
A Relative Complexity Metric for
Decision-theoretic Applications in
Complex Systems

Raymond M. Bendett
Perambur S. Neelakanta
Department of Electrical Engineering,
Florida Atlantic University,
Boca Raton, FL 33431, USA

Proposed in this paper is a relative complexity metric deduced from the
principles of cross-entropy associated with a complex system. Further
indicated is the use of such a metric in decision-theoretic applications
relevant to a complex system. As an example, the proposed method
is applied to modern cellular phone systems in facilitating the so-called
hard handoff effort by which, a mobile unit switches to a new base
station when the signal from the serving base station becomes too weak
(as a result of inevitably prevailing fading conditions). This wireless
communication based decision-making scenario is justifiably portrayed
as a spatiotemporal exercise in a complex system. The efficacy of the
proposed relative complexity metric in facilitating the handoff effort is
illustrated via simulations and discussed.

1. Introduction

In a large system constituted by a number of interacting subsystems, it
is quite often required that a crucial decision be made to accomplish
a specific task. This decision is made in spite of existing complexity,
prevailing stochasticity, and persisting extensiveness of the system. A
typical example is a modern telecommunications system, which can be
aptly characterized as a complex system; and, there are a number of
engineering tasks accomplished in such systems on the basis of robust
decisions taken appropriately in each case, as necessary.

Recently in [1], such decision considerations are considered in asyn-
chronous transfer mode (ATM) telecommunications, pertinent to call
admission control procedures. Relevant algorithms and implementa-
tion procedures are based on characterizing the global complexity of the
ATM service via stochastical and fuzzy attributes inherently present in
the system. The global complexity addressed thereof refers to the maxi-
mum entropy posed by the stochasticity of the entire system. However,
the efforts studied in [1] are not directed at comparing the relative com-
plexity between any two constituent parts within the extensive system.
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Hence, the present study is devoted to elucidate the relative extent
of complexity between two subsets of a complex system. A set of
cross-entropy measures are described and indicated thereof as metrics
of relative complexity.

Section 2 of this paper describes the relative complexity vis-à-vis
cross-entropy considerations. Section 3 addresses the use of such relative
complexity metrics for comparison against decision-theoretic thresh-
olds. In section 4, the relative complexity based decision-theoretics are
applied to handoff strategies in mobile communication systems. Lastly,
simulated results are presented and discussed.

2. Entropy-based assay of system complexity

A complex system representing a large ensemble of interacting units
invariably has several attributes that are probabilistic in nature. Mostly,
such stochastical attributes refer to the spatiotemporal characteristics
inherent to the system.

Given the stochasticity profile of a complex system, the associated
complexity can be specified in terms of a cohesive parameter that depicts
the maximum entropy of the system. This concept is applied in [2] to
explain the error behavior in large systems. The underlying principle
has also been adopted to describe the neural complexity by one of
the authors elsewhere [3]. Further, as mentioned earlier, the relevant
considerations have been used in [1] to model the gross complexity of
telecommunication systems.

While the considerations presented in [1–3] portray the complexity
of the entire system on an extensive basis, studies that focus on elu-
cidating the relative complexity between the systems (or subsystems)
are rather sparse. Therefore, indicated here is a method for evaluat-
ing a relative complexity parameter. The underlying concept is again
based on entropy considerations. However, instead of maximum en-
tropy (which depicts the extensive complexity of the whole system) the
present approach is directed at measuring the cross-entropy between
two systems (or subsystems). This cross-entropy measure depicts the
“distance” between or “divergence” of statistical profiles of the systems
being compared. Hence, it is shown (using the approach due to [2])
that the cross-entropy measure can serve as a metric of relative com-
plexity.

Consider a complex system specified by a domain X as illustrated
in Figure 1. Suppose two constituent (interacting) subsystems (i, j) are
respectively characterized by two sets of attributes "x # i $ 1, 2, . . . , M%
and "x # j $ 1, 2, . . . , N%, where x & X as shown in Figure 1.

Further, the system shown in Figure 1 is also assumed to exhibit
random variations in time-scale so that the domain representing the
complex system is specified by "x # i, j' t% & X, where t denotes the time.
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Figure 1. A complex system with constituent spatiotemporal subsystems.

Suppose the randomness associated with the subsets of Figure 1 is
expressed in terms of probability density functions (PDFs) px(x $ i' t)
and qx(x $ j' t) corresponding to the sets "i% and "j% respectively. Now,
the maximum entropy concept [2] applied to each group in X leads to
the following functionals:

H(si) $ ln(M ( 1) ) ln(M) since M* 1 (1a)
H(sj) $ ln(N ( 1) ) ln(N) since N* 1 (1b)

where si and sj refer to the metrics of gross complexity corresponding
to the extensiveness of the populations M and N of the sets "i% and
"j%, respectively. Equation (1) is consistent with the Jaynes principle of
maximum entropy or maximum uncertainty [6]. Correspondingly, a
class of distribution exists and corresponds to the maximum entropy
formalism. It leads to the well-known Shannon entropy, namely,

I(x $ i) $ +!
x&X

px log[px(x)] for "i% (1c)

and

I(x $ j) $ +!
x&X

qx log[qx(x)] for "j%. (1d)

Eqnuations (1c) and (1d) can be regarded as implicit representations
of gross complexity pertinent to the sets "i% and "j% respectively, in lieu
of the relations specified by equations (1a) and (1b).

While equation (1) depicts the maximum entropy (H) measuring
the gross complexity (s) of the set "i% or "j%, another metric can be
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specified analogously to measure the relative complexity between these
sets. This metric is the cross-entropy functional, which can be written
in the following two forms:

H(si"sj) $ D(si"sj) $ px log(px/qx) (2a)

H(sj"si) $ D(sj"si) $ qx log(px/qx). (2b)

Equation (2) denotes the statistical distance (D) between the random
attributes of "i% versus "j% or vice versa. This cross-entropy measure is
also a relative information entity in Shannon’s sense. This measure spec-
ified via equation (2) follows Kullback’s minimum (directed) divergence
or minimum cross-entropy principle [7].

Writing in the form akin to Ferdinand’s [2] representation of gross
complexity, the relative complexity can be specified (in terms of the
populations M and N) as follows:

H(si"sj) $ ln # M
(M (N)

,
(M (N)

N
$ (3a)

H(sij"si) $ ln # N
(M (N)

,
(M (N)

M
$ (3b)

which, when written in Shannon’s entropy format, would lead to equa-
tion (2). Hence, in the present study, equation (2) is considered as a
metric of relative complexity.

The cross-entropy depicting the relative complexity, in fact, is an
expected logarithm of the likelihood ratio (L), namely,

L $
[(px)x$i]I

[(qx)x$j]II
(4)

where [px(i)di]I and [qx(j)dj]II are respective probabilities of observa-
tions "i% and "j% (at any given instant t) when a certain hypothesis (hI, hII)
is true. Corresponding to L, the log-likelihood ratio function (LLR)
given by log(L), is a discrimination measure, which provides a choice,
whether to choose "i% in preference to "j% or vice versa. That is, LLR
is well known [4] as a useful metric in decision-making efforts and is
presently considered to depict the relative complexity concurrent to the
cross-entropy measure.

The distance-measure or cross-entropy entity indicated earlier is a
convex functional of the likelihood ratio. It refers to the difference in
the mean values of the LLR under the hypothesis testings hI and hII (in
the Neyman–Pearson sense) [4]; that is, whether the decision be made
in favor of (or against) the set "i%, or in favor of (or against) the set "j%.
Hence equation (2) can be specified alternatively (in terms of LLR) as
follows:

H(si"sj) $ (E[LLR])I + (E[LLR])II (5a)
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where E[.] is the expectation operator. Explicitly,

(E[LLR])I $ %
(i$x)&X

(LLR)p(i)di (5b)

and

(E[LLR])II $ %
(j$x)&X

(LLR)p(j)dj. (5c)

In general, the expectation numbers (E[LLR])I,II are known as Kull-
back–Leibler measures [5] and depict the cross-entropy metrics of equa-
tion (2). The cross-entropy is also the minimum entropy functional
specifying the relative complexity between "i% and "j%, as indicated via
equation (3).

In addition to equation (2), there are a number of other cross-entropy
functionals developed and elaborated in the literature [5]. In the present
study, it is generalized that all such cross-entropy measures can be
adopted to denote the relative complexity between two sets; and, it
is further indicated that they can be used as appropriate metrics in
decision-making algorithms considered in hypothesis testing [4].

The family of cross-entropy measures recast in the present study to
depict the relative complexity metric (RCM) follows.

Kulback–Leibler measure (KL):

KL $ !
(i$x)&X

p(x) log #p(x)
q(x)$ (6a)

or,

KL $ !
(j$x)&X

q(x) log #q(x)
p(x)$ . (6b)

Bhattacharyya measure (B):

B $ + log(Ρ) (6c)

where Ρ is the Bhattacharyya coefficient, given by

Ρ $ % .

0

&
p(x)q(x)dx. (6d)

Sharma–Mittal measure (SM):

SM $
1

(Α + Β)

122222222223
!

x

pΑ(x)q1+Α(x) +!
x

pΒ(x)q1+Β(x)

455555555556
(6e)

where (Α > 1, Β 7 1) or (Α < 1, Β 8 1).
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Rènyi measure (R):

R $
1

(Α + 1)

122222222223
!

x

pΑ(x)q1+Α(x)

455555555556
(6f)

where Α 9 1 and Α > 0.

Kapur’s measure (K):

K $
1

(Α + Β) #'x pΑ(x)q1+Α(x)'x pΒ(x)q1+Β(x)
$ (6g)

where Α > 0, Β > 0, and Α 9 Β.

The above class of metrics fall under the category of so-called Ali–
Silvey distance [8], which generates many of the common distance
measures that have been used in various applications. The concept
of minimum directed divergence measures as proposed in [9] can fur-
ther be generalized to represent a family of measures known as Csiszàr’s
f -divergence metrics, indicated in [10] as measures of informativity.

In reference to the various cross-entropy measures indicated above,
each one of them specifies a RCM that can be adopted in decision-
theoretic efforts (such as the Neyman–Pearson observer). Suppose T
is a decision-threshold, the RCM-based decision refers to the condition
that,

RCM
hI
!
hII

T. (7)

Equation (7) denotes the decision-theoretic criterion on the hypotheses
hI and hII. For example, the RCM (such as the KL measure) implic-
itly assays the relative complexity of underlying attributes of the two
sets "x # i, j% being subjected to the Neyman–Pearson test. Thus, the
conventional detection problem can now be translated and specified as
a choice between two hypotheses hI and hII of equation (7) in respect
of an observation, x $ "i, j% & X. The basis for this approach is that
the metrics of equation (6) contain all the information necessary for a
choice to be made between two hypotheses under consideration.

Lemma 1. Given the statistics y $ F(x), so that yi $ F(x $ i & X) and
yj $ F(x $ j & X), suppose the two hypotheses hI and hII correspond
to the PDFs p(x $ i) and q(x $ j), respectively. These two hypotheses
can be discerned, if the statistics indicated above (conditionally to y) are
specified by the following inequality:

p(x/y) 9 q(x/y). (8)

The RCMs of equation (6) do, in essence, satisfy the inequality of
equation (8) and therefore depict a sufficient statistic.
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Proof. Considering the Kullback–Leibler metric, namely, H(sj"si) $
pi log(pi/qi) and H(sj"si) $ qi log(pi/qi), as indicated earlier, they refer
to the expected values of the corresponding log-likelihood measures,
namely LLR(x $ i) $ log(pi/qi) and LLR(x $ j) $ log(qj/pj) respectively.

Rewriting equation (8),

p(x)∆[x + LLR(x)]
p(y)

9
q(x)∆[x + LLR(x)]

q(y)
(9)

where ∆[.] represents the Knonecker delta, which takes the value 1 or 0.
This implies that when the event x is realized, the value of y is specified;
otherwise, not. (Note: Γ(x, y) $ Γ(x)∆[y + g(x)] and Γ(y/x) $ ∆[y + g(x)]
where Γ $ p or q and g(x) is an invertible function.)

Equation (9) is valid as long as p(x)/q(x) 9 p(y)/q(y). That is, as
long as the likelihood ratio is not a constant, the two hypotheses can be
discerned.

Lemma 2. Given the two hypotheses hI and hII, a decision-threshold
set by an observation level where the RCM becomes invariant can be
considered as a metric for a transition of decisions from (hI against hII)
to (hII against hI) or vice versa.

Proof. It follows from equation (3), that the cross-entropy measure is
an implicit metric of relative complexity; and, the cross-entropy as men-
tioned earlier is an expected value of the LLR. Therefore, the threshold
set at the RCM corresponds to a level specified implicitly in terms of the
likelihood ratio.

Hence, by Lemma 1, a threshold decision level specified at a constant
value of RCM (corresponding to a constant likelihood ratio) can facil-
itate a transition of decision from (hI against hII) to (hII against hI) or
vice versa.

3. Application of relative complexity metrics in decision-theoretic
algorithms

The concept of RCM in decision-theoretic efforts as indicated in sec-
tion 2 can be demonstrated by considering the so-called handoff (or
handover) strategy adopted in mobile communication systems.

Handoff in cellular communication systems refers to a crucial effort
by a particular mobile unit changing the serving base station as war-
ranted by dynamic variations in link quality resulting from mobility and
interference/fading considerations. Conventionally, the handover initi-
ation is done by a decision algorithm based on received signal strengths
(RSSs) from the serving and prospective base stations. That is, the
power-difference of the received signals is used as a metric for handoff
initiation.
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BS-I BS-II

2 km
d

Figure 2. Collinear dispositions of the mobile unit and the base stations BS-I and
BS-II.

Demonstrated in the present study is a new algorithmic approach
wherein the handoff decision is performed by computing the RCM be-
tween the two fluctuating (received) signals. That is, the set of RCMs
indicated earlier are computed from the statistics of the RSSs and pro-
posed as alternative metrics for handoff decisions.

To illustrate the efficacy of the metrics adopted towards handoff
decisions, the cellular mobile system considered refers to the model
due to Vijayan and Holtzman [11,12]. Here, a mobile unit traverses a
collinear path between two base stations BS-I and BS-II (Figure 2). A
log-normal fading, which affects the link quality between the mobile unit
and the base stations is assumed consistent with an urban environment.

As the mobile unit moves through the system coverage area, it would
eventually cross the cell boundaries where the RSS from the serving base
station may become too weak. As such, a decision should be made in
regards to specifying whether the service be shifted (handed over) to the
other base station. Relevant considerations on this handoff procedure
follows.

As the mobile unit travels away from its serving base station, the
linked signal strength (S1) grows weaker due to path-loss and fluctuates
in strength as a result of fast and slow fadings. While the signal S1
drops and tends to fall below a minimum acceptable level, the signal (S2)
from the approaching base station would grow stronger. At this stage,
when S2 becomes above a certain level (called add level), a procedure is
initiated to decide whether to transfer (handoff) the link to the stronger
station. However, this handover procedure should be done carefully.
If handover occurs at every instant when one base station becomes
stronger than another (due to the fluctuations involved), then “chatter”
(also known as “ping-pongs”) or very rapid switching between the two
BSs will take place. This would happen especially when the mobile
unit moves along a cell boundary. This situation is described by the
following handoff decision rules made at specified intervals of time.
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If (<f < 0, the mobile unit is connected to BS-I, and S1f < 0), then handoff
to BS-II.

If (<f > 0, the mobile unit is connected to BS-II, and S2f < 0), then
handoff to BS-I.

Otherwise do not handoff. (10)

Here, S1f and S2f are averaged (filtered) values of S1 and S2 respec-
tively and (S1f + S2f ) is equal to <f . In the aforesaid handoff scheme, as
mentioned before, there is a possibility of extensive ping-pongs/chatters
as a result of prevailing fluctuations in RSS. As such, each time a handoff
is executed, it amounts to an overhead on the system. That is, with each
unnecessary handoff performed, the network bears the responsibility to
do signaling, vary the extents of authentication, update the data bases,
and perform circuit-switching and bridging as necessary. Such tasks
would call for extensive use of network resources and lead to a lack of
robustness and reliability of the handoff procedure.

To overcome the burden imposed on the network by the ping-pongs,
an element of hysteresis is introduced into the handover algorithm. That
is, the handover is facilitated only when the new BS is stronger than the
previous one by at least some handover margin. In handoff algorithms,
which incorporate this hysteresis, the basic algorithm of equation (10)
is modified as follows.

If (<f < +a1, the mobile unit is connected to BS-I, and S1f < ∆), then
handoff to BS-II.

If (<f > (a2, the mobile unit is connected to BS-II, and S2f < ∆), then
handoff to BS-I.

Otherwise do not handoff. (11)

In equation (11), a1 and a2 are known as hysteresis margins; and, in
general, a1 $ a2 $ a. Further, ∆ is a power level stipulated as the
minimum value, so as to avoid dropout. The hysteresis algorithm of
equation (11) allows the system to wait until it is more certain that a
handoff is necessary and should be performed before it actually does so.
This consideration obviously would reduce the number of undesirable
back-and-forth handoffs.

Equation (11) in essence, specifies that, if the averaged signal level
from the new base station exceeds that from the current base station
by a decibles, the handoff is executed. A handoff to BS-I occurs at
an “upcrossing of (a” provided the previous connection was to BS-II
and S2f < 0, and a handoff to BS-II occurs at a “downcrossing of +a”
provided the previous connection was to BS-I and S1f < 0. Thus, the
hysteresis-specified handoff conditions summarize to: (i) An upcrossing
causes a handoff if the previous event was a downcrossing; and, (ii) a
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downcrossing causes a handoff, if the previous event was an upcrossing.
An additional requirement is that the signal from the connected BS
should be below a certain reference level in reference to both conditions.

The extent of this handover margin =a= has to be judiciously chosen.
If this margin is too large, then the mobile unit may move far into the
coverage area of a new cell, causing interference to other users and
itself suffering from poor signal quality and eventual call dropout. If
=a= is too small, frequent ping-pongs would take place causing undue
demand on the resources of the systems. Therefore, a recommended
practice is that the optimum handover margin should be set crucially by
considering the level of shadowing in the system, since the shadowing
effect essentially determines the random variation of signal level along
the cell boundaries.

There are two versions of handoff in practice. Suppose during the
handoff process that the mobile unit is served by only one base station.
Then, the process is known as hard handoff. In this case, the com-
munication link at all times is between the mobile and the only base
station in service. If, during the handoff process, there are two or more
base stations serving the mobile, then the process is called soft hand-
off [7]. Due to hardware limitations, the so-called frequency division
multiple access and the time division multiple access systems invariably
use hard handoff, while code division multiple access (spread-spectrum)
based systems usually use the soft-handoff procedure. The present study
refers to hard handoff conditions.

Considering the conventional handoff procedures, the average (fil-
tered) values of S1 and S2, namely S1f and S2f , leads to a power-difference
metric <f $ (S1f + S2f ) indicated before. And, as specified via equa-
tion (11), a handover is initiated from BS-I to BS-II when the serving
base station is BS-I and <f < +a; and from BS-II to BS-I when the
serving base station is BS-II and <f > (a. This handover strategy is
qualitatively illustrated in Figure 3 with a hypothetical set of curves de-
picting the variations of S1 and S2 along the path from BS-I to BS-II. The
BS-I signal power at the mobile unit is shown in Figure 3 by a solid line,
S1, while that from BS-II at the mobile unit is shown as a dashed line, S2.
Because the mobile unit is traveling away from BS-I and towards BS-II,
S1 grows weaker due to path-loss. It also varies randomly in strength as
a result of shadow fading; on the other hand, S2 grows stronger because
the mobile unit is getting closer to BS-II. S2 also would vary randomly
in strength since it is also subjected to shadow fading. The difference
<f $ (S1f + S2f ) is plotted in the lower half of Figure 3.

Referring to Figure 3, it can be noted that, without the use of hys-
teresis, a handoff to BS-II at T1, a handoff back to BS-I at T2, and again
a handoff to BS-II at T3 take place. Should only one handoff (to BS-II)
occur say, at T4 (in Figure 3), the necessary conditions are that the mea-
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S1

S2

T1 T2 T3

0
+ a1

– a2

T4

!f

S1 or S2

Time (t)

BS-I BS-II

 is the

Figure 3. Variation of base station signal strengths at the mobile unit during
hard handoff. S1 is the signal strength due to BS-I, S2 is the signal strength due
to BS-II, <f $ (S1f!S2f ), and a1 $ a2 $ a is the hysteresis level. T1, T2, and so on
are the time instants as illustrated.

sured <f at T4 be less than +a for a handoff to BS-II; and, if <f is greater
than (a, then the handoff shifts to BS-I.

In the existing handoff schemes [11–14], the <f metric indicated
above is pursued. In the present study, an alternative metric is proposed
in lieu of<f for the handoff procedure. That is, the question of exceeding
the hysteresis level is addressed on the basis of relative entropy between
the signals received, rather than on the associated (average) power levels.
Senadji and Boashash [15] have considered an alternative approach
to the power-difference method for estimating the hysteresis value for
handover decision algorithms. However, their method is based on Bayes
criterion. Their alternative metric approach amounts to replacing the
power-difference value <f with a cross-entropy metric deduced from the
statistics of the signals received from the BSs. Hence, the corresponding
relative complexity is estimated and observed as a metric against the
hysteresis levels. The logistic behind the use of the RCM (in lieu of the
power-difference metric) is as follows.

Complex Systems, 12 (2000) 281–295
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It is important and imperative that the handoff decisions be based
on as “good information as possible.” That is, by exploiting the in-
formation content inherent in signal-strength measurements, the qual-
ity of handoff decisions can be optimized regardless of the size of the
cells and the statistics of signal fluctuations. The signal fluctuations,
in general, are “nuisances” impairing the handoff decision procedures
implemented. That is, they signify the entropy (or uncertainty) profile
of the measurements; and, their presence is rather inevitable. Corre-
spondingly, they pose a complexity of the processing involved.

Notwithstanding the inevitable presence of fluctuations, the handoff
algorithms should capture the relative ability of base stations in serving
the mobile unit in question. This relative ability depends on the extent of
information that can be extracted from the measured RSSs. A cohesive
method of comparing the relative information-loss/entropy and extract-
ing useful information contents of the statistics pertinent to the signals
received from the base stations participating in the handover efforts, can
be done on the basis of complexity measure considerations. It is logical
to pursue such an effort, inasmuch as the associated paradigm would
account for the entire posentropy and negentropy profile of the stochas-
tical processes involved. Further, to exploit the information learned
from each statistic, the handoff algorithm must effect an exchange of
soft rather than hard decisions. For a system consisting of two subsys-
tems, the concept behind statistical distance based hypothesis testing is
to pass soft decisions from the realm of one set to that of the other, and
to iterate this process (on a moving window basis) to produce better
decisions. Hence, the research addressed in this paper was motivated to
look into feasible aspects of such an approach.

4. Simulated results

To ascertain the efficacy of the RCM based hard handoff algorithm
vis-à-vis the conventional (power-difference) strategy, simulations were
performed on the Vijayan–Holtzman model using MATLABTM (version
5.3). The parameters used in the simulations are as follows. The mobile
unit is presumed to be in a metropolitan area, where the base stations
are typically separated by about 2 km. The mobile unit is assumed to
be traversing a collinear path between BS-I and BS-II. Further, the speed
of the mobile unit is assumed to be v $ 12 m/s (or 26.8 miles/hour);
again, typical in an urban environment. As the mobile unit recedes from
BS-I, the RSS (S1) from BS-I suffers a path-loss of 30 dB per decade of
distance [11,12] and fluctuates due to fading conditions. Likewise,
the RSS from BS-II, namely, S2 is also path-loss specified and would
fluctuate as a result of fading involved. For smoothing the RSS values,
window-averaging is used with a filter constant of (30 m/v). The shadow
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fading component of signal power (in dB) is assumed as a gaussian
process with a standard deviation of 6 dB and a correlation time of
(20 m/v). Further, assuming a possible cross-correlation between S1 and
S2 (due to a common fading environment in the vicinity of the mobile
unit), a coefficient of cross-correlation equal to 0.25 is assumed. An
appropriate hysteresis level is set for each metric so that minimal ping-
pongs and dropouts were observed in the simulations performed with
each metric.

Delay for all the metrics is assessed in a relative scale. It refers to the
delay measured from the time at the midpoint (50 seconds) to the time
at which handoff occurs. The computed results on the delay are listed
in Table 1 for all the metrics under consideration. Further indicated
in Tables 2 and 3 are percentages of single and/or multiple handoffs
and dropouts respectively obtained from the simulations. The values
indicated correspond to an ensemble average of 50 trips.

Instant at which handoff occurs
Delay in seconds (in seconds, counted from the start time at BS-I)

Metric (Mean value) Mean value Standard deviation
<f 13.99 63.99 10.62
KL 14.02 64.02 9.98
B 16.42 66.42 7.80
SM 5.95 55.95 14.24
R 6.76 56.76 14.67
K 18.71 68.71 15.56
LLR 24.65 74.65 13.60

Table 1. Handoff delay characteristics. Delay is measured with respect to the
time-instant corresponding to the midpoint between BS-I and BS-II.

% Handoffs
Single Multiple

Metric type 0 ping-pongs 3 ping-pongs 4 ping-pongs
<f 98 2 0
KL 96 4 0
B 100 0 0
SM 84 12 4
R 86 10 4
K 96 4 0
LLR 98 2 0

Table 2. Percentage of single and multiple handoffs.
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Metric type Ante-handoff dropouts % Post-handoff dropouts %
<f 14 0
KL 10 4
B 28 0
SM 12 4
R 12 4
K 22 4
LLR 36 0

Table 3. Percentage dropouts.

5. Concluding remarks

In summary, the study presented here offers a method of comparing
two complex systems (or subsystems) in terms of the associated rela-
tive entropy between them. The underlying consideration is that the
“complexity is a conceptual precursor to entropy” or vice versa. A
relative complexity concept is proposed thereof, and the cross-entropy
functional is indicated as the metric of relative complexity. A family of
such metrics is explicitly identified.

The use of a relative complexity metric (RCM) in decision-theoretic
efforts is elucidated in terms of likelihood ratio considerations and hy-
pothesis testing heuristics.

A practical application of the RCMs in wireless communication sys-
tems is illustrated in reference to handoff algorithms adopted to switch
the base stations serving a mobile unit on ad hoc basis as dictated by
received signal conditions. The vastness of the mobile communication
system and the interaction between its constituent subsystems aptly per-
mit that such a system be described as a complex system. The present
study offers an assessment of the performance of such a system. In
reference to the optimal hysteresis pertinent to the handoff procedure
(under the constraints of performance requirements), it can be flexibly
ascertained using the multiple options on RCMs proposed. Practical im-
plementation of the proposed strategy can follow the underlying signal
selection techniques indicated in [16,17].
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