
Chaos and Predictability of Internet
Transmission Times

Joseph C. Park!

Zenith, Inc.,
3045 Church Hill Drive,
Boynton Beach, FL, USA

The Internet consists of millions of interconnected network nodes com-
prising a complex system utilized for information storage, processing, and
transmission. It is demonstrated that the temporal evolution of trans-
mission times for an information packet transmitted between two stable
endpoints across the global network constitutes the chaotic time series
of a dynamical system with positive Lyapunov exponents and fractal di-
mension. Examination of system invariants establishes the predictability
of local dynamical variables and sets bounds on the ability to forecast
the temporal evolution of the system variables. An artificial neural net-
work (ANN) is invoked to learn and predict the Internet response times,
wherein it is established that even though the system is dynamically diver-
gent from a local system variable perspective, the ANN is fully capable
of characterizing and predicting the macroscopic behavior of the global
Internet network response times.

1. Introduction

The global phenomena collectively referred to as the Internet has be-
come an instrumental feature in the evolution of modern society into
an information-based structure. Almost certainly the evolution from an
agrarian, to mechanistic, to technologically-centered paradigms would
have taken place irrespective of the Internet, however, it is clear that
the Internet has emerged as one of the central enabling technologies fa-
cilitating the shift of modern business and commerce from paper-based
information technology into an electronic one. By its nature, the In-
ternet is a complex system consisting of a massively interconnected, yet
structurally diverse network of information processing systems and sub-
networks of varying complexity. One could then expect interesting fea-
tures to arise in the macroscopic view of Internet behavior. The central
issue which this paper addresses is analysis and prediction of one par-
ticular feature: Internet packet transmission response times across the
global network. The analysis demonstrates that the Internet response
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times constitute a chaotic time-series, and can therefore be viewed as
arising from a nonlinear dynamical system. We then proceed to address
the pragmatic issue of predictability of the network response times; an
issue of considerable interest to the Internet community at-large, and
the major service-providers and technical supporters in particular. The
prediction is performed by invoking another complex system, an ar-
tificial neural network (ANN), which generically shares many of the
topological features of the network that is being modeled. It is demon-
strated that despite the fact that the Internet response times consist of
a chaotic time-series with positive Lyapunov exponents, it is possible
to employ the inherent nonlinear information processing power of an
ANN to produce pragmatically useful Internet latency predictions over
timescales of several days.

The Internet has experienced exponential growth in the past decade,
largely directed by network resource requirements from local access
providers. As a result, the network connectivity structure has evolved
according to needs of information capacity, rather than by a determin-
istic hierarchy dictated by resource planning. It is estimated that as of
April 1999, the Internet consisted roughly of 94,000 networks consti-
tuting the major interconnection points [1], and accounted for some 1.7
billion unique universal resource locators (URLs). It is estimated that
by the time this paper reaches print, the Internet will support 3.2 billion
URLs accessed by some 256 million users. Figure 1 presents a map
of the Internet [2] depicting a snapshot of the network connectivity in
January 1999. The mapping consists of frequent traceroute-style path
probes, one to each registered Internet entity, from which a tree is built
illustrating the connectivity of most of the networks on the Internet.

Even a cursory glimpse of this map strikes a remarkable resemblance
to the topology of interglial connectivity exhibited in neural tissue slices
from the cortical regions of mammalian brains. One must wonder
whether such a coincidence speaks for an underlying structure in the
evolution of information transmission and processing structures.

Another impression of Figure 1 is that the interconnectivity of the
Internet constitutes a fractal. Not only does it appear to be fractal in
the sense of a noninteger dimension, but it also adheres to the notion
of scaling invariance in the sense of self-similarity when considering
that each of the points represented on the map of Figure 1 is in itself a
network consisting of potentially many nodes.

When an information packet is transmitted through the network of
Figure 1, the path which is taken is influenced by random fluctuations
in router loads and service levels. It is therefore consistent to expect
that a time series of such information packets transmitted and received
between two stable endpoints will exhibit a chaotic structure. To as-
certain the validity of this expectation, several standard methods are
implemented to estimate invariants of the topology and dynamics of a
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Figure 1. Map of the Internet.

phase-space attractor generated from the sampled time-series. In par-
ticular, we will examine the dimension of the attractor and the global
Lyapunov exponents of its dynamics to demonstrate that the network re-
sponse times are indeed chaotic. We will then turn to the question of how
to pragmatically predict the performance of Internet traffic through ap-
plication of a feedfoward perceptron neural network, and demonstrate
that the inherent nonlinear processing capability of such networks is
amenable to estimating the Internet response times.

2. Experimental data

Figure 2 details a time-series of ping times [3] from a server in the United
States (Florida) to a domain in Japan (yomiura.net) for a duration of
approximately eight weeks in February and March of 1999. The ampli-
tudes are network response times in milliseconds, indicating the length
of time required to propagate an information packet from the source,
through the network to the destination, and back to the source, there-
fore providing a measure of the network packet transmission latency.
The time-series displays a well-defined structure, with an obvious noise
component. The upper plot shows a seven-day period starting with a
Sunday. It is seen that the dominant signal energy follows a 24 hour
period with the maximum amplitudes corresponding to business days in
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Figure 2. Internet packet transmission response times (latency).

North America and Western Europe. Further, it is clear that the signal
constitutes a stable system, as there is a clear lack of divergence in the
time-series amplitudes, indicating that the system dynamics occupy a
finite state-space with closed orbital trajectories.

The ping times were recorded at an interval of five minutes for the
duration of the data collection. Consistent with the expectation that
the time-series is the result of observations of a chaotic system, the ap-
plication of standard linear modeling techniques will not be applied. In
this situation it is appropriate to examine the validity of the sampling
interval in relation to the time-scales which will be utilized in the non-
linear data analysis. As indicated above, the dominant signal energy
exhibits a quasiperiodic distribution with a primary period of 24 hours,
and it is this diurnal variation which we seek to model. In section 5 we
will subsample the time-series at a rate of one sample per 12 hours, in
order to provide a demonstrable input set for the ANN predictions of
Internet latency. In section 3 a phase-space reconstruction is performed
from the original time-series with an embedding time-delay of approx-
imately six hours. In comparison to the sampling period of 1/12 of an
hour, the time-scales employed in the subsequent analysis are larger by a
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Figure 3. Two-dimensional state-space projection of Internet latency.

factor of 70. Since we do not attempt to analyze temporal components
which approach the sampling interval, there is no cause for concern over
observational fidelity.

The information provided by direct observation of the time-series is
insufficient to determine whether the network propagation times are
chaotic or deterministic, and in the event that the underlying dynamics
are high-dimensional and fractal, to assess the system dimensionality.
To address these questions, one can apply standard analysis techniques
to extract the dimension of the time series and search for chaotic behav-
ior. Prior to proceeding with the analysis, it is illustrative to examine
an alternate geometric view of the system variance by projection of the
semi-infinite time series into a closed orbital two-dimensional geomet-
ric space in order to gain a view of the temporal variance. This can
be achieved through a simple mapping of the amplitude A and time t
coordinates of the data in Figure 2 into a closed two-dimensional tra-
jectory via the transformation: x # A cos(Ωt); y # A sin(Ωt) where Ω
represents the frequency of the signal period, assumed to be 24 hours.
Figure 3 plots several contiguous time-slices consisting of 500 points
each (roughly 41 hours).

These projections illustrate nicely the fact that the amplitude vari-
ance is a time-dependent phenomena, providing evidence that modeling
of the system dynamics from a piecewise linear approach is sure to be
an arduous undertaking. The compact nature of the system variations
in this low-dimensional projection also provides evidence that the dy-
namics we seek to unravel are indeed confined to a closed system, and
therefore are amenable to standard chaotic time-series analysis.

3. Dimension

An indication of higher-order complexity in the defining processes of
the Internet latency would be that a large number of dimensions (system
variables) are required to completely describe the temporal evolution of
the time-series in a continuous differential or finite difference equation.
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Further, if the dimension turns out to be noninteger then the process
exhibits a fractal order and the process may exhibit chaotic behavior.

As there is not a universally accepted algorithm for establishing the
dimension of an empirical data set, we will examine two methods for
estimating the dimension: directly via false nearest neighbors (FNN),
and through saturation of a system invariant. The FNN method pro-
vides a computationally efficient and robust algorithm for establishing
an upper-bound on the set dimensionality, however, it does not provide
noninteger estimates of dimension. Alternatively, examination of the
slope of attractor interpoint correlation integrals can provide an esti-
mate of the dimension in R. Both of these methods rely upon access to
a phase-space representation of the data at an arbitrary dimensionality;
the particular level of dimensionality corresponding to a phase-space
reconstruction is termed the embedding dimension dE.

Here we use a time-delay embedding [4] which converts a discrete
scalar time-series s(n) into a d-dimensional vector time-series:

x(n) # [s(n), s(n % Τ), s(n % 2Τ), . . . , s(n % dΤ)]. (1)

In order to select a reasonable time-delay Τ for the embedding, one
can simply compute the autocorrelation of the scalar dataset and use the
value of the first zero-crossing of the autocorrelation. While this obvi-
ously cannot account for any nonlinearities in the statistical description
of the interrelation between points in the time-series, it nonetheless pro-
vides a surprisingly robust initial estimate for an appropriate embedding
delay as it prescribes on average the delay at which two points become
statistically independent.

Figure 4 shows the autocorrelation of the time-series and indicates
that a value of 70 points (Τ # 350 minutes) represents a delay at which
the Internet latency becomes statistically independent in a linear sense.
This is the value of Τ that will be used in all subsequent embeddings and
calculations concerning the embedded data.

3.1 False nearest neighbors estimate

The FNN method attempts to directly address the question: What em-
bedding dimension is sufficient to eliminate false crossings of an orbit
(phase space trajectory) with itself as a result of having projected the
attractor into too low a dimensional space? The procedure is to define
a function of nearness between adjacent points which depends solely
on the geometrical arrangement imposed by the coordinate dimensions,
and then iteratively increase the number of dimensions until one is sat-
isfied that there are no “false” nearest neighbors [5]. That is, the closest
neighboring point has a distance which is not an artifact of having
projected the attractor into too low a dimensional phase-space.

If the distance function between the point in question x(n) and it’s
nearest neighbor xNN(n) is simply a euclidean distance, then the distance
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Figure 4. Autocorrelation of Internet latency.

in dimension d is:

Dd(n)2 # [x(n) ' xNN(n)]2 % [x(n % Τ) ' xNN(n % Τ)]2

%! % [x(n % (d ' 1)Τ) ' xNN(n % (d ' 1)Τ)]2. (2)

As the data is embedded in the next higher dimension (d%1), this nearest
neighbor distance is changed due to the (d % 1) coordinates x(n % dΤ)
and xNN(n % dΤ) to

Dd%1(n)2 # Dd(n)2 % [x(n % dΤ) ' xNN(n % dΤ)]2. (3)

If Dd%1(n) is large, one can assume that the nearness of the two points is
a result of the projection from some higher-dimensional attractor down
to dimension d, since in going from dimension d to dimension d%1, we
have unprojected these two points. One is then faced with establishing
a criterion to decide when neighbors are false. A normalized distance
metric can serve this purpose such that when

(x(n % dΤ) ' xNN(n % dΤ)(
Dd(n)

> DFNN (4)

the nearest neighbors at time index n are classified false. Here we
use a threshold value of 25, which lies within the accepted span of
10 < DFNN < 50 where the criteria is essentially constant.

Figure 5 presents the calculation of the FNN as a function of embed-
ding dimension dE. The results indicate that embedding the attractor of
the scalar time-series into a five-dimensional phase-space will suffice to
ensure that all trajectory orbits are valid representations of the attractor
dynamics.

3.2 Correlation dimension estimate

Another procedure for establishing the dimension of a scalar time-series
is to embed the time series into a multiple of higher dimensions [6]
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Figure 5. FNN of the Internet latency.

and then search for saturation of a system invariant as the embedding
dimension increases. Such an invariant can in principle consist of any
property associated with the attractor which depends on distances be-
tween points in the phase-space. A popular choice is an average over the
attractor of moments of the number density. Define the number density,
the number of points on the orbit within a radius of r of points y in the
phase-space, as:

n(r, x) #
1
N

N!
n#1

Θ(r ' (x(n) ' y() (5)

with

Θ(u) "0* u < 0
1* u > 0.

(6)

The average over all points of powers of n(r, x) defines the well-
known correlation integrals [8]:

Cq(r) #
1
M

M!
i#1

[n(r, x(i)](q'1) (7)

which for q # 2 reduces to the familiar two-point correlation integral

C2(r) #
2

N(N ' 1)

N!
i+j

Θ(r ' (y(j) ' y(i)(). (8)

The correlation integral C2 is assumed to be a geometric invariant of
the system, and we compute values of C2 as a function of embedding
dimension in order to establish the dimension at which the integral
saturates. Figure 6 presents computation of log(C2) versus log(r) for dE
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Figure 6. Correlation integrals for the Internet latency.

from 1 to 8. Examination of Figure 6 reveals that when dE reaches 5,
the slope of the curves considered over their linear extent is essentially
constant, indicating that the attractor dimension is less than 5. For a
more accurate assessment, the value of the slope of the dE # 5 curve
over the locally straight region produces a dimension estimate of 4.75.
The fact that the resulting estimate is noninteger provides evidence that
the attractor is indeed a fractal. It remains to be demonstrated that
the attractor is a strange attractor, one with both fractal dimension and
macroscopically closed orbits.

4. Lyapunov spectrum

Having established that the Internet latency times constitute a scalar
representation of a process with a dimension of approximately 4.75, it
is now appropriate to enquire as to whether or not the dynamics of the
system can be properly described as chaotic. While the dimension is
useful for characterizing the distribution of points in the phase-space, it
sheds no light on the dynamics of evolving trajectories of such points.
For this, one can turn to the Lyapunov exponents [7] Λi which quantify
the rate of growth of elemental subspaces in the phase-space. Λ1 relates
the rate at which linear distances grow between two points on the at-
tractor: two such points separated initially by an infinitesimal distance
Ε will, on average, have their separation grow as ΕeΛ1t. The sum Λ1 % Λ2
dictates the average growth rate of two-dimensional areas, and in gen-
eral, the behavior of d-dimensional subspaces is described by the sum
of the first d exponents: . # #d

i#0 Λi. Since the Λi govern the rate of
attractor expansion and contraction, it is clear that for physically stable
systems it not possible for. to be positive, this would indicate a globally
unbounded behavior. The presence of positive exponents is however the
hallmark of chaos. The exponential divergence of neighboring points
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Figure 7. Lyapunov spectrum of the Internet latency.

along trajectories resulting from infinitesimal differences in initial con-
ditions requires a positive exponent. Negative exponents arise when the
trajectories of subspaces contract. If the system is a dissipative one, then
. would be negative, ensuring that as time progresses the attractor will
eventually collapse into a stable point. A hamiltonian system would
exhibit . # 0, indicating an energy balance between the expansive and
contractive dynamics. Further, one can in principle determine whether
the embedded dynamics are describable as a differential equation or as
finite time maps through the presence of a zero exponent.

The Lyapunov exponents are computed following the method in [9]
for the data of Figure 2 embedded into a five-dimensional attractor. Fig-
ure 7 plots the Lyapunov spectrum of the embedded data and reveals
both positive and negative components, as well as . < 0. As outlined
before, the presence of positive exponents reveals the sensitive depen-
dence on initial conditions and neighboring trajectory divergence which
is associated with chaos. Further, since . < 0, it is known that the
attractor is globally stable.

As the Lyaponov exponents provide a measure of the trajectory dy-
namics, a natural question to pose concerning the predictability of the
nonlinear time-series is: Given a knowledge of the attractor characteris-
tics, how far in the future can one reasonably expect to be able to make
useful predictions of a particular trajectory? To assess this question we
can draw on the realization that a dynamical system exhibiting chaotic
behavior is an exact analog of Shannon’s concept of an ergodic infor-
mation source. Consider a discrete information source which produces
a sequence of symbols drawn from an alphabet s / [S1, S2, . . . , SN],
and denote the distribution of the realized sequence within s as P(s).
The amount of information that is transmitted by measurement of the
sequence (or alternatively the amount of uncertainty removed at the
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receiver) can be quantified by an informational entropy as elucidated
by Shannon in [10]. In the case where a joint set of measurements
are performed, the entropy in bits is defined via the joint probability
P(s1, s2, . . . , sN) as:

HN(s) # '!
sj

P(s1, s2, . . . , sN) log[P(s1, s2, . . . , sn)]. (9)

As N becomes large, this quantity normalized by N has a finite limit:

h(s) # lim
N01

HN(s)
N

. (10)

Now consider the variable s to be the possible state-space coordinates
of a dynamical system embedded within a finite-dimensional attractor.
Let the measurements of this variable Si define the distribution of at-
tractor trajectories in the state-space. A joint measurement of the Si
then corresponds to following the trajectories of N orbits through the
dynamics of the attractor. In this situation the source is essentially an
abstract statement of the system producing the measurements, and the
concept of entropy of a deterministic dynamical system, where no con-
cept of probability is immediately evident, is much the same as in the
information-theoretic setting. This connection was made by Kolomoro-
gov in [11] who defined h(s) as above, and this information measure is
known as the Kolmogorov–Sinai (KS) entropy of the dynamical system.
The KS entropy is an invariant of the system trajectories, and so is in-
dependent of the initial conditions or the specific trajectories observed.
Further, it can be shown that the sum of positive Lyapunov exponents
.% # #d

i#0 Θ(Λi) 2 Λi is equal to the KS entropy [12]. This connection
allows one to make a statement regarding the limits of predictability for
a nonlinear system in a local sense.

Consider an arbitrary phase-space for a stable dynamical system with
sufficient dimension to completely unfold the attractor. Within this
phase-space, any realizable statement regarding the system can only be
specified to within a certain accuracy. Within that resolution cell we
cannot distinguish between two distinct state-space points. However,
any nonlinear system with a positive KS entropy has a degree of intrinsic
instability, and the two points occupying the same resolution cell will,
after a time T, move to disparate and individually resolvable cells in
the state-space. A natural question concerning the predictability of a
state-space point is then: How large can T grow before prediction of
states is untenable? As a rough upper-limit, one can argue that when
the number of states occupied by the system is equal to approximately
the total number of states available for orbits of the system, that the
ability to predict further state-evolution is lost. A measure of the total
number of states that a d-dimensional system occupies after the passage
of time T is dh(s)T , therefore, a reasonable assessment then for the length
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of time a particular trajectory remains predictable would be T 3 1/h(s).
Since h(s) # .%, which in the case at hand is roughly in the range of
0.25 as indicated in Figure 7, we are drawn to the conclusion that a
time interval of roughly four hours (240 minutes) defines the limit at
which one could be expected to make reasonable estimates of a phase-
space point evolution along a particular trajectory. It is interesting to
note that this estimate for the predictability of an individual state point
is less than the corresponding linear correlation estimate of statistical
independence of 350 minutes, indicating that the nonlinearities of the
system dynamics imposed through the .% increase the uncertainty of
the evolution as compared to a linear-systems perspective.

5. Network response prediction

The question of how to best model the nonlinear dynamics of the Inter-
net latency must be bounded by reasonable computational efforts and
available resources. In the absence of any resource constraints one could
be served by identifying the parameter coefficients of the d-dimensional
differential equation, establishing the relevant initial conditions, and
propagating the variational equation forward in time. This would be
done under the provision that the presence of the positive Lyapunov
exponents ensure that prediction accuracy is guaranteed to diverge ex-
ponentially as the system is propagated forward in time. Given that re-
source constraints are always present in prediction tasks, one must take
a more resource reasonable approach, and we can turn to the inherent
nonlinear estimation powers of ANNs in order to make a model-free
estimate of the future latency times. As an additional motivation, one
can note that the use of the variational equation with positive Lyapunov
exponents as a predictor constitutes a state-evolution model tracking
the microscopic morphology of individual state-points along trajecto-
ries. However, as often arises in complex systems there may exist global
features of the collective dynamics which manifest in well-defined struc-
tures as a result of the negative exponents and natural tendencies to
seek a basin of attraction. In this perspective, it may be appropriate to
examine the global response of the dynamics independent of the individ-
ual trajectories, and seek out a structure in the overall system response.
For this task, an ANN is well suited as it constitutes a model-free non-
linear estimation facility concerned with global system responses not
constrained by microscopic state-point evolution.

The first question to address concerning the selection of an ANN as a
candidate information processing and prediction architecture is: What
type of ANN is to be used? Generally, there are two gross architectures:
recurrent or feedforward networks, which refers to the information flow
through the operational network as either incorporating feedback loops
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or sequential processing. Each of which can further be grouped into
two classes of organizational algorithms: supervised or unsupervised,
specifying whether or not an external error monitor is used to direct the
training. The two most popular implementations are the perceptron, a
supervised feedforward network, and the Kohonen, an unsupervised re-
current implementation. The former is typically employed in nonlinear
estimation where a well-defined training set is available, while the latter
is called to service in pattern classification tasks. In the task at hand,
prediction of Internet latency times for which we have a sizable empiri-
cal data set, the perceptron is the natural choice and the one which we
shall invoke to estimate future latency.

Having identified the ANN paradigm, the next issue to resolve is the
exact configuration of the network in terms of the numbers of processing
units, layers, connectivity, and algorithms. The number of inputs and
outputs are determined by the available training data, and is derived in
section 5.1.

5.1 Training data

As indicated earlier, the ANN is implemented to predict the future net-
work latency for stable network endpoints as shown in Figure 2, and in
accordance with this the ANN will contain a single output. The inputs
can in principle consist of any information relevant to the state of the
Internet at a given time. This could include state-information regarding
the network loading, availability of routers and switching hubs, and
even specific details concerning the hardware configuration and physi-
cal characteristics of the network endpoints and their interrelations. It
would be expected that as the relevance of the input data increases in re-
lation to the information it conveys regarding the Internet latency, that
the training time and ultimate prediction fidelity of the network will
improve. However, concerning the training-set available in Figure 2,
the date-time are the only independent data available. An examination
of Figure 2 indicates a strong coupling between the time-of-day, day-
of-the-week and the resultant Internet latency, wherein there is a clear
diurnal variation of increased latency centered on standard business days
conducted in the continental United States time-zones. It is therefore
consistent to expect that the three inputs consisting of: day-of-the-week,
time-of-day, and business or holiday, constitute three parameters which
have a direct bearing on the state of the Internet latency. Additionally
the total time of the time-series provides a unique input which may be
a relevant feature. Accordingly, for the purpose of training the network
and subsequently making predictions, the ANN is configured to have
four inputs corresponding to normalized [0, 1] versions of these four
parameters.
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310 J. C. Park

Hidden

Weights: Wij

Hidden
Layer 2

1 n n+1 50...

...

...

... ... ...

... ...

Internet Response Time

Layer 1

Input Layer

Total
Time

Hour
of
Day

Day
of
Week

Business
or
Holiday

Output
Layer

Figure 8. Perceptron ANN employed for Internet latency prediction.

5.2 Network architecture

Having identified the ANN input and output data in section 5.1, the
basic input/output requirements of the ANN have been defined. The
ANN therefore accommodates four input units and a single output. Fur-
ther, the network is configured with two hidden layers to perform the
nonlinear information transformation, with 50 neurons in each layer.
Figure 8 depicts a schematic representation of the ANN, and empha-
sizes the full interconnection structure of the processing units (neurons)
between subsequent layers.

As the perceptron ANN is a supervised paradigm, it requires a train-
ing phase prior to use as a predictive algorithm in order to organize the
interconnection weight-states into a structure through which the rele-
vant information extraction or recognition can be achieved. The process
is essentially a search through the parametric information space encap-
sulated in the training data so as to produce a minimum error output
dictated by the supervisor. In the present case, the supervisory function
consists of the classic parametric euclidian error: Ε # (Ti 'Oi), where
T indicates the supervisory output of the ith output neuron, and O the
actual output of the ith unit during a training cycle. It is certainly possi-
ble to use other forms of supervisory feedback, and in fact there exists a
substantial body of work illustrating the advantages of employing error
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functions based on the discrimination of information between the target
and training output sets [13–15]. However, here we are concerned with
demonstrating the predictive abilities of the perceptron, and as long as
the training process presents no substantial difficulties the use of the
euclidean error function is acceptable.

The activation function for the hidden layer neurons is a sigmoidal
Bernoulli function with a zero-argument slope of 3.0, while the out-
put layer units employ a simple linear scaling with a unit derivative.
The ANN is trained with the backpropagation [16] gradient-descent
algorithm which uses a fixed momentum parameter of Λ # 0.1, and a
learning rate of Η # 0.0035. Details of the ANN internal computational
algorithms can be found in [17].

5.3 Training results and prediction

The ANN was trained to predict the Internet latency times for two time-
frames: the first consisting of a period of seven days, the second for a
period of 14 days. The training sets consisted of sections of time-series
extracted from the data of Figure 2, subsampled at a rate of once per
12 hours, therefore two state-points per-day are available for training.
The input training data consisted of the hour, day, and business/holiday
information corresponding to the center of a 12 hour period. The
output training values consisted of an eight-hour moving-average of the
sampled Internet latency values centered on the 12 hour period. The
training sets were extracted starting at time index of hour 520 (Figure 2),
and for the seven day time-frame employed seven days worth of training
data, and likewise 14 days of training data for the 14 day time-frame.

Figure 9 plots the temporal evolution of the normalized supervisory
error function during the training process for the seven day training set.
It is observed that the network converges to a stable organizational state
after approximately 400 iterations. Once the network has converged to
a stable error-minimum, it can be used as a predictor for an unknown
input set. The trained network corresponding to the seven day input
data set was presented input data from time index hour 20, and the
corresponding normalized network predictions are shown with the tar-
get values in Figure 10. The ANN performed a reasonable prediction
for all days of the week except Wednesday, for which there appeared
a substantial spike in the Internet latency about halfway through the
day as is clearly evidenced in Figure 2. Nonetheless, even though the
ANN was incapable of predicting this anomalous microfeature, which
is not surprising considering the amplitude averaged limited training set
to which it was exposed, it did faithfully predict the relative amplitudes
of the Internet latency from one 12 hour period to the next.

The next task was to train the ANN for an attempt at predicting the
Internet latency for a two week period. Figure 11 depicts the training
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Figure 9. ANN training evolution for the seven day prediction.

Figure 10. ANN Internet latency predictions for seven days.

curve for the 14 day data set, from which it is apparent that a consider-
able increase in organizational effort is required in relation to the seven
day data set. The network reaches a stable state after approximately
6000 iterations, and is then used to predict latency for a 14 day period.
The trained network is presented the input data starting at time index
hour 20 from Figure 2, and the resulting network output is presented in
Figure 12. It is evident that the protracted ANN organizational effort
and increased training set diversity have resulted in a better network pre-
diction than the seven day case, while it must noted that the prediction
for the first Wednesday still exhibits the largest error.

Regarding the practical application of such predictions, the imple-
mented ANN architecture provides a predictive filter of future Internet
latency times based on a minimal input data set. In accordance with
this minimally informative input set, the output predictions are not well
suited to predicting anomalous events which might arise due to Internet
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Figure 11. ANN training evolution for the 14 day prediction.
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Figure 12. ANN Internet latency predictions for 14 days.

hardware performance variations and outages. To address this concern,
it is possible to extend the network inputs to incorporate additional
information relevant to the network delays such as router loads and
availability, assuming that one would have available a priori knowl-
edge of planned hardware outages. Another variable which could be
tailored to short-term predictions would be utilization of a path probe
ping response in the network inputs. The presence of such real-time net-
work feedback could provide information pertinent to the short-term
network latency and would serve to adjust the ANN predictions for
rapid temporal responses. Given the myriad variations of input/output
combinations and timescales for which the ANN can be configured, it
is clear that alternative implementations can provide results applica-
ble to the particular problem at hand, here we have demonstrated the
plausibility and validity of a simple ANN implementation.
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6. Conclusion

The explosive growth of the global Internet, driven by economic and
local-use resource requirements, has resulted in a complex system cur-
rently consisting of roughly 105 interconnected networks, supporting
an approximate 25108 users able to access 35 109 unique information
pages. Not surprisingly, the interconnection hierarchy across the global
network for a packet of information transmitted between two endpoints
is a time-varying fractal architecture. When one examines the statistical
nature of a time-series of information packets transmitted through the
network, it is revealed that the time-series constitutes a chaotic signal,
indicating a fractal dimension to the underlying dynamical attractor.
Further, the attractor state-space orbits exhibit positive Lyapunov expo-
nents guaranteeing eventual divergence in the predictability of individual
system variables. Notwithstanding the microscopic unpredictability of
local system trajectories, there exists a well-defined and stable struc-
ture to the global system dynamics, as evidenced by the quasiperiodic
appearance of the time-series depicted in Figure 2. One can then favor-
ably pose the question as to whether or not an information processing
structure can be configured to recognize and predict the macroscopic
behavior of this dynamical evolution. Most conventional structures
aimed at doing so are based on a statistical interpretation of the in-
put/output data, proceeding to arrive at a best estimate for a particular
input set stimulus based on a maximum-likelihood parametric estima-
tion. More often than not, this estimation is based on a linear model,
or superposition of linear models, targeted at extracting information
from the statistical data. Further, such models are often constrained by
limited state-information retention, constricting the available number
of states amenable to prediction. To circumvent such limitations, the
powerful class of computational paradigms comprising the ANNs may
be applied, as they constitute a set of model-free information-processing
architectures inherently suited to nonlinear information processing.

The ANN is itself a complex system, an agglomeration of nonlinear
threshold-response detectors interconnected through an information-
based hierarchy of weight-states. The weight-state of a trained network
represents an optimum information processing structure derived from
experiential refinement of desired network performance. This structure
is analogous to the global interconnection hierarchy of the Internet,
wherein the connection structure has grown in response to satisfaction
of network information capacity, which can be viewed as an optimiza-
tion of information bandwidth requirements under the constraints of
economic dictums. In this light, the Internet can be viewed as generi-
cally analogous to the structure of an ANN, and both are recognized
as information transmission structures evolving to fulfill an optimum
functionality under the auspices of external constraints. If one accepts
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this association, then it is not surprising that the ANN can serve as
a useful tool for predicting the complex macroscopic behavior of an
intricate system such as the Internet.

In this paper, we have applied a perceptron ANN to the task of
predicting Internet latency times across the global network, and have
demonstrated the utility of such an ANN to predict these times averaged
over 12 hour periods for durations of 14 days. This was achieved
even though the Internet latency times are a chaotic time-series with
positive Lyapunov exponents, which imposes severe restrictions on the
local predictability of dynamical system variables. A perceptron ANN
successfully predicted the macroscopic behavior of the latency dynamics,
providing an alternative information processing structure to the usual
maximum-likelihood prediction filters. Establishing the nature of the
time-series is in itself an interesting finding, and provides a basis for
further research concerning the predictability of Internet resources.
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