal as a result of this processing.
In auto-association or associative memory tasks the input sample is pre-
sumed to be corrupted, noisy, or a partial version of the desired output
pattern. In hetero-association, the output pattern may be any pattern
that is to be associated with a set of input patterns. The neural net-
work architecture can either be tailored to an auto-associative mode or
a hetero-associative mode.
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Brains and ANNs represent information in a distributed fashion; in-
formation is encoded by the patterns of synaptic connection strengths
(weights) between neurons. The distributed networks of neurons per-
form many transformation steps in parallel, a style of computation
known as parallel distributed processing (PDP). When fully connected
neural networks are used, a combination of a large set of connection
weights and nonlinear transfer functions allows models of any complex-
ity to be fitted between the response and the input parameters. Neural
networks are therefore highly efficient nonlinear data modeling devices,
and can be seen as universal models for information processing in com-
plex systems.

Arguably, the evolution of functional sites within the coevolutionary
network of a domain family can be conceptualized as a type of PDP. It
should be well noted that this statement is not meant to imply a direct
correspondence in architecture between the coevolutionary network and
an ANN, but refers to an analogous information-processing mode. Fur-
thermore, as all parallel-distributed computational steps are executed
simultaneously, ANN models of domain evolution do not represent the
historical sequence of stepwise mutation at coevolving sites over evo-
lutionary time. This temporal aspect of coevolutionary networks can
be analyzed and modeled by reconstruction of ancestral states by par-
simony or maximum likelihood methods. Recently, analogies between
protein evolution and neural networks (Hopfield nets) have also been
noted in [25,26].

For the purpose of building an ANN model of a coevolutionary
network, a protein is represented as a chain of agents in a linear se-
quence, each of which can take on one of 20 states (Figure 1). The
agents are understood as mechanisms for mediating interactions ([17],
p. 6), and state transitions in agents (mutations) lead to a modifica-
tion in the patterns of interactions, sometimes resulting in a change in
structure/function. The state transitions are constrained by rules ([17],
p. 116), and all possible state sequences are the outcomes of a succes-
sion of transitions specified by these rules. In this way, the rules generate
evolutionary novelty. Structure/function can now be reconceptualized
as an emergent property, the result of context-dependent interactions,
that changes over time. The state transition rules can be encoded in the
values of the connection weights of the ANN model.

The evolution of new functional sites within the context of a coevolu-
tionary network can be modeled by a classical fully-connected feedfor-
ward neural network (Figure 4) (for a detailed mathematical treatment
of feedforward network properties and behavior, see, for example, [27–
29]). The inbuilt directionality of this type of neural net corresponds
to selection pressure on the domain for evolving new functions. Dur-
ing training, the network is presented with instances of functional sites
(input) and associated amino acid identities at coevolving positions (out-
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INPUT LAYER
FUNCTIONAL SITE

HIDDEN LAYER OUTPUT LAYER
COEVOLVING POSITIONS

Selection for new functional site

Figure 4. ANN model of the evolution of new functional sites in a domain fam-
ily. The network architecture is that of a classic feedforward network whose
size can vary depending on the coevolutionary network to be modeled (closed
arrows). Sequence positions (agents) function as fully connected processing el-
ements (squares). Each agent is represented as a binary vector (open arrows).
Amino acids are encoded as bitstrings. A hetero-associative mapping is per-
formed that maps the input vector matrix (agent states in the functional site)
to the output vector matrix that ranges over a different vector space (states of
coevolving agents). After training, the ANN encodes the state transition rules
of the coevolutionary network.

put) taken from domain family sequence alignments, and trained to as-
sociate outputs with input patterns. When the network is subsequently
used for modeling, it identifies the input pattern and tries to produce
the associated output pattern.

The power of neural networks comes to life when a pattern that has
no output associated with it, is given as input. In this case, the network
predicts the output based on the rules learnt in the training phase.
This property is responsible for the potential of ANNs in evolutionary
modeling. When, for example, given an artificially designed functional
site as input, it will predict compensatory states of the coevolving agents
based on the learnt state transition rules.

3.1 Artificial neural network model of the first-order coevolutionary network
in the nuclear receptor ligand-binding domain

To date, direct interactions with ligand have been characterized for 42
positions in the nuclear receptor ligand-binding domain ([20]; and refer-
ences therein). When mapped onto crystallographic domain structures,
these positions are shown to form the internal ligand-binding pocket.
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In different nuclear receptor types, subsets of pocket-forming positions
comprise the ligand-specific contact residues.

The coevolutionary network made up of the 42 pocket-forming posi-
tions (input) and 17 first-order correlated positions (output) was mod-
eled by a fully-connected 3-layer backpropagation network (Figure 5).1

Input and output layers were encoded by two-dimensional binary amino
acid identity matrices, based on the amino acid class hierarchy shown
in Figure 6. A training set derived from 80 nuclear receptors, repre-
sentative of the entire superfamily, and a validation set obtained from
20 additional receptors were employed for network training. To avoid
local minima problems and poor convergence behavior, conjugate gra-
dient descent was used as the network training paradigm. The mean
square error for the training cycle (after 200 epochs) and the validation
cycle was 0.0003.

4. Conclusions

Artificial neural network (ANN) modeling of coevolutionry networks in
protein domains represents a novel approach with diverse applications
in evolutionary studies and protein design. Firstly, the complex systems
framework employed allows the reconceptualization of protein domain
evolution as a form of biological parallel-distributed information pro-
cessing. This is a novel perspective whose full implications require
further exploration. Extensive analysis of the frequency of occurrence
of coevolving networks in domain families, and of their statistical and
spatial structures, is needed, and the neural network modeling proce-
dure requires further refinement. Secondly, the ANN modeling proce-
dure outlined in this paper is expected to be valuable for the design
of novel functions, such as new ligand-binding capabilities, for a given
domain fold. ANN modeling, based on the coevolutionary relation-
ships between ligand-binding sites and coevolving positions, may enable
one to overcome otherwise prohibitive limits to binding-site modifica-
tions. Predictions of required mutations located at coevolving positions
throughout the domain may be used to maintain the stability of the
modified fold. ANN domain modeling will realize its fullest potential in
the “post-genome era,” once more members of domain (super)families
are sequenced and the full range of sequence variation within a super-
family is available for the training of the neural network. The larger
the training set, the more sensitive will be the ability of the ANN to
simulate domain evolution in silico.

1Stuttgart Neural Network Simulator 4.1 was used. This software simulator for
neural networks was designed at the University of Stuttgart. The program is available at
http://www.informatik.unistuttgart.de/ipvr/bv/projekte/snns/snns.html.
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D 1000100010 V 0100100011 E 1000100001
F 0100010010 K 1000010010 W 0100010001
R 1000010001 Y 0100010011 H 1000010011
C 0100001000 N 1000001010 M 0100000100
Q 1000001001 A 0010100010 S 1000000110
G 0010100001 T 1000000101 P 0001000000
I 0100100010 X 0000000000 L 0100100001

Figure 5. The ANN model of the first-order coevolutionary network in the nu-
clear receptor ligand-binding domain, shown in a two-dimensional projection.
Here, the activation states of the network elements for one validation pattern
are depicted as an example (input layer, left; hidden layer, middle; output layer,
right). Links between elements are not shown. See text for details. Each amino
acid was represented by a 10-bit vector.
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[DEKRHNQST] [ILVFWYCM]

[DE] [KRH][NQ] [ST] [ILV] [FWY] [AG]

D E K R H N Q  S T I L V F W Y C M A G P

X

Figure 6. The amino acid class hierarchy from [30] was used for binary encoding
of amino acid identities.
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