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Time varying Markov chains are considered whose higher order level equi-
librium properties are exploited in the context of point, cyclic, and strange
attractors to demonstrate the plausible mechanics of how networks of
neurons may register signatures and/or recognizable patterns in the human
brain as a precursor to the development of intentional behavior.

1. Introduction

The work presented here relates specific aspects of the theory of Markov
chains with some concepts that arise in the theory of complexity. This
is done in order to support and help explain more recent hypotheses on
how networks of neurons process information. The reader is referred to
[1] where a good treatment of the subject of Markov chains is offered,
and to [2] where a good introductory review on complexity is given.

In [3,4], a closed form solution was given to some simple time vary-
ing Markov chains defined on a binary state space. These stochastic
processes were characterized by their convergence to a unique finite sta-
tionary cycle of probability distributions which is independent of time
and independent of initial conditions. They were also shown to exhibit
weak ergodicity in their distribution functions. Any one realization,
except for the repetitive nature of the cycle, ultimately becomes inde-
pendent of time and independent of initial conditions while yielding all
relevant information about the long run behavior of the process.

In the projected extensions to this work, a particular type of time
varying Markov chain was outlined that had the following interesting
property: If one considered entropy in its probability context, then the
processes could start with the highest levels of entropy possible as initial
conditions (in the state probability distribution) and end up at cyclic
stationarity with absolute zero entropy. An appeal was made to the
work in [5] which was essential to show this. The hypothesis was then
suggested that it is possible for neural pathways to process information
in this manner. It is the purpose of this work, then, to expand on that
notion.
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In the monumental piece of scholarly work presented in [6], the old
paradigm that had served as the guidelines for philosophical develop-
ment in the arena of action theory is demolished. In doing so, a suit-
able replacement model is constructed by treating the mental processes
associated to human intentional behavior as a complex system. The
development uses every possible bit of experimental evidence obtained
up to our current time to establish the theoretical framework on firm
footing. The work presented here is intended to refine some aspects of
this theory as it could be made to fit in some corners of this extensive
and in itself complex development.

The mathematical models presented here may not be an exact per-
fect match to the biological basis they intend to portray but they may
uncover some principles that govern the manner in which networks of
neurons represent (or even acquire) knowledge and information. The
foundations for a theory of cognition could very well result from this
development. These models are primarily used to establish an associa-
tion between the theories of Markov chains and complex systems with
the objective of expanding the theoretical framework that explains how
neural pathways and networks of neurons process information.

One can borrow from military science to establish three levels at
which one can look and explore the human brain. First is the strategic
time horizon or scale that corresponds to millions of years of evolu-
tion. In this period one has a trial and error learning and adaptive
process where paths develop and mature in response to both external
and internal stimuli. This would be analogous to sunflowers evolving
and developing their tropism. Second is the operational time horizon
or scale corresponding to the time that it takes a human brain, more
or less, to carry out activities such as completing a doctoral dissertation
or proving a very difficult theorem. At this level and the next, one can
look for autocatalytic and self organizing processes in the brain such
as the ones that are incorporated into the new paradigm [6] as well as
other processes of gradual development in response to stimuli such as
those exhibited in post-natal development of the human brain [7]. In
a sense, it could be said that at this level or scale the human brain has
the capacity to mimic evolution itself but on a much shorter time span.
Finally, there is the tactical time horizon that corresponds to the scale
at which one observes the neurons actually firing along their pathways.
In this paper attention is devoted primarily to the third level and some
of the repercussions or consequences at the second level.

Emphasis is given to three important characteristics in terms of how
one looks at the brain. First, traditional brain research has assumed that
information inside the brain flows from a source (or sources) to a sink
(or sinks). Information is viewed as a commodity that flows through
the neural pathways. Here instead the view is taken that information is
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encoded into the paths from the sources to the sinks. It is the paths that
contain and constitute the information. But this view does not preclude
the possibility that in fact there may be some transmission, from one
point to another inside the brain and in the nervous system in general,
of information and instructions and other communication elements. It
is generally accepted that this is indeed the case. It is also possible to
envision the possibility of transmissions with a dual purpose or mission.
These would be to constitute the paths as information as well as to carry
or convey information or instructions to some other part of the brain.
There is some evidence to support this view which is currently being
interpreted as sparse coding and neural correlates in the brain [8].

A second concept is that of attractors which play such an important
part in the modern theory of complexity. In the context of systems,
according to [6]: “All attractors represent characteristic behaviors or
states that tend to draw the system towards themselves. . . ” Three types
of attractors have been identified and they are used here as mathematical
modeling tools. They are point, cycle, and strange attractors. The cited
author makes extensive use of these and cites many other scientists that
have studied and theorized about brain processes. These other authors
have used this concept in contexts that are supportive of the overall
development. One particularly illustrative quote comes from [9] where
connectionist models of linguistic performance are constructed with
results supporting the claim that artificial neural networks construct
semantic attractors. According to [6], the work in [9] proposes that
lexicons be viewed “as consisting of regions of state space within that
system; the grammar consists of the dynamics (attractors and repellers)
which constrain movement in that space. [This] approach entails rep-
resentations that are highly context-sensitive, continuously varied and
probabilistic (but, of course, 0.0 and 1.0 are also probabilistic), and
in which the objects of mental representation are better thought of as
trajectories through mental space rather than things constructed.”

Entropy in its probability-information context [10] as defined in [11]
and [12] provides the basis for the third concept. It is the view of the
human brain as an entropy churning mechanism or device. Processes
such as cognition, learning, and others could be interpreted in the con-
text of a mechanism that reduces variety and multiple possibilities (very
high entropy) to one well defined and established realization (zero en-
tropy). An analogy that comes to mind is the game of Master Mind
in either the plastic or computer version. Initially the player is faced
with a panel hiding from view four differently colored pins selected at
random from a pool of pins in six different colors. The objective for the
player is to match the four pins in both color and position. The hidden
setting could correspond to some external or even internal stimulus to
the brain. The initial entropy is at its maximum (all permutations are
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equally likely). The player starts the first step by placing in front of the
panel an arbitrarily selected set of four colors. The player is then given
information on the number of color and position matches and on the
number of only color (no position) matches. The player then proceeds
to use the information gained and continues for several iterations more
at each step receiving the same kind of feedback until a perfect match in
color and position is found. At this point the entropy has been reduced
to zero. Assuming a player that has developed a consistent set of re-
peatable optimal search rules, then the exact same stimulus or input will
always produce the same search path or trajectory. In the context of the
brain, the feedback could be transformed from a function of identifying
to one of cataloging and identifying. In this game, the path carries at
each step or iteration history and memory that defines the trajectory. In
other words, the game is not markovian in character. Writing a com-
puter program to play this game should prove an interesting exercise
since part of the objective is to arrive at zero entropy in the minimum
possible number of steps. One could conceive of a state space for this
game that would incorporate to the permutation at each step all feed-
back information of the trajectory with their corresponding previous
permutations as the states at each iteration or step along the way. This
is essentially what the player sees as the game carries its history on its
back. This leads to a much larger state space and the game is then
markovian in nature but with origin-constrained trajectories.

A mathematical model is developed in section 3 that permits the in-
corporation and analytical verification of the characteristics and prop-
erties that are described in this introduction and are ascribed to the
brain processes. The model and its variants consist of finite time vary-
ing (nonhomogeneous) Markov chains [5]. The requirements of such a
model are a well defined discrete and finite set of states that the process
or system may visit, a discrete parameter space indexing the epochs at
which the system transitions from one state to the next so that the state
visited or occupied at each epoch is a random variable defined on the
state space with a well defined probability distribution, a well defined
set of transition probabilities for all epochs in time, and the process
meeting the criterion of satisfying the Markov property. The latter is
a property that simply states that whatever state the process will move
into depends only on where the process currently is and not on any prior
history. The time index or parameter space is characterized as discrete
in its most natural occurrence but it is also possible to consider discrete
transition epochs embedded in a time continuum so long as there is a
well defined and behaved sequence of transitions in this continuum. In
the case of a time continuum, a natural extension is to consider con-
tinuous time Markov chain models or to consider their generalization
to semi-Markov models that still utilize an embedded Markov chain
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[13]. But if the time spent in each state is deterministic and always the
same for all transitions in the time continuum, then the results for the
embedded process (thought of as in the relative frequency domain or
proportion of transitions) would coincide or have immediate identical
interpretation to the continuous time process (thought of as in the time
domain or proportion of time). Notwithstanding commentary for clar-
ification, extensions and generalizations of this kind are not considered
necessary here.

2. Biological basis of model

It would appear that in the evolution of scientific knowledge theory
comes first followed by experiment to gather evidence in support or dis-
approval. In reality a symbiotic process develops whereby experiment
feeds of new theory and new theory feeds of experiment. Such is the
current state of affairs in brain research. A lot of research has been
conducted during the past 25 years as the brain has gradually begun to
yield its secrets.

The problem of understanding consciousness or awareness, in par-
ticular, has fascinated scientists and philosophers alike. A good account
of this is given in [14]. Theoretical speculation abounds but some ideas
seem to carry more weight than others. The work in [14] cites the
opinion of Francis Crick and Christof Koch (in Seminars in Neuro-
science, 1990) that “only by examining neurons and the interactions
between them could scientists accumulate the kind of empirical, unam-
biguous knowledge that is required to create truly scientific models of
consciousness, models analogous to those that explain transmission of
genetic information by means of DNA.” Another idea cited is that of
Gerald Edelman who “contends that our sense of awareness stems from
a process he calls neural darwinism, in which groups of neurons com-
pete with one another to create an effective representation of the world.”
Then there are Penrose at Oxford who proposes “that the mysteries of
the mind must be related to the mysteries of quantum mechanics,” and
Rasmussen at the Santa Fe Institute who suggests “that the mind may
be an ‘emergent,’ that is unpredictable and irreducible, property of the
brain’s complex behavior.” And there are many others. But following
Crick and Koch and more advanced technology and methods, many
scientists are beginning to gather substantial empirical evidence on the
workings of the human brain.

The work in [8] gives a clear explanation of how neurons communi-
cate. A very brief initial summary states that “a neuron that has been
excited conveys information to other neurons by generating impulses
known as action potentials. These signals propagate like waves down
the length of the cell’s single axon and are converted to chemical sig-
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nals at synapses, the contact points between neurons.” A more detailed
explanation follows that indicates there is a momentary reversal of a
membrane potential that is instrumental in generating the transfer of
the pulse and excitation from one cell to the next at a synapse. The
epochs at which the next cell (or group of cells) qualifies (or qualify) as
“now being excited” are likely candidates for a discrete parameter space
whether in a natural scale or embedded in a time continuum. Certainly a
synchronization of neuronal firings would be a requirement and insofar
as the Markov property is concerned, clearly the next level of excitation
would depend only on the current one.

As early as the 1960s, the Van Nostrand Scientific Encyclopedia [15]
reported a hypothesis on the workings of the brain, albeit simplified,
that already contained some rudiments of the model being established
here. According to the encyclopedia: “It is postulated that when a
sensory impression reaches the brain, it stimulates a nerve cell which, in
turn, stimulates another cell. A third cell is then stimulated and so on
until a circle has been completed, and the last cell restimulates the first
one. The circuit continues to reverberate, thus retaining the impression
which set it off. It is further postulated that these reverberating circuits
hold the impressions so that they can be recalled later, or compared
with other impressions. It is believed that a cell may participate in more
than one circuit, thus accounting for various associations of sensory and
muscular activity.” The “impression” in a closed circular path already
suggests information content in the path. The “reverberation” suggests
pulses, waves, cycling, oscillation, and synchronization. But an open
path from source to sink may pulsate and/or have information content
as well. A mesh of paths, open or closed, may act accordingly as well.
There may be some elaborate architecture and circuitry and then, there
are different kinds of neurons, functions, and specializations.

Crick and Koch (in [8]), studying the problem of consciousness, have
addressed the role in visual awareness of a 40 cycle per second oscillation
in firing rate that is observed throughout the cortex. The same reference
reports that the oscillations were discovered by Wolf J. Singer and his
colleagues at the Max Planck Institute for brain research in Frankfurt.
It also states that the oscillations may synchronize the firing of neurons
that respond to different components of a perceptual scene and hence
may be a direct neural correlate of awareness. One may add that if this is
the case then the overall conglomerate of neurons, with different sectors
responding to different components at somewhat different frequencies,
should exhibit neither perfect total synchronization nor total lack of
correlation of the rates of firing. Enough correlation may be there,
however, to indicate the neurons are broadly tuned.

In [8] it is also reported that there are neurons in monkey visual
systems that respond to faces but not to other visual stimuli. Recent
experiments show face cells to be broadly tuned, responding to faces
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with similar features rather than to one face alone. The number of
neurons that must be activated before recognition emerges is not known,
but the data are consistent with a sparse coding rather than global or
diffuse activation. It appears that individual motor cortex neurons are
broadly tuned as well. Experiments indicate that the vector obtained
by summing the firing frequencies of many neurons is better correlated
with the direction of movement than is the activity of any individual
cell.

[7] on the other hand, reports on path architecture, offering the
following quote: “Visual pathways in the adult demonstrate the seg-
regation of axons. Neighboring retinal ganglion cells in each eye send
their axons to neighboring neurons in the lateral geniculate nucleus.
Similarly, the neurons of the geniculate nucleus map their axons onto
the visual cortex. The system forms a topographically ordered pattern
that in part accounts for such characteristics as binocular vision (Dana
Burns-Pizer).” This suggests that the definition of the state space along
the transitioning (step-wise) paths may very well be architectural or
topographical in nature, even down to the level of which and/or how
many synapses and branches of dendrites are involved in the conduction
of the impulses. The chemical exchanges at the synapses may very well
be involved in this process as well.

[7] also reports that Corey Goodman at Berkeley and Thomas Jessel
of Columbia University have demonstrated that in most instances, axons
immediately recognize and grow along the correct pathway and select
the correct target in a highly precise manner: “A kind of ‘molecular
sensing’ is thought to guide growing axons. The axons have specialized
tips, called growth cones, that can recognize the proper pathways. They
do so by sensing a variety of specific molecules laid out on the surface of,
or even released from, cells located along the pathway. The target itself
may also release the necessary molecular cues.” The distinction is made,
however, between target selection and selection of address within a tar-
get. There appears to be variation and adjustment in the latter which
is currently being interpreted as error and error correction as part of
the development and maturing process of the brain. It is not quite clear
what the context of “error” is; whether it is visual or architectural or
some other kind of deficiency. The following clarifying remark is of-
fered in [7]: “The eventual emergence of discretely functioning neural
domains (such as the layers and ocular dominance columns) indicates
that axons do manage to correct their mistakes during address selec-
tion. The selection process itself depends on the branching pattern of
individual axons.” It is very likely that pathway selection, branching
patterns, and chemical and molecular exchanges are all involved in the
definition of the state space and the transition probabilities throughout
the paths that in fact help set up the self organizing state attractors
discussed in [6].
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3. Markov chain models

Consider the following transition probability matrix for an ergodic
Markov chain defined on the state space E # $0, 1%. Let

P # ! 1 0
x x " ,

where x represents any nonzero entry in the matrix.
The matrix P is regular and has steady-state or stationary solution

given by the vector Π # (1, 0). If one considers the transformation
Πk'1 # ΠkP, then Π is a fixed point of this transformation [16]. Of
course, all steady-state solutions of Markov chains are fixed points of
their respective transition matrices viewed as transformations. In these
cases, all orbits will lead towards the stationary solutions. Ordinarily,
however, the latter are usually probability distributions that at most
indicate the probability of finding the system in any particular state.
Only in a case like the one given by the matrix P above, where one
has one absorption state, can one say that the fixed point is also a
point attractor. Whatever trajectory the system takes, it is invariably
and unavoidably absorbed into the single state from which it can never
leave. A fixed point attractor then acquires the characteristics of a state
point attractor as well.

In a similar manner, time varying Markov chains give rise to state
cyclic attractors. Consider the pair of alternating transition probability
matrices given by

! !0 1
x x " !x x

1 0 "! .

As can be verified from the closed form solution, the stationary cycle for
this process is given by the vector pair (1, 0) and (0, 1) which alternate
with one another. The resulting state frequency vector is (1/2, 1/2) at
maximum frequency entropy. This deterministic oscillation between
two states was discussed in [4] where the author described its higher
order level of equilibrium consisting of a zero entropy stationary cycle
and weak ergodicity in its distribution function. Obvious extensions to
larger state spaces were also discussed. For these, however, one had to
appeal to the work in [5] to verify their existence. It was then pointed
out the significant importance of these Markov chains that as point
and cyclic attractors exhibit zero entropy in their cyclic equilibrium
distributions.

3.1 Definitions

For the Markov chain processes considered here, one may assume that
the Hajnal qualification holds [4]. This qualification imposes a con-
straint on the matrices comprising the structural cycle of the process. It
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requires that the cycle, consisting of a finite sequence of factor matrices,
begin with a regular and scrambling matrix. This guarantees regularity
throughout the required products of matrices. A scrambling matrix is
any regular stochastic matrix such that for any two of its rows there
always is at least one column with nonzero entries for both rows. This
result is due to Hajnal in [17].

The transition matrices to be considered are all regular square stochas-
tic matrices that correspond respectively to finite Markov chains all
defined on the same state space. One knows, for example, that stochas-
ticity of the matrices is a property that is closed under matrix multipli-
cation.

For convenience, one may assume at this time that the n(n matrix M
is defined in the state space E # $1, 2, 3, . . . , n% and that m(i, j) represents
the entry in the ith row that corresponds to “from” state i and the jth
column that corresponds to “to” state j of the matrix M. The following
proposition is of interest.

Proposition 1. In the matrix product M # AB, if a(i, k) # 1 and b(k, j) #
1, then m(i, j) # 1.

Proof. The proof of this proposition is very simple and is omitted
here.

Proposition 1 is all that is needed to be able to understand how
stationary cycles of zero entropy arise naturally in the context of finite
time varying Markov chains.

Consider a finite sequence of k factor matrices and suppose that their
product exhibits one and only one closed path connected by a sequence
of transition probabilities (all equal to 1) linked as in Proposition 1.
One may label such a closed path as follows:

(i1, i2)(i2, i3)(i3, i4) . . . (ik)1, ik)(ik, i1),

where (ij, ij'1), which is equal to 1, represents the entry in the matrix
product’s jth matrix that corresponds to row ij and column ij'1.

With this label, the following may be observed:

(i1, i2)(i2, i3) yields (i1, i3) # 1
(i1, i3)(i3, i4) yields (i1, i4) # 1

and so forth, until

(i1, ik)(ik, i1) yields (i1, i1) # 1

for the entire product of matrices.
Consider, for example, the case of three matrices in an alternating

product sequence as follows: . . .ABCABCABCABC . . . , where A starts
the cycle. Let the state space be given by E # $1, 2, 3, 4% and let the single
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closed path be (1, 2)(2, 4)(4, 1). One may then notice the following
matrix product relationships:

(1, 2)(2, 4)(4, 1) yields (1, 1) # 1,
(2, 4)(4, 1)(1, 2) yields (2, 2) # 1, and
(4, 1)(1, 2)(2, 4) yields (4, 4) # 1.

Following the developments in chapter 9 (p. 519) of [5], one has that
(1, 1) # 1 means that state 1 is absorbing in the matrix resulting from
the product ABC and hence (1, 0, 0, 0) is the first vector in the stationary
cycle. Similarly, (2, 2) # 1 means that state 2 is absorbing in the matrix
resulting from the product BCA and hence (0, 1, 0, 0) is the second vector
in the stationary cycle. Finally, (4, 4) # 1 means that state 4 is absorbing
in the matrix resulting from the product CAB and hence (0, 0, 0, 1) is
the third and final vector in the stationary cycle with zero entropy. In
this case, once cyclic stationarity is reached or if the process begins at
cyclic stationarity, state 3 vanishes from view. Thus, in the context of
the time varying Markov chain, state 3 turns out to be a transient state.
The equilibrium state frequency vector in this case is (1/3, 1/3, 0, 1/3).

3.2 Representing information

The particular stationary cycles of probability distributions discussed so
far, all have in common the distinction of being zero entropy state cyclic
attractors. The processes could start at the highest levels of entropy
and reach this kind of stationarity which is independent of both time
and initial conditions. By a suitable interpretation of the states it is
then possible to represent (or even cognize, or associate) information
in (to) these processes. To represent binary numbers, for example,
one would need a minimum of two states. For convenience, one may
use a third state as a delimiter to separate the words. To represent
large and small decimal numbers one would need a minimum of 10
states or 11 if a delimiter is used. The following is an example of
how one could represent the binary form of the number 5 (101 in
binary representation): Let state 0 represent the digit 0, and let state
1 represent the digit 1. State 2 will be used as a delimiter state (D).
Then the following time varying Markov chain will yield a zero entropy
stationary cycle containing this number:

!
*+++++
,

x x x
x x x
0 1 0

-.....
/

*+++++
,

x x x
1 0 0
x x x

-.....
/

*+++++
,

0 1 0
x x x
x x x

-.....
/

*+++++
,

x x x
0 0 1
x x x

-.....
/
! .

Here it is the case that
(2, 1)(1, 0)(0, 1)(1, 2) yields (2, 2) # 1,
(1, 0)(0, 1)(1, 2)(2, 1) yields (1, 1) # 1,
(0, 1)(1, 2)(2, 1)(1, 0) yields (0, 0) # 1, and
(1, 2)(2, 1)(1, 0)(0, 1) yields (1, 1) # 1.
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Hence the stationary cycle is given by the vectors (0, 0, 1), (0, 1, 0),
(1, 0, 0), and (0, 1, 0) which represents the sequence

. . .D101D101D101D101 . . . .

The equilibrium state frequency vector is given by (1/4, 1/2, 1/4).
Similarly, one could express the number 15 in its binary representa-

tion (1111) by the following time varying Markov chain:

!
*+++++
,

x x x
x x x
0 1 0

-.....
/

*+++++
,

x x x
0 1 0
x x x

-.....
/

*+++++
,

x x x
0 1 0
x x x

-.....
/

*+++++
,

x x x
0 1 0
x x x

-.....
/

*+++++
,

x x x
0 0 1
x x x

-.....
/
!

which results in the following rotated closed paths:

(2, 1)(1, 1)(1, 1)(1, 1)(1, 2) yields (2, 2) # 1,
(1, 1)(1, 1)(1, 1)(1, 2)(2, 1) yields (1, 1) # 1,
(1, 1)(1, 1)(1, 2)(2, 1)(1, 1) yields (1, 1) # 1,
(1, 1)(1, 2)(2, 1)(1, 1)(1, 1) yields (1, 1) # 1, and
(1, 2)(2, 1)(1, 1)(1, 1)(1, 1) yields (1, 1) # 1.

This corresponds to the state sequence

. . .D1111D1111D1111D1111D1111 . . . .

It is obvious that numbers in any base and words and sentences can
be represented as desired. But this is not necessarily the way the brain
represents this information in a literal sense. One resorts to these be-
cause they represent the foundation of the most important way we can
externally relate to knowledge and information. The coding mechanics
in the abstract, however, is entirely arbitrary. Responses and registra-
tion of all sensory inputs, for example, may be accounted for in this
scheme. Self organizing and autocatalytic structures could also evolve
dynamically along this type of pattern formation and recognition [6].

In traditional computer engineering, one codes in a higher order
language and uses a compiler to help the machine translate this code
into machine or assembly language. It appears that here one may be
helping explain the machine or assembly language of the brain and what
seems to be presented in [6] is an explanation of how a reverse compiler
operates. In other words, how the brain is autonomously capable of
reaching higher levels of order and complexity in its functions. It could
well be that the very foundation of cognition and of the acquisition or
generation of meaning to oneself and others lies in this reversal of roles
of the brain as opposed to the computer.

3.3 Cycles with random path selection

There is one characteristic that is common to all finite time varying
Markov chains exhibiting cyclic stationarity where the stationary cycles
have zero entropy. After stationarity is reached (or if the process starts
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at cyclic stationarity) all trajectories or sample paths are identical. This
is what turns the process into a state cyclic attractor.

Next one may consider a cyclic process where there are exactly two
possible paths at cyclic stationarity. This is illustrated via a simple
example consisting of a three step cycle in four states. At the beginning
of each cycle a fair coin is tossed and either one of two possible paths is
selected depending on the outcome of the coin toss.

The finite time varying Markov chain is defined in the state space
E # $0, 1, 2, 3%, and the three step cycle is defined as follows:

!
*+++++++++
,

1/2 0 1/2 0
1/2 0 1/2 0
1/2 0 1/2 0
1/2 0 1/2 0

-.........
/

*+++++++++
,

0 1 0 0
x x x x
0 0 0 1
x x x x

-.........
/

*+++++++++
,

x x x x
1 0 0 0
x x x x
0 0 1 0

-.........
/

! .

This process is characterized by a stationary cycle given by the vectors
(1/2, 0, 1/2, 0), (0, 1/2, 0, 1/2), and (1/2, 0, 1/2, 0) with a state frequency
vector given by (1/3, 1/6, 1/3, 1/6). The two possible state paths at each
cycle are $0, 1, 0% and $2, 3, 2%. At each cycle, either path is selected with
probability 1/2. It may be pointed out that the coin need not be fair.
One may adjust the probabilities of each path by changing columns one
and three in the first matrix of the cycle. States 1 and 3 are transient in
the first matrix of the cycle yet they are positive recurrent in the context
of the time varying process.

The stationary cycle of this process does not exhibit zero entropy and
hence the process does not qualify as a state cyclic attractor. It does
possess enough structural and behavioral characteristics, however, to
show some of the qualities of a miniature state strange attractor.

Any two independent trajectories of duration one period (or cycle)
are identical with probability 1/2. In general, the probability that any
two independent trajectories of duration n periods are identical is (1/2)n.
Thus, it is easy to see that the probability that any two trajectories or
sample paths are identical goes to zero very quickly. Not only is there
an underlying equilibrium behavior (in terms of probabilities), however,
but also enough cohesion and definition in the pattern of visits to the
states to know that some states are grouped together independent of
any random phenomena.

One can use the random number generator in an HP 11C calculator
to simulate five independent trajectories of duration five periods (cycles)
each. For convenience, one may label state 0 as Red, state 1 as Blue,
state 2 as Green, and state 3 as White.

1. GWGRBRRBRRBRGWG. . .
2. GWGRBRRBRRBRRBR. . .
3. RBRGWGGWGGWGGWG. . .
4. GWGRBRGWGRBRRBR. . .
5. RBRRBRRBRRBRRBR. . .
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To pick out which states are grouped together and in which order and
which are not from just viewing a trajectory requires a mental process
of association which, in a very rudimentary way, is akin to a “context
sensitive constraining” that may emerge in the brain from the dynamic
interaction of patterns and attractors [6]. This exercise, for the reader,
is a bit more difficult if the view does not exhibit a starting point for the
trajectory.

An even more difficult exercise will result if one were to flip a fair
coin on every other step of the cycle. A four step cycle on four states
follows for which this is the case:

!
*+++++++++
,

1/2 0 1/2 0
1/2 0 1/2 0
1/2 0 1/2 0
1/2 0 1/2 0

-.........
/

*+++++++++
,

0 1 0 0
x x x x
0 0 0 1
x x x x

-.........
/

*+++++++++
,

0 1/2 0 1/2
0 1/2 0 1/2
0 1/2 0 1/2
0 1/2 0 1/2

-.........
/

*+++++++++
,

x x x x
1 0 0 0
x x x x
0 0 1 0

-.........
/

! .

The stationary cycle for this process is given by the vectors (1/2, 0, 1/2, 0),
(0, 1/2, 0, 1/2), (0, 1/2, 0, 1/2), and (1/2, 0, 1/2, 0). This results in an equi-
librium frequency vector for the states given by (1/4, 1/4, 1/4, 1/4). Any
cycle can result in any one of four equally likely state paths given by
$0, 1, 1, 0%, $0, 1, 3, 2%, $2, 3, 1, 0%, and $2, 3, 3, 2%.

Using the same color code, one can simulate five independent trajec-
tories of duration five periods (cycles) each.

1. RBWGGWWGRBBRGWBRRBBR. . .
2. GWBRRBWGGWBRGWBRRBBR. . .
3. GWWGRBWGGWWGGWBRGWBR. . .
4. GWBRRBWGRBBRRBBRRBBR. . .
5. GWWGGWWGRBBRRBBRGWBR. . .

From viewing the resulting trajectories it appears easy to tell that Red
and Blue as well as White and Green must be associated to each other
somehow but picking out the four equally likely four step paths may
not be so trivial.

In [6], citing [18], it is pointed out that the key to this problem lies in
context sensitive redundancy, which is a kind of constraint that estab-
lishes divergence from independence: “By correlating and coordinating
previously aggregated parts into a more complex, differentiated, sys-
tematic whole, contextual constraints enlarge the variety of states the
system as a whole can access.”

The two Markov chains described in this section exhibit characteris-
tics of miniature state strange attractors. To help explain how this is so,
one may quote [6] which vividly describes strange attractors in general
as they are placed in the context of the new paradigm using complexity
to model the processes of the human brain.

In the last twenty-five years or so, a third type of attractor has
been identified. So-called strange or complex attractors describe
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patterns of behavior so intricate that it is difficult to discern an
overarching order amid the disorder they allow. All attractors
represent characteristic behaviors or states that tend to draw the
system towards themselves, but strange attractors are “thick,” al-
lowing individual behaviors to fluctuate so wildly that even though
captured by the attractor’s basin they appear unique. The width
and convoluted shape of strange attractors imply that the overall
pathway they describe is multiply realizable. Strange attractors
describe ordered global patterns with such a high degree of lo-
cal fluctuation, that is, that individual trajectories appear random,
never quite exactly repeating the way the pendulum or chemical
wave of the B-Z reaction does. The strange attractors of seemingly
“chaotic” phenomena are therefore often not chaotic at all. Such
intricate behavior patterns are evidence of highly complex, context
dependent dynamic organizations.

Finally, in the context of time varying Markov chains, one may ob-
serve that the first of the two processes considered in this section consists
of a three matrix product cycle in four states. If the cycle were to consist
instead of the last two matrices in this triple, there would be a problem.
There would be two separate closed paths yielding products that are
nonregular or decomposable. Hence there would not be a stationary
cycle. But neither matrix is a scrambling matrix (although both are
regular) and the Hajnal qualification would be violated in this instance
(see [4] and/or [17]). This qualification is sufficient to guarantee regular
products but it is not necessary.

3.4 Irregular sample paths

The number of processes that can register signatures or recognizable
patterns in the brain is much larger than the class of time varying Markov
chains considered thus far. One other possibility, for example, is that
of stochastic processes with irregular sample paths. A discrete time
stochastic process defined on a discrete state space E is said to have
irregular sample paths if at periodic epochs in time, the process either
picks up and/or drops at least one state. One can easily construct such
a time varying Markov chain with irregular sample paths. Consider the
following three matrix product cycle:

! !0 1
x x " !x x x

0 0 1 " *+++++
,

x x
x x
1 0

-.....
/
! .

This process will produce the cyclic attractor zero entropy stationary
cycle given by the vectors (1, 0), (0, 1), and (0, 0, 1). Obviously one
state is added before and then dropped after the third step of the cycle in
every cycle even before reaching cyclic stationarity. Whether this process
meets the criterion for weak ergodicity in the distribution function can
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be questioned under the circumstances. The lack of presence by state 2
in steps one and two of the cycle, however, could be construed as that
state having probability zero in those steps.

4. Summary and conclusions

The work presented has intended to associate and relate aspects of the
theory of time varying Markov chains, dynamic entities themselves,
with concepts in the modern theory of complexity. It supports the de-
velopments in action theory brought forth in [6]. The common thread
all throughout is the modeling of brain processes and their charac-
teristics using concepts that are common to both theories. The new
paradigm and more contemporary experimental evidence has helped
organize one’s thinking on the business of thinking. The following
anonymous quote comes to mind “I think I think, therefore I am who I
am.”

Concerning the association between the theories of Markov chains
underlying the mathematical modeling and the theory of complexity,
[6] brings in a word of warning in the following commentary: “. . . As
a result, unlike the near-equilibrium processes of traditional thermo-
dynamics, complex systems do not forget their initial conditions: they
‘carry their history on their backs’ (Prigogine, Spring 1995, U. S. Naval
Academy). Their origin constrains their trajectory.”

Of course, equilibrium in traditional thermodynamics is akin to the
kind of equilibrium offered by temporaly homogeneous Markov chains.
Most of the homogeneous chains used to construct the time varying pro-
cesses are far from their own equilibrium while forming part of a higher
order level of equilibrium in cyclic stationarity and weak ergodicity in
their distribution functions. The fact remains, however, that all of the
processes discussed are Markov chains. This simply means they do not
carry their history with them even though they are time varying or dy-
namic in nature. These processes may either constitute a rare exception
or possibly may not exhibit a high enough degree of complexity to qual-
ify as full fledged complex systems. Yet they do exhibit characteristics
associated to the latter. Reconciling the two concepts might prove a
nontrivial task.

In the context of time varying Markov chains, when conditions for
equilibrium exist, the time independence of the stationary cycle is best
understood by contrasting the steady-cycle of distributions to transient
cyclical behavior (time-dependent) as the process converges towards
cyclic stationarity. It also helps to conceptualize an easily formulated
lattice of temporary cycles each holding for long enough to approach
its own stationary cycle but ultimately taking a quantum leap to the
next distinct structural cycle with a different stationary cycle at some
point during the trajectory. Such a process would be completely time
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dependent and far from any kind of equilibrium. It may be necessary as
well to reconcile complexity with this particular concept of equilibrium
and nonequilibrium as it relates to Markov chains and their role as at-
tractors. To a certain extent, this may have already been accomplished
in [6]. It is suggested that stimuli to the brain simply generate origins
that constrain the structure of the cycle rather than the trajectory di-
rectly. Once a structural cycle is selected, the brain emulates equilibrium
conditions.

It appears that to the inexorable march of thermal entropy to infinity
corresponds an inexorable march of information entropy to zero and
that the price of temporary reversals or increases in information entropy
is temporary reversals or decreases in thermal entropy.

In short, we have provided here mathematical models that illustrate
the mechanics of processes ascribed to the brain in virtue of exhibited
characteristics and by the backing of biological knowledge and some
more recent experimental evidence. These processes can register signa-
tures and recognizable patterns in the brain.
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[4] D. R. Roqué, “Rainfall in Little Havana,” Proceedings of the Association
for the Study of the Cuban Economy (ASCE), 8 (1998) 142–149, available
at http://www.ascecuba.org.

[5] R. A. Howard, Dynamic Probabilistic Systems, volume 1 (John Wiley,
New York, 1971).

[6] A. Juarrero, Dynamics in Action (The MIT Press, Cambridge, MA, 1999).

[7] C. J. Shatz, “The Developing Brain,” in The Scientific American Book of
the Brain (The Lyons Press, New York, 1999).

[8] G. D. Fischbach, “Mind and Brain,” Scientific American, Special Report
SCA45001, 1992.

[9] J. Elman, “Language as a Dynamical System,” in Mind as Motion, edited
by R. Port and T. van Gelder (The MIT Press, Cambridge, MA, 1995).

[10] Van Court Hare, Jr., Systems Analysis: A Diagnostic Approach (Harcourt,
Brace & World, Inc., New York, 1967).

Complex Systems, 12 (2000) 339–355



On Markov Chains, Attractors, and Neural Nets 355

[11] R. V. L. Hartley, “Transmission of Information,” Bell Systems Technical
Journal, 7 (1928) 535–563.

[12] C. E. Shannon, The Mathematical Theory of Communication (University
of Illinois Press, Urbana, 1949).

[13] S. M. Ross, Applied Probability Models with Optimization Applications
(Holden-Day, San Francisco, CA, 1970).

[14] J. Horgan, “Can Science Explain Consciousness?” in The Scientific Amer-
ican Book of the Brain (The Lyons Press, New York, 1999).

[15] Scientific Encyclopedia, fifth edition (Van Nostrand, New York, 1968).

[16] R. L. Devaney, A First Course in Chaotic Dynamical Systems (Addison-
Wesley, Reading, MA, 1992).

[17] J. Hajnal, “Weak Ergodicity in Non-Homogeneous Markov Chains,” Pro-
ceedings Cambridge Philosophical Society, 54 (1958) 233–246.

[18] L. Gatlin, Information and the Living System (Columbia University Press,
New York, 1972).

Complex Systems, 12 (2000) 339–355


