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Faculté des Sciences,
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We study the sequences generated by a neuronal equation with memory
of the form xn " 1[!k

i"1 aixn#i # Θ], where k is the size of the memory.
We show that in the case where all the parameters (ai)1%i%k are negative
real numbers, there exists a neuronal equation of memory length k that

generates a sequence of period e&(
"

k log k). This result shows that in the
case where all weighting coefficients are negative, the neuronal recurrence
equation exhibits a complex behavior.

1. Introduction

In [1] it is suggested that the dynamic behavior of a single neuron with
memory that does not interact with other neurons can be modeled by
the following recurrence equation:

xn " 1

'(((((((((()

k#
i"1

aixn#i # Θ

*++++++++++,
(1)

where we have the following.

xn is a boolean variable representing the state of the neuron at time t " n.

k is the memory length, that is to say, the state of the neuron at time
t " n depends on the states assumed by the neuron at the k previous steps
t " n # 1, . . . , n # k.

The values ai (i " 1, . . . , k) are real numbers called the weighting coeffi-
cients; ai represents the influence of the state of the neuron at time n# i on
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the state of the neuron at time n. That influence is said to be excitatory if
ai > 0, inhibitory if ai < 0, and null if ai is equal to zero.

Θ is a real number called the threshold.

1[u] " 0 if u < 0, and 1[u] " 1 if u . 0.

The system obtained by interconnecting several neurons is called a
neural network (NN). Such networks were introduced in [4], and are
quite powerful. Indeed, it can be shown that they can be used to
simulate any Turing machine. More recently, NN have been studied
extensively as tools for solving various problems such as classification,
speech recognition, and image processing [5]. The application field of
the threshold functions is large. The spin moment of the spin glass is one
of the widest examples in solid state physics that have been simulated
by NN. In electricity, for instance, a threshold function represents a
transistor; in social science a threshold function is often used to represent
vote laws.

Let p and T be two positive integers such that p > 0 and T . 0.
Equation (1) is said to be of period p and transient T if and only if:

/ t, t0 1 Õ2 t, t0 1 3k # 1, . . . , p 4 T # 15 t 6 t0 implies that Y(t) 6 Y(t0)

Y(p 4 T) " Y(T)

where Y(t) " (xt, xt#1, . . . , xt#k42, xt#k41). The period and transient of
sequences generated by a neuron are good measures of the complexity
of the behavior of the neuron.

Let us denote LP(k) as the longest period that can be generated by a
neuronal equation with memory length k. In [2], it was conjectured that
if (ai)1%i%k 1 —, then LP(k) % 2k. This conjecture has been disproved.
The best lower bound in LP(k) is O(e

"
k log k), which was proved in

[7]. In [2], it was also conjectured that if / i, i " 1, . . . , k, ai 1 —4 (i.e.,
ai . 0), then LP(k) % k. This conjecture has been disproved in [8] where
a neuronal recurrence equation of memory length k and of period O(k3)
has been exhibited.

When all the weighting coefficients are negative, the influence of the
previous states of a neuron (at time n # k, n # k 4 1, . . . , n # 2, n # 1) on
its state at time n is inhibitory, and from a physiological point of view,
it is important to know the behavior of that class of neurons. In [6],
the behavior of recurrence neuronal equations of length 3, 4, 5, and 6
are studied. In the case where the memory length is 5 or 6 and all the
weighting coefficients are negative, many cycles of length less than or
equal to 29 are exhibited.

In this paper, we exhibit a neuronal recurrence equation of memory
length h where all the weigthing coefficients are strictly negative that

generates a sequence of period e&(
"

h log h).

Complex Systems, 12 (2000) 391–397



Neuronal Automata with Inhibitory Memory 393

2. Neuronal recurrence equation with negative weighting
coefficients

Let k be a positive integer. For a vector a 1 —k, a real number Θ 1 —,
and a boolean vector w 1 30, 15k we define the boolean sequence (xn)n1Õ
by the following recurrence

xt " $wt t 1 30, . . . , k # 15
1([a, x]t # Θ) t . k (2)

where [a, x]t " !k
i"1 aixt#i.

We denote by S(a, Θ, w) the sequence generated by equation (2) and
by T(a, Θ, w) its period.

Let m be a positive integer and Θ̄ a real number satisfying Θ̄ . 2m.
We define the following sets:

E " 33m # i 7 i " 1, . . . , m5 " 32m, 2m 4 1, . . . , 3m # 15
H " 36m # 2i 7 i " 1, . . . , m5 " 34m, 4m 4 2, . . . , 6m # 25
F " E 8 H
G " 31, 2, . . . , 6m5 % F.

Let ā 1 —6m be the vector defined by

āi "
9:::;:::
<

Θ̄/2 # 3m 4 i if i 1 E
Θ̄/2 4 3m # i/2 if i 1 H
#6m(Θ̄ 4 m) otherwise.

(3)

For every j in 31, . . . , m # 15 let wj be the boolean vector defined by
w

j
i " 0 for i 1 30, . . . , 6m # 15 % 32j, 3m 4 j5 and w

j
2j " w

j
3m4j " 1.

Property 1 of Lemma 1 was proved in [10] and Property 2 of Lemma 1
can be easily deduced from the evolution of the sequence S(ā, Θ̄, wj).

Lemma 1. The sequence xj " S(ā, Θ̄, wj) satisfies the following proper-
ties.

1. T(ā, Θ̄, wj) " 3m # j.

2. For every j " 1, . . . , m # 1 and for every t . 6m we have:

(a) 2 % !i1F x
j
t#i 4!i1G x

j
t#i % 3

(b) !i1F x
j
t#i 4 2!i1G x

j
t#i . 2

(c) If x
j
t " 1 then !i1F x

j
t#i " 2 and !i1G x

j
t#i " 0.

By modifying the coefficients āi we have the following result.

Theorem 1. There exist b 1 —6m with bi < 0 for every i " 1, . . . , 6m,
and Θ 1 — such that for every j " 1, . . . , m # 1 we have that S(b, Θ, wj) "
S(ā, Θ̄, wj).
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Proof. Let Λ be a negative real number. For each i " 1, . . . , 6m we define
bi by the following equation

bi " $ āi 4 Λ if i 1 F
āi 4 2Λ if i 1 G (4)

and

Θ " Θ̄ 4 2Λ.

In order to prove that the sequences (yj) " S(b, Θ, wj) and (xj) "
S(ā, Θ̄, wj) are the same we apply induction on t. Let us assume that
y

j
i " x

j
i for all i < t.

Using the definition of (bi) in terms of (āi) we have that

[b, yj]t # Θ "
k#

i"1

biy
j
t#i # Θ

" [ā, xj]t # Θ̄ 4 Λ
>?????
@
#
i1F

x
j
t#i 4 2#

i1G

x
j
t#i # 2

ABBBBB
C

. (5)

From Lemma 1 we have that#
i1F

x
j
t#i 4 2#

i1G

x
j
t#i # 2 . 0.

Since Λ < 0 we conclude that [b, yj]t#Θ % [ā, xj]t#Θ̄. From this inequality

we deduce that if x
j
t " 0 then y

j
t " 0 and from Lemma 1 we know

that if x
j
t " 1 then !i1F x

j
t#i " 2 and !i1G x

j
t#i " 0. In this situation

[b, yj]t # Θ " [ā, xj]t # Θ̄ and then the conclusion follows.

From [3] we have the following fundamental lemma of composition
of a neuronal recurrence equation with memory.

Lemma 2. For b 1 —k and Θ 1 — let T1, . . . , Ts be the different periods
T(b, Θ, wj) when wj varies over 30, 15k. Then, there exist c 1 —ks and
v 1 30, 15ks such that T(c, Θ, v) " s D lcm3T1, . . . , Ts5.

Proof. For every i " 1, . . . , k we define cis " bi and cj " 0 if j 6 is. For

every i " 0, . . . , k#1 and every j " 0, . . . , s#1 we define vis4j " w
j
i where

T(b, Θ, wj) " Tj.

Let m be a positive integer. We denote by Ρ(m) the cardinality of the
set P " 3p 7 p prime, 2m < p < 3m5. Let us denote p1, . . . , pΡ(m) as the

prime numbers within 32m, . . . , 3m5 and Λ(m) " F
Ρ(m)
i"1 pi. Finally, we

define h(m) " 6mΡ(m).
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Corollary 1. For every positive integer m there exist c 1 —h(m), Θ 1 —,
and v 1 30, 15h(m) such that ci % 0 for every i " 1, . . . , h(m) and with
T(c, Θ, v) " Ρ(m)Λ(m).

Proof. From Lemma 1 and Theorem 1 we know that for j 1 P we
have that T(b, Θ, w3m#j) " j with bi < 0 for every i " 1, . . . , 6m. We
construct the vector c as in Lemma 2. By construction the vector c
satisfies ci % 0, for i " 1, . . . , h(m). From w3m#j with j 1 P we construct
v as in Lemma 2. Then T(c, Θ, v) " Ρ(m)Λ(m).

The technique used in Corollary 1 defines several coefficients ci as
zero. We will show that it is possible to modify the coefficients (ci) so
as to obtain the previous result with all coefficients being negative.

Lemma 3. For every c 1 —k and Θ 1 — with ci % 0, for i " 1, . . . , k
there exist d 1 —k and Θ0 1 — such that for every i " 1, . . . , k, di < 0 and
for every w 1 30, 15k we have that S(c, Θ, w) " S(d, Θ0, w).

Proof. It suffices to prove that there exist d 1 —k, Θ0 1 — such that for
every i " 1, . . . , k, di < 0 and for every y 1 —k, we have:

1

'(((((((((()

k#
i"1

diyi # Θ0

*++++++++++,
" 1

'(((((((((()

k#
i"1

ciyi # Θ

*++++++++++,
.

Let Μ1 and Μ2 be defined by

Μ1 " max
9:::;:::
<

k#
i"1

ciyi 7
k#

i"1

ciyi < Θ, y 1 30, 15k
H:::I:::
J

and

Μ2 " min
9:::;:::
<

k#
i"1

ciyi 7
k#

i"1

ciyi . Θ, y 1 30, 15k
H:::I:::
J

.

We define

Θ0 " Θ #
Θ # Μ1

2
"

Θ 4 Μ1

2
.

Then Μ1 # Θ0 < 0 < Μ2 # Θ0. We define

di " ci #
Μ2 # Θ0

k
.

Clearly every coefficient di is negative and we have that

k#
i"1

diyi # Θ0 "
k#

i"1

ciyi # &Μ2 # Θ0

k
' k#

i"1

yi # Θ0.

Complex Systems, 12 (2000) 391–397



396 R. Ndoundam and M. Matamala

Since 0 % !k
i"1 yi % k we get that

k#
i"1

ciyi # Μ2 %
k#

i"1

diyi # Θ0 %
k#

i"1

ciyi # Θ0.

Therefore, if !k
i"1 ciyi < Θ0 we obtain !k

i"1 diyi < Θ0. Since Θ0 . Μ1,
from the definition of Μ1 and Μ2 we know that if !k

i"1 ciyi . Θ0 then!k
i"1 ciyi . Μ2, which implies that !k

i"1 diyi . Θ0.

Corollary 2. For every m there exist d 1 —h(m), Θ0 1 —, and v 1 30, 15h(m)

such that T(d, Θ0, v) " e
&&"h(m) log h(m)'

.

Proof. From Lemma 3 we know that there exist d 1 —h(m), Θ0 1 —,
and v 1 30, 15h(m) such that T(d, Θ0, v) " Ρ(m)Λ(m). We prove that

Λ(m) " e
&&"h(m) log h(m)'

. It is known that

lim
Π(m)

m
log(m)

" 1,

where Π(m) is the number of prime numbers less than m. Then, for m
large enough we have that

Ρ(m) L
3m

log(3m)
#

2m
log(2m)

L
m log(m)

log2(m)
"

m
log(m)

.

From that we deduce that h(m) L m2/log(m) and then

m L
(

h(m) log h(m).

Using the bounds given in [9] we have for x large enough that

e0.9x % Γ(x) % e1.1x

where Γ(x) " Fp%x, p prime p. Therefore,

e0.5m " e2.7m#2.2m % Λ(m) % e3.3m#1.8m " e1.5m

we conclude that

Λ(m) " e
&&"h(m) log h(m)'

.

3. Conclusion

The technique used to pass from a neuronal recurrence equation where
the weighting coefficients are positive or negative to the neuronal re-
currence equation where all the weighting coefficients are negative is
inscribed in the frame of structural constructions. The existence of a
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neuronal recurrence equation of memory length k which describes a cy-

cle of length e
&&"k log k'

shows that the behavior of neuronal recurrence
equations is complex when all the weighting coefficients are negative.
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