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A class of combinatorial optimization models is presented for studying
certain systems that arise in biology, physics, business, and elsewhere.
These systems consist of a finite number of parts. For each part, it is
necessary to choose one of several interchangeable components so as to
maximize a performance measure of the resulting system that depends on
how the chosen parts interact with each other. Probabilistic analysis and
computer simulations provide insight into some factors that affect the
expected performance of such systems. These models provide the ability
to control the interactions among the components and to study the effect
of replacing a single component in the system.

1. Introduction

A class of combinatorial optimization models is presented for studying
systems composed of a finite number of parts. For each part, it is
necessary to choose one of several interchangeable components that then
interact with each other in complex ways that often cannot be measured.
One objective in designing such a system is to choose, for each part, one
of the available components in such a way that the resulting system is
the best, according to a specific measure of performance.
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One such example arises in the study of the maturation of the immune
response [1], in which an antibody (the “system”) is a collection of
amino acid sites (the “parts”) in the V region. At each site is one of
20 amino acids (the “components”). The affinity of an antibody for
a particular antigen, which depends on how the chosen amino acids
interact with each other, is a measure of the fitness (the “performance”)
of the resulting antibody.

Another example arises in the study of the evolution of genomes [2].
Here, a genome (the system) consists of a number of gene positions, or
loci (the parts). At each locus, evolution selects one of several versions
of a gene, that is, the alleles (the components). The fitness (the per-
formance) of the resulting genome is based on how the selected genes
interact with each other. It is assumed that genomes evolve so that allelic
substitutions at each locus tend to maximize genomic fitness.

A third example of such a system arises in physics in the study of
spin glasses [3]. Here, the system consists of a number of contiguous
atoms (the parts). For each atom, it is possible to select a spin up or
a spin down (the components). The total energy (the performance) of
the atoms depends on how the selected spins interact with each other.
The objective is to determine the spin of each atom so that the resulting
ensemble has the least total energy.

Such systems also arise in the study of business organizations. For
example, in [4] a special case of the model proposed here is used to
study the expected performance of the team-replacement problem in an
organization. In this setting, a team (the system) consists of a number of
job positions (the parts). For each job position, it is possible to select one
of a number of qualified individuals (the components). The effectiveness
(the performance) of such a team is based on how the selected individuals
interact with each other and the objective is to determine who to select
for each position so that the resulting team is most effective.

A paradigm in the context of organizational change is developed
in [5]. In that article, the system represents an organization having a
number of attributes (the parts). For each attribute, it is possible to
choose one of two alternative forms (the components). The author
examines the effect of the amount of interaction among these attributes
on the overall effectiveness (the performance) of the organization.

The relevance of complex systems to business organizations is fur-
ther highlighted by the fact that an entire special issue of Organization
Science [volume 10(3), 1999] was devoted to the “Application of Com-
plexity Theory to Organization Science.” Although that journal focuses
more on the applications, rather than the mathematics, of models of
complex systems to organizations, they indicate the need to develop
more realistic models. The work here is an attempt to do just that and
to obtain useful analytical and simulation results that provide insights
into the expected performance of general complex systems, regardless
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Figure 1. A system x as a binary N-vector.

of where these systems arise. A general class of models for studying
this type of problem is developed in section 2. Some computational
complexity results, polynomially-solvable special cases, and heuristics
are then presented in section 3 for finding a system with relatively good
performance. In section 4, conditions are developed under which it is
possible to obtain analytical results on the expected performance of the
best system found by a local improvement algorithm. The results are
supported throughout by simulations. A summary and directions for
future research conclude this work.

2. A class of combinatorial optimization models

A class of combinatorial optimization models for studying the type of
problem presented in section 1 is developed in this section. A simplified
version is described first so that the key features are easier to understand.
A more general model is presented in section 2.2.

2.1 The basic model

Consider a system consisting of N parts, in which there are only two
components available for each part. In this case, the system is repre-
sented mathematically as a binary N-vector, x # (x1, . . . , xN), in which
xi # 0 means that one of the two components is chosen for the part
in position i and xi # 1 means that the other component is chosen
for that part (see Figure 1). Each of the 2N possible combinations of
components in all N positions is referred to hereafter as a system. Geo-
metrically, each of the 2N systems corresponds to a corner point of the
N-dimensional unit cube.

Each fixed choice of components for the N parts results in a system x
whose relative performance is modeled as a real number p(x) between
0 and 1. A value close to 1 indicates a system with relatively good per-
formance and a value close to 0 indicates a system with relatively poor
performance. In general, computing a value in an actual application is
challenging because it may not be clear what is meant by performance
nor how to compute a number in a realistic way that takes into account
the complex interactions among the various components.

Complex Systems, 12 (2000) 423–456
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For systems whose performance is not measurable, a naı̈ve approach
is to generate, for each system, a uniform random number between 0
and 1 that represents the performance of that system. Although not
realistic, some fundamental insights can still be obtained from such a
model. Another more realistic approach is described next.

2.1.1 Computing the performance of a system using the NK model

In studying the maturation of the immune response, Weinberger [1] de-
veloped the NK model, which was subsequently applied to the evolution
of genomes by Kauffman [2]. The approach to computing the fitness of
a genome in the NK model is described now in the context of evaluating
the performance of a system. It is assumed that each component chosen
for part i contributes an amount pi(x) to the overall performance of the
system x. The performance p(x) of the whole system x is then taken to
be the average of these individual performance contributions:

p(x) #
!N

i#1 pi(x)
N

. (1)

The remaining issue is how the performance contribution of the
component chosen for part i is determined. In that regard, the NK
model is designed to incorporate interaction among the chosen com-
ponents through the use of an integer parameter K. The value of K
(0 $ K $ N % 1) represents the number of other components that affect
the performance contribution of the component chosen for part i. Thus,
K # 0 indicates that the contribution of each component depends on no
other components and K # N % 1 indicates that this contribution de-
pends on all remaining N % 1 chosen components. More specifically, in
the NK model, the contribution pi(x) of the component chosen for part
i to the overall performance of the system x depends on the component
in part i and on the components chosen for K other parts (e.g., the K/2
parts on either side of part i, wrapping around, if necessary). There are
2K&1 possible combinations for the components in these K&1 positions,
so Kauffman defines the value of pi(x) to be one of 2K&1 uniform [0, 1]
random numbers—the one that corresponds to the combination of the
components for part i and the K components that affect component i.
Given values for N, K, and the N tables of 2K&1 uniform [0, 1] random
numbers, the collection of all 2N binary vectors, together with their per-
formance values, as defined by equation (1), constitute the NK model.

2.1.2 A heuristic for finding a good system in the NK model

One (or more) of these 2N systems is the most effective—the one whose
performance measure is closest to 1. Finding such a system in the
NK model is not practical due to the NP-completeness result presented
in section 3. Although Kauffman was unaware of this result, in the
biological setting of genome evolution, he suggested a heuristic based
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on mutation. In the context of complex systems, that heuristic proceeds
as follows. Starting with an initial system x a new system x' is created
by considering what happens if a single component is replaced with the
other available component for that part, resulting in what is called here
a one-replacement neighbor of x. The new system is retained only if x'

has better performance than x, that is, if p(x') > p(x). This replacement
process results in a sequence of systems, each with better performance
than its predecessor system, until obtaining a system whose performance
is greater than or equal to that of all its one-replacement neighbors. This
final system is a local maximum that is referred to here as a locally-stable
system.

One question Kauffman set out to answer in this framework was how
the values of N and K affect the average performance of the final system
obtained from the replacement process. For the extreme values of K # 0
and K # N % 1, Kauffman was able to obtain analytical results that are
then supported by simulations. For the case K # 0, the contribution
of each component to the overall performance of the system depends
only on that component. Starting with any initial system, a system
with maximum performance is obtained by a replacement process that
successively chooses the best component for each part, as determined
by the random-number table for that part. The expected performance
of the system thus obtained is shown mathematically to be 2/3 and the
expected number of replacements needed to obtain this system is N/2.

An analysis is also provided for the case K # N%1. In this case, chang-
ing the component for one part changes the performance contributions
of each selected component. Kauffman argues analytically that when N
tends toward infinity, the replacement process results in a locally-stable
system whose expected performance approaches 1/2. It is also shown
that the expected number of locally-stable systems is 2N/(N&1) and that
the expected number of replacements needed to reach a locally-stable
system is ln(N % 1).

Kauffman then uses computer simulations to determine the average
performance of a locally-stable system for different values of K. Those
results indicate that, as N gets large, for positive values of K up to
about 8, the expected performance exceeds the performance of 2/3 as-
sociated with K # 0. But then, as K increases, the expected performance
of a locally-stable system decreases toward 1/2. Kauffman refers to
this phenomenon—of decreasing performance associated with increas-
ing interaction—as the complexity catastrophe (see Figure 2).

Intuitively, the complexity catastrophe is due to a trade-off that arises
as K increases. The larger the value of K, the greater the number (2K&1)
of possible values for the performance contributions of each chosen
component, thus resulting in more choices for components that could
result in individual performance contributions close to 1. However, as
K increases, there are more conflicts between the chosen components in
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Figure 2. The complexity catastrophe in Kauffman’s NK model (N # 96).

that whatever component is chosen for part i, that component is likely
to benefit the performance contributions of some chosen components
while being detrimental to the performance contributions of other com-
ponents. The simulation results obtained from the NK model indicate
that for small positive values of K, the benefits of having more choices
for the performance contributions of the chosen components outweigh
the few conflicts. However, as K increases, the negative effects of the
increasing number of conflicts dominate the benefits of having more
choices for the performance contributions of the chosen components,
thus resulting in no more than average overall performance for each
component and hence for the system as a whole.

A formal proof of the complexity catastrophe for the NK model is
provided in [6]. However, several modifications of the basic model have
demonstrated that the complexity catastrophe can be overcome (e.g.,
[7], in which the performance of a system is computed as a weighted
average of the individual contributions). Subsequently, [8] shows that
the complexity catastrophe is linked critically to a number of underlying
mathematical assumptions inherent in the NK model. Those assump-
tions are identified explicitly and it is shown that, by relaxing any one
of them, it is possible to create a slightly modified—and in some cases,
a more realistic—model in which the complexity catastrophe is attenu-
ated.

2.2 A general model of systems with complex interacting components

The following more general model is proposed now for studying systems
with N parts. To that end, suppose that for each part i, it is possible to
choose one of ci alternative components, numbered 0 through ci %1, so,
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let

Z(ci) # (integers x) 0 $ x $ ci % 1*.

A system is then represented by an N-vector x # (x1, . . . , xN), in which
each xi + Z(ci). Equivalently, letting c # (c1, . . . , cN),

x + Z(c) # Z(c1) ,! , Z(cN).

To capture the interactions among the components in a system, for
each part i, let Ki be the number of other parts that affect the perfor-
mance contribution of part i and let Si be the subscripts of those parts
whose components affect the performance contribution of the compo-
nent chosen for part i. In this paper, it is assumed that Ki and Si do
not depend on x, although such an extension is possible and may be
applicable for certain systems. Notationally,

Si = (integers j - i) 1 $ j $ N and the component chosen for
part j affects the performance contribution of the compo-
nent chosen for part i*,

Ki = .Si.,
xi = the vector consisting of xi and the Ki components of x

indexed by the subscripts in Si.

Turning to the performance measure, the interactions among the cho-
sen components, represented by the values of Si and Ki, are incorporated
in the fact that pi is a function of xi, that is,

pi(x
i) = the contribution to performance of the component

chosen for part i, which depends on the components
of x in xi.

The performance of the system x, denoted by p(x), is then obtained by
combining the contributions pi(x

i) of the individual selected components
through the use of a function g of N real numbers. That is,

p(x) # g(p1(x1), . . . , pN(xN)). (2)

Some typical examples of the function g include:

g(y) #
!N

i#1 yi

N
, g(y) # max

i#1,...,N
yi, g(y) # min

i#1,...,N
yi, g(y) #

/00000
1

N"
i#1

yi

233333
4

1/N

.

In summary, given values for N and the number of components ci
available for each part i, the proposed model consists of all N-vectors x #
(x1, . . . , xN), in which each xi + Z(ci), together with the interaction data
consisting of Ki, Si, and the N functions pi(xi) together with the function
g used to combine the pi(x

i), as given in equation (2), to provide the
overall performance p(x) of the system x. The objective is to determine

Complex Systems, 12 (2000) 423–456



430 D. Solow, A. Burnetas, M. Tsai, and N. S. Greenspan

values for the components x1, . . . , xN so that the resulting system x #
(x1, . . . , xN) has the best performance, according to equation (2).

Note that Kauffman’s NK model is a special case of that proposed
here in which (a) ci # 2, for each i # 1, . . . , N; (b) Ki # K, for each
i # 1, . . . , N; (c) Si # (i % K/2, . . . , i, . . . , i & K/2* if K is even and Si #
(i%#K/2$%1, . . . , i, . . . , i&#K/2$* if K is odd; and (d) p(x) # !N

i#1 pi(x
i)/N.

3. Computational complexity results and heuristics

The computational complexity of finding the best system is addressed
in this section. To that end, it is assumed that, for each x + Z(c), each
function pi(x

i) as well as g return a rational number between 0 and 1
in polynomial time, in terms of N. The associated decision problem is
now stated formally.

NK: Given an integer N > 0 and, for each i # 1, . . . , N,
positive integers ci, sets Si 5 (1, . . . , N*%(i* with Ki # .Si.,
polynomially computable functions pi(x

i) and g, and a
rational number C > 0, does there exist an N-vector
x + Z(c) such that g(p1(x1), . . . , pN(xN)) 6 C?

Theorems 3.1 and 3.2, whose proofs are given in appendix A, show
that two special cases of the foregoing problem are strongly NP-complete,
so the NK problem is also strongly NP-complete.

Theorem 3.1. For any positive integer Q, the following problem is
strongly NP-complete:

NK(Q): Given N > Q, K # N % Q, ci # 2, Si # (i & 1 %#(i & 1)/(N & 1)$N, . . . , i&K%#(i & K)/(N & 1)$N*, the
functions pi(x

i), for i # 1, . . . , N, and a rational num-
ber C > 0, does there exist a binary N-vector x such
that !N

i#1 pi(x
i)/N 6 C?

Theorem 3.2. Let Α be a rational number with 0 < Α < 1. The follow-
ing problem is strongly NP-complete.

NK(Α): Given N, K # min(%ΑN&, N % 1*, ci # 2, Si # (i &
1%#(i & 1)/(N & 1)$N, . . . , i&K%#(i & K)/(N & 1)$N*,
the functions pi(x

i), for i # 1, . . . , N, and a rational
number C > 0, does there exist a binary N-vector x
such that !N

i#1 pi(xi)/N 6 C?

Theorems 3.1 and 3.2 mean that the general NK problem is strongly
NP-complete. Therefore, it is only possible to find the best system,
by explicit enumeration, when N and c1, . . . , cN are relatively small.
Another alternative is to develop polynomial algorithms for finding the
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best system for certain special cases, as is done in section 3.1. Then, in
section 3.2, heuristics are proposed for the general problem.

3.1 Polynomial-solvable special cases

In this section, two special cases of the general problem are presented
for which it is possible to develop polynomial algorithms to obtain the
best system.

3.1.1 A polynomial algorithm when each Ki ! 0

For the case in which each Ki # 0, that is, when each Si # 8, the perfor-
mance contribution of each component i in the system x is determined
only by component i, that is,

pi(x
i) # pi(xi).

In this case, the performance of the system x is

p(x) # g(p1(x1), . . . , pN(xN)).

Finding a system with the best overall performance normally involves
considering an exponential number of possible systems. Definition 3.1
and Theorem 3.3 reduce this task to a polynomial amount of work by
providing a condition under which a best system is found by identifying,
for each part i, the component that maximizes the contribution pi(xi).

Definition 3.1. A function g ) RN 9 R1 is monotonically nondecreasing
if and only if whenever a, b + RN with a $ b, it follows that g(a) $ g(b).

Theorem 3.3. If g ) RN 9 R1 is monotonically nondecreasing, then the
system x! with

pi(x
!
i ) # max

xi+Z(ci)
pi(xi) for each i # 1, . . . , N

satisfies

max
x+Z(c)

g(p1(x1), . . . , pN(xN)) # g(p1(x!
1), . . . , pN(x!

N)). (3)

Proof. Let x̄ be a system that achieves the best possible performance.
By definition, then, the performance of x̄ is better than the performance
of the system x!, that is,

g(p1(x̄1), . . . , pN(x̄N)) 6 g(p1(x!
1), . . . , pN(x!

N)). (4)

For the other inequality, note that, by definition of x!,

pi(x̄i) $ pi(x
!
i ), for each i # 1, . . . , N.

By the monotonicity of g, it follows that

g(p1(x̄1), . . . , pN(x̄N)) $ g(p1(x!
1), . . . , pN(x!

N)). (5)

The desired conclusion follows by combining equations (4) and (5).
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Theorem 3.3 applies to each of the following monotonically nonde-
creasing functions (where wi are nonnegative real numbers that sum to
1 and, in the last two cases, g is defined on the nonnegative orthant of
RN):

g(y) #
N'

i#1

wiyi,

g(y) # max
i#1,...,N

yi,

g(y) # min
i#1,...,N

yi,

g(y) #
N"

i#1

yi,

g(y) #
/00000
1

N"
i#1

yi

233333
4

1/N

.

Furthermore, the amount of work needed to find the optimal system x!

in Theorem 3.3 depends on the amount of work needed to evaluate the
individual contributions, pi(xi). Specifically, if qi(N) is the polynomial
amount of work needed to evaluate pi and d # deg(!N

i#1 qi(N)), then the
amount of work needed to find the optimal system x! is O(Nd).

3.1.2 A polynomial algorithm when g and Si have special properties

For the special case in which ci # 2 for all i, the contribution of the
component chosen for part i depends on the components chosen in the K
subsequent positions, wrapping around when necessary, and the system
performance is taken to be the average of the individual contributions, in
[4] it is shown that for a fixed value of K, the best system can be found in
polynomial time by solving 2K longest-path problems in an appropriate
directed network. The approach from [4] is now generalized to measures
of performance that combine the individual contributions in a specific
way. For notational simplicity, it is still assumed that ci # 2 for all
i, however, all results developed in this section can be extended in a
straightforward manner for general c. To that end, let B # (0, 1* and,
for a vector x + BN # B ,! , B, let xi denote the vector that consists
of xi and the subsequent K components of x, wrapping around when
necessary, that is,

xi # (xw(i), . . . , xw(i&K)), where w(j) # ( j, if 1 $ j $ N
j % N, if j > N.

A dynamic programming approach is now proposed for solving the
following problem

Maximize g(p1(x1), . . . , pN(xN))
subject to x + BN.
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Specifically, the approach is to fix the first K positions of x to, say,
x̄ + BK, and then solve the following problem NK(x̄) for the remaining
components of x:

Maximize g(p1(x1), . . . , pN(xN))
subject to x + BN and x1 # x̄1, . . . , xK # x̄K

NK(x̄).

There are 2K possible values for x̄, so, whichever of the 2K problems
NK(x̄) has the best objective function value provides the solution to
the original NK problem. Because K is assumed to be independent
of N, the complexity of this algorithm is that of the algorithm for
solving NK(x̄). As seen in what follows, under reasonable assumptions,
if qi(N) is the polynomial amount of work needed to evaluate pi and
d # deg(!N

i#1 qi(N)), then the complexity of the algorithm for solving
NK(x̄) is O(Nd).

To develop a dynamic programming recursion, certain decomposabil-
ity properties are now proposed for the system performance function
g. In a more general framework, sufficient conditions are developed
in [9] for the optimality of a dynamic-programming recursion in prob-
lems where the objective function is replaced by appropriate preference
relations among decisions. The desired property here is that g be com-
putable by first combining a function ΑN of pN(xN) with a function
ΑN%1 of pN%1(xN%1), then combining this result with a function ΑN%2 of
pN%2(xN%2) and so on, as described in Definition 3.2.

Definition 3.2. Given a nonempty subset D 5 R1, a function

g ) D ,! , D 5 RN 9 D

is pairwise decomposable if there are functions h ) D , D 9 D and
Αi ) D 9 D for i # 1, . . . , N with h monotonically nondecreasing on
D , D such that for all y + D ,! , D,

g(y1, . . . , yN) # h(Α1(y1), . . . , h(ΑN%2(yN%2), h(ΑN%1(yN%1), ΑN(yN)))).

For example, using D # (y + R1) y 6 0*, each of the following functions
is pairwise decomposable.

g(y1, . . . , yN)
N!

i#1

yi
N

N!
i#1

wiyi max
i#1,...,N

yi min
i#1,...,N

yi

N
:
i#1

yi ) N
:
i#1

yi*1/N

h(a, b) a & b a & b max(a, b* min(a, b* a ! b a ! b

Αi(c) c
N wic c c c c1/N

The dynamic programming approach for solving each NK(x̄) involves
N stages. For each stage i # 1, . . . , N, the state of the problem is
described by a vector x̂ + BK, that is,

x̂ + BK = the state of the system in stage i (i # 1, . . . , N), with x̂
representing the K values xw(i) # x̂1, . . . , xw(i&K%1) # x̂K.
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If g is pairwise decomposable with functions h and Αi, then the decision
to be made at each stage i is the value of xw(i&K) (either 0 or 1) so as to
maximize the following value function:

Vi(x̂) = the maximum, over all values of xw(i&K), . . . , xw(N&K) , of
h(Αi(pi(x

i)), . . . , h(ΑN%1(pN%1(xN%1)), ΑN(pN(xN))), given
that the values of xw(i) # x̂1, . . . , xw(i&K%1) # x̂K.

When solving the problem NK(x̄), the value of xw(N&i) # xi is fixed
to x̄i for i # 1, . . . , K, so the effective state space and action sets must
be modified to include these restrictions to ensure that the dynamic
programming equations developed below are also valid as boundary
conditions. Specifically, at any stage i for which i & K > N, the decision
to be made applies to position w(i & K) # i & K % N, in which the value
of xi&K%N is fixed to x̄i&K%N. Therefore the only available action in this
stage is to set xw(i&K) # x̄i&K%N. In summary, let Ai(x̄) denote the set of
available decisions in stage i of the problem NK(x̄). Then

Ai(x̄) # ( (0, 1*, if i & K $ N
(x̄i&K%N*, if i & K > N

Using analogous reasoning, the state space Si(x̂) at stage i of the prob-
lem NK(x̄) is restricted so that any component either in the beginning
or at the end (or both) of the state vector x̂ that coincides with xj for
some j # 1, . . . , K is fixed to the value x̄j. In summary, the following
four cases must be considered in defining Si(x̂).

1. i > K, i $ N % K & 1. Then Si(x̂) # BK.

2. i > K, i > N % K & 1. Then Si(x̂) # (x̂ + BK ) x̂j # x̄i&j%1%N, j # N % i &
2, . . . , K*.

3. i $ K, i $ N%K&1. Then Si(x̂) # (x̂ + BK ) x̂j # x̄i&j%1, j # 1, . . . , K% i&1*.

4. i $ K, i > N%K&1. Then Si(x̂) # (x̂ + BK ) x̂j # x̄i&j%1, j # 1, . . . , K% i&1,
x̂j # x̄i&j%1%N, j # N % i & 2, . . . , K*.

Note that, depending on whether 2K & 1 $ N or not, the range of
i corresponding to one or more of the foregoing cases may be null.
However, the foregoing descriptions are stated in sufficient generality to
accommodate all combinations of K and i values.

The following recursion is used to work backward until obtaining
V1(x̄):

Vi(x̂) # max(h(Αi(pi(x̂, 0)), Vi&1(x̂2, . . . , x̂K, 0)),
h(Αi(pi(x̂, 1)), Vi&1(x̂2, . . . , x̂K, 1))*

for i # 1, . . . , N % 1, with the following boundary condition at stage N:

VN(x̂) # ΑN(pN(x̂, x̄K)).
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On obtaining V1(x̄) by the above equations, a system is created in
which x1 # x̄1, . . ., xK # x̄K and xK&1, . . . , xN are the optimal decisions
made at stages 1, . . . , N % K. This is proved formally in Theorem 3.4.

Theorem 3.4. If g is pairwise decomposable with functions h and Α1, . . .,
ΑN then, for any x̄ + BK, V1(x̄) is the optimal value of the problem
NK(x̄).

Proof. Let z + BN solve NK(x̄), so z1 # x̄1, . . . , zK # x̄K. Also, let y +
BN be the solution obtained from the dynamic programming recursion,
so y1 # x̄1, . . . , yK # x̄K and yK&1, . . . , yN are the optimal decisions made
at stages 1, . . . , N % K.

Then, because z is optimal for NK(x̄), it follows that

g(p1(z1), . . . , pN(zN)) 6 g(p1(y1), . . . , pN(yN)).

It remains to show that

g(p1(y1), . . . , pN(yN)) 6 g(p1(z1), . . . , pN(zN)).

Notationally, for y, let ŷi # (yw(i), . . . , yw(i&K%1)) and similarly for z.
Then, from the fact that g is pairwise decomposable and y is obtained
from the dynamic programming recursion,

g(p1(y1), . . . , pN(yN)) # h(Α1(p1(y1)), . . . , h(ΑN%2(pN%2(yN%2)),
h(ΑN%1(pN%1(yN%1)), ΑN(pN(yN))))

# h(Α1(p1(y1)), V2(ŷ2))
6 h(Α1(p1(z1)), V2(ẑ2)).

But since

(Α1(p1(z1)), V2(ẑ2)) 6 (Α1(p1(z1)), h(Α2(p2(z2)), V3(ẑ3))),

it follows by the monotonicity of h that

h(Α1(p1(z1)), V2(ẑ2)) 6 h(Α1(p1(z1)), h(Α2(p2(z2)), V3(ẑ3))).

Continuing in this manner yields

g(p1(y1), . . . , pN(yN)) 6 h(Α1(p1(z1)), . . . , h(ΑN%1(pN%1(zN1)),
ΑN(pN(zN))))

# g(p1(z1), . . . , pN(zN)).

The proof is now complete.

3.2 Heuristics for building an effective system

From the results in section 3.1, it is possible to determine the best sys-
tem when N and c1, . . . , cN are small—by explicitly checking all possible
systems—or when g is monotonic and each Ki # 0 (see Theorem 3.3),
or when g is pairwise decomposable and when each Ki # K is small—by
using the dynamic programming approach developed in section 3.1.2.
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For the general problem, which is known to be NP-complete, heuristics
are needed to find a good system with a reasonable amount of compu-
tational effort.

One such heuristic is to find a locally-stable system using the replace-
ment process described in section 2.1.2. Another alternative proposed
in [8] is to use a j-replacement process, in which up to j components in
the current system x are changed simultaneously. A new heuristic, based
on the dynamic programming approach presented in section 3.1.2, is to
use the replacement process to obtain a locally-stable system x and then
to solve a single dynamic programming problem of the type described
in section 3.1.2, as follows.

Step 1. Use the replacement process to find a locally-stable system x.

Step 2. Using x, obtain a system x' by solving the dynamic programming
problem in which the first K components are those of x. If x' # x,
stop. Otherwise, set x # x' and repeat.

Unfortunately, the complexity of the replacement process in Step 1 is
O(2N), however, such worst-case behavior is not experienced in the
simulations described in section 4.3. As in the NK model, as K increases,
the number of local maxima increases quickly and hence the number of
replacements needed to obtain a local maximum decreases quickly.

These simulations are used to compare the average performance of a
system obtained by the foregoing heuristic to that obtained by the single
replacement process. Because the dimension of the state space is 2K,
the heuristic was run only for K # 2, 4, and 8. As seen from the results
in Figure 3 for N # 24, 48, 96, and various values of K, the benefits
from applying the dynamic-programming heuristic are greater for larger
values of N and K.

 

 

 

  

  

 

 

Figure 3. Average performance of a locally-stable system obtained by the heuris-
tics in section 3.2.
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4. Analytical and simulation results on the expected performance of
the system obtained by the replacement process

In this section, the probabilistic behavior of the one-replacement pro-
cess, described in section 2.1.2, is explored. The objective is to es-
timate the average performance of a locally-stable system when the
performance contributions are random. Specifically, assume that the
contribution pi(x) of the component chosen for part i to the overall
performance of the system is a continuous random variable taking val-
ues between %; and &;. In this case, a value greater than 0 indicates
an above-average contribution to performance and a value less than 0
indicates a below-average contribution. Each such random variable is
assumed to follow a probability density function fi(y) with finite mean
Μi and standard deviation Σi. The corresponding cumulative distribu-
tion function is denoted by Fi(y). It is also assumed that the values
of pi(x

i) are generated independently from the associated probability
distributions.

Thinking now of the contributions to performance as random vari-
ables, it is of interest to find the expected value—and possibly higher
moments—of the performance of the best system, that is, to find

M
(m)
N # E +)max

x+Z(c)
p(x)*m, . (6)

In particular, the variance of the performance can be derived from the
second moment. For simplicity, the notation MN is used when m # 1.

It should be emphasized here that the focus of this section is on the
probabilistic analysis of the expected performance of a locally-stable sys-
tem obtained by the replacement process described in section 2.1.2. Al-
though related, this analysis differs from the usual approach in stochastic
optimization, where a configuration (system) is sought that has the maxi-
mum expected performance when the performance contributions follow
a specified probability distribution. The approach here is appropriate
in situations where the entire landscape of performance contributions
becomes known to the controller at the time of system optimization,
whereas, the expected-value maximization is applicable in situations
where decisions on system configuration are made before uncertainty is
completely resolved.

It is also easy to see that the results of the previous sections can be
recast in a stochastic optimization framework when the individual per-
formance contributions pi(x) are random variables with mean Μi(x), g
has a weighted-sum form, and the system configuration x is to be de-
termined before any information on the actual values of performance
contributions is available. In this case, because of the linearity of the ex-
pectation operator, the expected performance of the system x is equal to
g(p1(Μ1(x)), . . . , pN(Μ(x)) and the analysis of section 3 is applicable. Of
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course, when individual component decisions are made sequentially and
the uncertainty regarding performance is gradually resolved at the same
time, more general stochastic optimization methods—such as stochastic
programming or Markov decision control—are appropriate.

Analytical results are derived now for two special cases. Because in
several cases below the results are asymptotic in nature as N 9 ;, the
dependence of g on N is denoted explicitly to avoid confusion.

4.1 Analytical results when each Ki ! 0

When each Ki # 0, the contribution of part i depends only on the
component chosen for that part, that is, pi(x

i) # pi(xi). In this case,

M
(m)
N # E +)max

x+Z(c)
gN(p1(x1), . . . , pN(xN))*m, .

Finding the foregoing expected value in general requires performing the
following steps.

General steps for finding the moments of the best system performance

1. Find the density and cumulative distribution functions of a random vari-
able Y # gN(V1, . . . , VN), where each Vi # pi(xi) is a random variable
with density function fi and cumulative distribution function Fi, as de-
fined above.

2. Find the density and cumulative distribution function of a random vari-
able Z representing the maximum of c1, . . . , cN random variables follow-
ing the distribution of Y found in Step 1.

3. Use the density function found in Step 2 to compute the moments of the
random variable Z.

When g is monotonically nondecreasing, the work needed to find the
expected value of the performance of the best system is simplified. This
is because, from Theorem 3.3, the best system is obtained by finding
each component x!

i that maximizes pi. As a result,

M
(m)
N # E +)gN( max

x1+Z(c1)
p1(x1), . . . , max

xN+Z(cN)
pN(xN))*m, . (7)

Doing so now involves the following steps.

General steps for finding the moments of the best system performance when g
is monotonically nondecreasing

1. Find the density and cumulative distribution functions of each random
variable Zi, where Zi is the maximum of ci random variables with density
function fi and cumulative distribution function Fi.
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2. Find the density and cumulative distribution functions of a random vari-
able Z # gN(Z1, . . . , ZN).

3. Use the results in Step 2 to compute M
(m)
N # E[Zm].

Further simplifications that allow closed-form analysis arise when
the contributions to performance are independent and identically dis-
tributed (i.i.d.) random variables following the uniform [0,1] distribu-
tion, and the function gN takes several special forms. For simplicity, it
is assumed that exactly two components are available for each part.

If gN is linear in each pi(x), then, because E[gN(p(x))] # gN(E[p(x)]),
the expected value on the right-hand side of equation (7) can be com-
puted as follows:

E +gN ) max
x1+(0,1*

p1(x1), . . . , max
xN+(0,1*

pN(xN)*, # gN(E[Z1], . . . , E[ZN]).

Therefore, if gN is monotonically nondecreasing and linear in each pi(x),
the expected value of a global maximum x! can be computed by per-
forming the following steps.

General steps for finding the expected value of the best system when g is mono-
tonically nondecreasing and linear

1. Let Zi # max(pi(0), pi(1)*, where each pi(xi) > fi.

2. Compute the expected value E[Zi].

3. Compute MN # gN(E[Z1], . . . , E[ZN]), which is the expected value of a
global maximum.

Based on the foregoing discussion, it is possible to obtain analyti-
cal results when gN has certain special forms that are monotonically
nondecreasing—such as the weighted average, maximum, minimum,
product, and geometric average of its arguments. To illustrate the com-
putation of M

(m)
N for each of these functions, suppose that pi(xi) are

i.i.d. uniform [0,1] random variables. Thus, the distribution function of
Zi # max(pi(0), pi(1)* is FZi

(s) # P[pi(xi) < s]2 # s2 and the probability

density is fZi
(s) # 2s. From this it follows that E[Zk

i ] # - 1
0 skfZi

(s)ds #
2/(2 & k).

Analysis: Y # gN(p1(x1), . . . , pN(xN)) # !N
i#1 wipi(xi), where w1, . . . , wN

are nonnegative constants that sum to 1. In this case gN is monotonically
nondecreasing and linear, thus,

MN #
N'

i#1

wi )23 * # 2
3

.
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In particular, the expected value of a global maximum for the original
NK model, in which each wi # 1/N, is 2/3.

The analytic expression for M
(m)
N in this case is too complicated to

provide any insights. However, the variance of Z is easy to obtain, since
Z is the sum of independent random variables:

Var(Z) #
N'

i#1

w2
i Var(Zi),

and since Var(Zi) # E[Z2
i ] % (E[Zi])

2 # 1/2 % 4/9 # 1/18 for all i, it
follows that

Var(Z) #
N'

i#1

w2
i

18
.

The asymptotic behavior of Var(Z) as N becomes large depends on the
choice of the weights w1, . . . , wN. In the case where each wi # 1/N,
Var(Z) # 1/(18N) which converges to zero as N becomes large.

Analysis: Y # gN(p1(x1), . . . , pN(xN)) # maxi#1,...,N pi(xi). In this case, be-
cause Z # max(Z1, . . . , ZN* and Zi # max(pi(0), pi(1)*, Z is distributed
as the maximum of 2N i.i.d. uniform random variables, so,

FZ(s) # P[pi(x) < s]2N # s2N and fZ(s) # 2Ns2N%1, s + [0, 1].

Therefore,

M
(m)
N # E[Zm] # . 1

0
smfZ(s)ds # . 1

0
2Ns2N&m%1ds #

2N
2N & m

.

It now follows that limN9; M
(m)
N # 1 for any m, therefore

lim
N9;

E[Z] # 1, and lim
N9;

Var(Z) # 0.

Analysis: Y # gN(p1(x1), . . . , pN(xN)) # mini#1,...,N pi(xi). In this case,

FZ(s) # 1 % P[Z > s] # 1 % P[Zi > s]N

# 1 % [1 % FZi
(s)]N # 1 % (1 % s2)N

and so

fZ(s) # 2Ns(1 % s2)N%1.

It is now possible to compute

M
(m)
N # E[Z] # . 1

0
smfZ(s)ds # N. 1

0
sm(1 % s2)N%12sds.
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Using the variable transformation z # s2, we obtain

M
(m)
N # N. 1

0
zm/2(1 % z)N%1dz # NB /m

2
& 1, N0 ,

where B(a, b) # - 1
0 xa%1(1 % x)b%1dx is the Beta integral. In this case

limN9; M
(m)
N # 0 for any m 6 1, thus

lim
N9;

E[Z] # 0, and lim
N9;

Var(Z) # 0.

Analysis: Y # gN(p1(x1), . . . , pN(xN)) # :
N
i#1 pi(xi). In this case, the

statistical independence of the Zi implies that

M
(m)
N # E[Zm] #

N"
i#1

E[Zm
i ].

Since fZi
(s) # 2s, it follows that E[Zm

i ] # 2/(m & 2), for i # 1, . . . , N
therefore,

M
(m)
N # ) 2

m & 2
*N ,

and limN9; M
(m)
N # 0 for any m 6 1. In particular,

lim
N9;

E[Z] # 0, and lim
N9;

Var(Z) # 0.

Analysis: Y # gN(p1(x1), . . . , pN(xN)) # /:N
i#1 pi(xi)01/N

. In this case,
from E[Zm

i ] # 2/(m & 2) and the fact that the Zi are independent, it
follows that

M
(m)
N # E[Zm] #

N"
i#1

E[Zm/N
i ] # ) 2

m
N & 2

*N # )1 %
m
2

m
2 & N

*N .

Thus, limN9; M
(m)
N # e%m/2. In particular,

lim
N9;

E[Z] # e%1/2, and lim
N9;

Var(Z) # 0.

The results of computing MN # E[Z] and the associated limiting
values for each of the foregoing functions g are summarized in Table 1,
where B(a, b) # - 1

0 xa%1(1 % x)b%1dx is the Beta integral. Note that in all
cases the asymptotic variance of Z is zero.

4.2 Mathematical analysis when each Ki ! N " 1

For the case in which each Ki # N % 1, the performance contribution of
each component in the system x is affected by every other component.
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Y # gN(V1, . . . , VN)
N!

i#1
wiVi max

i#1,...,N
Vi min

i#1,...,N
Vi

N
:
i#1

Vi ) N
:
i#1

Vi*1/N

MN # E[Z] 2
3

2N
2N&1 NB 1 32 , N2 1 23 2N 11 % 1

1&2N 2N
lim
N9;

MN
2
3 1 0 0 e%1/2

Table 1. Limiting values of the expected performance of the best system using
different performance measures (K # 0).

In this case, it is possible to derive asymptotic results for the expected
performance of a locally-stable system obtained by the replacement
process. This is because, when each Ki # N%1, the performances of the
N one-replacement neighbors of x are independent random variables.
This fact is useful for computing an approximate value for the expected
value of a locally-stable system when N is large. To do so, note that a
locally-stable system x! has the property that its performance p(x!) is
greater than or equal to that of its N one-replacement neighbors. Letting
Z be a random variable representing the performance of a locally-stable
system and Y1, . . . , YN&1 the performances of the locally-stable system
and its N neighbors, it follows that

Z # max(Y1, . . . , YN&1*. (8)

To find the expected value of Z as N becomes large, it is necessary to
follow these steps.

1. Find the density and cumulative distribution function of Yi. That is, use
the probability density functions fi and distribution functions Fi of pi(x),
to find the probability density function fY and the distribution function
FY of the performance of a system x, namely, Y # g(p1(x), . . . , pN(x)).

2. Use the functions fY and FY from Step 1 to compute the probability density
function fZ and the distribution function FZ of the random variable Z.
Because, as stated in equation (8), Z is the maximum of N&1 independent
random variables following the distribution of Y, it follows that

FZ(t) # [FY(t)]N&1 (9)

fZ(t) #
d
dt

FZ(t) # (N & 1)[FY(t)]NfY(t). (10)

3. Use the function fZ to compute the expected value of Z, as follows:

MN # E[Z] #

;.
%;

tfZ(t)dt #

;.
%;

tN[FY(t)]N%1fY(t)dt.

4. Finally, compute limN9; E[Z].
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Y # gN(y1, . . . , yN) 1
N

N!
i#1

yi max
i#1,...,N

yi min
i#1,...,N

yi

N
:
i#1

yi ) N
:
i#1

yi*1/N

lim
N9;

MN
1
2 1 0 0 e%1

Table 2. Limiting values of the expected performance of a locally-stable system
using different performance measures (K # N % 1).

Although in principle higher moments of Z can also be expressed in
terms of the foregoing steps, we have not been able to obtain analytical
expressions as was done for the case where Ki # 0, because the analysis
here is substantially more complicated.

It is important to note that the foregoing analysis is based on a locally-
stable system chosen at random rather than a locally-stable system found
by the replacement process. The latter is different from the former
because not all locally-stable systems are equally likely to be found
by the replacement process. This is due to the fact that a locally-
stable system found by the replacement process depends on the starting
system. In particular, some locally-stable systems may have large basins
of attraction (i.e., many initial systems will result in that locally-stable
system) while other locally-stable systems may have small basins of
attraction. The inability to handle these different types of locally-stable
systems analytically is noted clearly in [10]. Nevertheless, analytical
results for the limit of MN as N 9 ; for the special forms of the
function g presented in section 3.1.2 are summarized in Table 2 and
derived in appendix B.

4.3 Computer simulations

Computer simulations are used now to verify the analytical results for
the expected value of the performance of the best system when K # 0
presented in Table 1 in section 4.1 and for a locally-stable system when
K # N %1 presented in Table 2 in section 4.2. Simulations are also used
to estimate the performance of a locally-stable system obtained by the re-
placement process for intermediate values of K, for which no analytical
results are available. The results of the average performance of a locally-
stable system obtained from 1000 randomly-generated problems—in
which the performance contributions pi(x

i) are drawn i.i.d. from the
uniform [0, 1] distribution—are presented in Figures 4 through 7 for
the cases where the system performance is the maximum, minimum,
product, and geometric mean of the individual contributions, respec-
tively. In all cases, the average performance of a locally-stable system
is presented as a function of K, for N # 24, 48, and 96, except for the
product case, where the graphs for N # 8 and 16 are presented as well.

These results are in agreement with the theoretical expected values for
the extreme cases of K # 0 and N % 1 in Tables 1 and 2. Furthermore,
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Figure 4. Average performance of a locally-stable system when system perfor-
mance is the maximum of component performances.

Figure 5. Average performance of a locally-stable system when system perfor-
mance is the minimum of component performances.

in all cases except when the system performance is the maximum of
the individual contributions, the complexity catastrophe arises, but to
varying degrees. For example, the complexity catastrophe in Figure 7,
corresponding to the geometric mean of the individual contributions, is
virtually the same as that in the original NK model. This is because,

when p(x) #
/00000
1

N"
i#1

pi(x)
233333
4

1/N

, it follows that ln(p(x)) #
N'

i#1

pi(x)
N

,
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Figure 6. Average performance of a locally-stable system when system perfor-
mance is the product of component performances.
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Figure 7. Average performance of a locally-stable system when performance is
the geometric mean of component performances.

which is how system performance is computed in the original NK model.
In contrast, in Figure 6—where system performance is computed as the
product of the individual contributions—the complexity catastrophe is
evident for small values of N (N # 8 and 16) but becomes unnoticable
for large values of N because, in fact, system performance in this case
quickly approaches 0, regardless of the value of K. In Figure 5—where
system performance is based on the “weakest link” (i.e., the minimum of
the individual contributions)—systems with fewer components benefit
more from small amounts of interactions among the components than
do larger systems. Finally, the fact that the complexity catastrophe is not
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evident in Figure 4—where system performance is computed as the max-
imum of the individual contributions—indicates that there are systems
whose performance, in fact, benefits from increasing amounts of interac-
tions among the components. This example supports the results in [8].

Conclusions and future research

A general model is proposed for obtaining insights into systems consist-
ing of a number of parts that interact with each other in complex ways.
To capture many aspects of real-world systems, the model allows one to
choose, (a) for each part, one of a number of alternative components so
that the resulting system has the best performance, according to some
specific measure, (b) varying amounts of interaction among the com-
ponents and which components affect other components, (c) the way
in which the overall system performance is obtained from the individ-
ual performance contributions of the chosen components. The general
problem of finding the best system is shown to be NP-complete and
several polynomially-solvable special cases and heuristics are described.

When the contribution of each chosen component i depends on ex-
actly K other chosen components (0 $ K $ N % 1), the values of N and
K provide a measure of the complexity of the system. Assuming that the
individual performance contributions are random variables that follow
a known distribution, conditions on how the performance of a system
is computed are given under which it is possible to derive analytically
the expected performance of a locally-stable system obtained by the
replacement process. In particular, such results are given for K # 0,
corresponding to a system in which the contribution to performance
of each chosen component depends only on that component, and also
for K # N % 1, corresponding to a system in which the contribution to
performance of each chosen component depends on every other chosen
component.

Computer simulations support the analytical results and also pro-
vide average performance values of locally-stable systems under differ-
ent measures of overall performance. Some of these systems exhibit
the property that for large values of N, the average performance of a
locally-stable system associated with small positive values of K exceeds
the performance associated with a locally-stable system obtained when
K # 0. However, as the value of K, and hence the complexity of the sys-
tem, increases, the average performance decreases to values below that
associated with K # 0. It is important to note that this complexity catas-
trophe, as coined by Kauffman, is based on the collective mathematical
assumptions underlying these specific models.

On the basis of these results, current research efforts are devoted to
seeking ways to differentiate the individual parts to make these models
more realistic. For instance, in some systems, certain parts contribute
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indirectly, rather than directly, to system performance. In the human
genome, for example, regulatory genes contribute indirectly by con-
trolling the behavior of other genes that do contribute directly to the
fitness of the genome. As another example, in a team in a business
organization, the leader contributes indirectly to the performance of
the team by providing direction, setting goals, providing resources, and
eliciting direct contributions from the individual team members. An
area of current research is to build models that allow for such indirect
contributions to see what impact they have on system performance.

Appendix

A. NP-completeness proofs for section 3

Proof of Theorem 3.1. Note first that the problem NK(Q) is in NP
because, given a binary N-vector x, it is possible to check whether!N

i#1 pi(xi)/N 6 C in polynomial time.
To complete the proof, a reduction is given from the following prob-

lem of finding a largest independent set of nodes in a graph:

IS: Given a graph G # (V, E) and an integer B > 0, does there
exist a set S of nodes of G, no two of which are adjacent,
such that .S. 6 B?

To that end, consider an instance of IS consisting of a graph G # (V, E)
and an integer B > 0. Let M # .V . and define, for each binary M-vector
y, the following subset of nodes of V # (v1, . . . , vM*:

S(y) # (vi + V) yi # 1*.

For a given positive integer Q, it is now possible to construct the
associated instance of NK(Q):

N # .V . & Q # M & Q, K # N % Q # M, C #
B & .V .

NP
#

B & M
NM

.

In this case, the contribution to performance pi of each component i
depends on xi # (xw(i), . . . , xw(i&K%1)). Then, the functions p1, . . . , pQ&M
are defined as follows:

pi(x
i) # 0, for i # 1, . . . , Q % 1

pQ(xQ) # ( 1, if S(xQ&1, . . .xQ&M) is an independent set,
0, otherwise

pi(x
i) #

xi

M
, for i # Q & 1, . . . , Q & M.

Now suppose that x is a binary N-vector such that
P&Q!
i#1

pi(x
i)

N
6 C #

B & .V .
NM

#
B & M
NM

.
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Equivalently,

P&Q'
i#1

pi(x
i) 6

B & M
M

. (A.1)

A corresponding solution to the IS problem is

S # S(xQ&1, . . . , xQ&M).

To show that S is a solution to the IS problem, it is necessary to show
that the nodes of S form an independent set and that .S. 6 B. Both of
these follow from the fact that x satisfies equation (A.1). Specifically,
because pi(xi) # 0, for i # 1, . . . , Q % 1, equation (A.1) becomes

M&Q'
i#1

pi(x
i) #

M&Q'
i#Q

pi(x
i) # pQ(xQ) &

M&Q'
i#Q&1

pi(x
i) 6

B & M
M

#
B
M

& 1. (A.2)

The only way for the sum in equation (A.2) to exceed B/M & 1 is
for pQ(xQ) to be equal to 1 because, by construction, each pi(x

i), for
i # Q & 1, . . . , Q & M, can contribute at most 1/M to the sum. Hence,
pQ(xQ) # 1 which, by definition, means that S is an independent set
of nodes. Furthermore, equation (A.2) now yields that S has at least B
nodes because

.S. #
Q&M'
i#Q&1

xi # M
Q&M'
i#Q&1

pi(x
i) 6 B.

Conversely, suppose that S is an independent set of nodes in G with
.S. 6 B. Define the binary N-vector x as follows:

xi # (1, if Q & 1 $ i $ Q & M and vi%Q + S
0, otherwise.

Then pQ(xQ) # 1 and so

Q&M'
i#1

pi(x
i) #

Q&M'
i#Q

pi(x
i) # pQ(xQ) &

Q&M'
i#Q&1

pi(x
i)

# 1 &
Q&M'
i#Q&1

xi

M
# 1 &

.S.
M

6 1 &
B
M

# CN.

The desired result follows on dividing the foregoing inequality through
by N.

Proof of Theorem 3.2. Note first that this NK problem is in NP be-
cause, given a binary N-vector x + BN, it is possible to check whether
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!N
i#1 pi(xi)/N 6 C in polynomial time, since evaluating each pi is poly-

nomial.
To complete the proof, a reduction from the problem of finding an

independent set (IS) is given. So, let G # (V, E) be a given graph with
M # .V . and let B > 0 be a given integer. These data are now used to
construct the following instance of the NK problem:

N # max(3M
Α
4 , M & 15 , K # min(%ΑN&, N % 1*, C #

M & B
NM

.

The functions p1, . . . , pN are now defined as follows:

pi(x
i) # 0, for i # 1, . . . , N % M % 1

pN%M(xN%M) # (1, if S(xN%M&1, . . . , xN) is an independent set,
0, otherwise

pi(x
i) #

xi

M
, for i # N % M & 1, . . . , N.

Now suppose that x is a binary N-vector such that!N
i#1 pi(x

i)
N

6 C #
B & M
NM

.

Equivalently,

N'
i#1

pi(x
i) 6 1 &

B
M

. (A.3)

A corresponding solution to the IS problem is

S # S(xN%M&1, . . . , xN).

To show that S is a solution to IS, it is necessary to show that the nodes
of S form an independent set and that .S. 6 B. Both of these follow from
the fact that x satisfies equation (A.3). Specifically, because pi(xi) # 0,
for i # 1, . . . , N % M % 1, equation (A.3) becomes

N'
i#1

pi(x
i) #

N'
i#N%M

pi(x
i) # pN%M(xN%M) &

N'
i#N%M&1

pi(x
i) 6 1 &

B
M

. (A.4)

The only way for the sum in equation (A.4) to exceed B/M & 1 is for
pN%M(xN%M) to be equal to 1 because, by construction, each pi(x

i), for
i # N % M & 1, . . . , N, can contribute at most 1/M to the sum. Hence,
pN%M(xN%M) # 1 which, by definition, means that S is an independent
set of nodes. Furthermore, equation (A.4) now yields that S has at least
B nodes because

.S. #
N'

i#N%M&1

xi # M
N'

i#N%M&1

pi(x
i) 6 B.
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Conversely, suppose that S is an independent set of nodes in G with
.S. 6 B. Define the binary N-vector x as follows:

xi # (1, if N % M & 1 $ i $ N and vi%N&M + S
0, otherwise.

Then pN%M(xN%M) # 1 and so

N'
i#1

pi(x
i) #

N'
i#N%M

pi(x
i) # pN%M(xN%M) &

N'
i#N%M&1

pi(x
i)

# 1 &
Q&M'
i#Q&1

xi

M
# 1 &

.S.
M

6 1 &
B
M

# CN.

The desired result follows on dividing the foregoing inequality through
by N, completing the proof.

B. Limiting results for the expected performance of the systems in
section 4.2

Throughout this appendix, K # N%1, the individual contributions pi(x)
are assumed to be i.i.d. uniform [0,1] random variables, Y is a random
variable representing the performance of a random system, and Z is
a random variable representing the performance of a random locally-
stable system.

B.1 Analysis when system performance is the average of the individual
contributions

For the case where the performance of a system is

p(x) #
!N

i#1 pi(x)
N

,

the distribution of the performance of a random system for large N
approaches the normal, by the central limit theorem. However, using
this approximation must be combined with taking the limit of E[Z]
as N 9 ;, which entails the maximum of the N random variables
Y1, . . . , YN. It is shown formally in [6] that limN9; MN # 1/2, which
corresponds to the complexity catastrophe discussed in section 2.1.2.

B.2 Analysis when system performance is the maximum of the individual
contributions

When

p(x) # max
i#1,...,N

pi(x),
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the distribution of the performance Y # p(x) of a system x is FY(s) #
P[pi(x) < s]N # sN, s + [0, 1], and the density function fY(s) # NsN%1.
Therefore, the distribution and density functions of Z are

FZ(s) # [FY(s)]N # sN2

and

fZ(s) # N2sN2%1.

It follows that

MN # E[Z] # . 1

0
sfZ(s)ds # . 1

0
N2sN2

ds #
N2

N2 & 1
,

and so limN9; MN # 1.

B.3 Analysis when system performance is the minimum of the individual
contributions

When

p(x) # min
i#1,...,N

pi(x),

the distribution of the performance Y # p(x) of a system x is FY(s) #
1 % P[Y > s] # 1 % P[pi(x) > s]N # 1 % (1 % s)N, s + [0, 1], and fY(s) #
N(1 % s)N%1. Therefore, the distribution and density functions of Z are

FZ(s) # FY(s)N # [1 % (1 % s)N]N

and

fZ(s) # N2[1 % (1 % s)N]N%1(1 % s)N%1.

It follows that

MN # E[Z] # . 1

0
sfZ(s)ds # . 1

0
N2s[1 % (1 % s)N]N%1(1 % s)N%1ds.

Using the transformation y # (1 % s)N, the foregoing integral becomes

MN # N. 1

0
(1 % y1/N)(1 % y)N%1dy

# N ). 1

0
(1 % y)N%1dy % . 1

0
y1/N(1 % y)N%1dy*

# 1 % NB ) 1
N

& 1, N* ,
where B denotes the Beta integral. It then follows that limN9; MN # 0.
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B.4 Analysis when system performance is the product of the individual
contributions

When

Y # p(x) #
N"

i#1

pi(x),

it can be shown that W ? % ln Y follows the Gamma distribution with
parameters N and 1. To see this, note that W # !N

i#1 Wi, where Wi #
% ln(pi(x)), and pi(x) follows the uniform [0,1] distribution. Therefore,
the Wi are i.i.d. random variables with distribution function

FWi
(w) # P[% ln pi(x) $ w] # P[pi(x) 6 e%w] # 1 % e%w, w + [0, ;].

That is, the Wi are exponentially distributed with rate 1. Thus, W,
which is the sum of N i.i.d. exponential random variables, follows the
Gamma distribution with parameters N and 1, so,

fW(w) #
wN%1e%w

@(N)
, w 6 0, (B.1)

where @(N) # - 1
0 wN%1e%wdw denotes the Gamma integral. Further-

more, using the relationship between the Gamma and Poisson distribu-
tions, the distribution function of W is

FW(w) #
;'

j#N

e%w wj

j!
. (B.2)

Having obtained the distribution of W, it is possible to derive the
distribution of Y # e%W using standard properties for the distribution
of a function of a random variable. Specifically, since Y # e%W is a
monotonic function of W, it follows from [11] that

fY(y) #
fW(% ln y)

y
#

(% ln y)N%1eln y

y@(N)
#

(% ln y)N%1

(N % 1)!
.

Furthermore, using equation (B.2), the distribution function of Y is

FY(y) # P[Y $ y] # P[W 6 % ln y] # 1 % FW(% ln y)

#
N%1'
j#0

y(% ln(y))j

j!
, y + [0, 1].

To calculate E[Z], where Z is the performance of a randomly selected
locally-stable system, use equation (10) to obtain

MN # E[Z] # . 1

0
sfZ(s)ds # (N & 1). 1

0
sfY(s)(FY(s))Nds

# . 1

0
fW(% ln s)(1 % FW(% ln s))Nds.
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Using the transformation w # % ln s as well as integration by parts, the
above expression becomes

MN # (N & 1). ;

0
e%wfW(w)(1 % FW(w))Ndw

# . ;

0
e%wd(1 % FW(w))N&1

# 1 % . ;

0
e%w(1 % FW(w))N&1dw

$ 1 % . ;

0
e%w(1 % (N & 1)FW(w))dw

# (N & 1). ;

0
e%wFW(w)dw

# (N & 1). ;

0
e%w

;'
j#N

e%wwj

j!
dw

# (N & 1)
;'

j#N

1
j! . ;

0
e%2wwjdw

# (N & 1)
;'

j#N

1
j!

j!
2j&1

# 2(N & 1) )1
2
*N&1

.

In summary,

0 $ MN $ 2(N & 1) )1
2
*N&1

.

Taking the limit yields limN9; MN # 0.

B.5 Analysis when system performance is the geometric mean of the
individual contributions

When

Y # p(x) #
/00000
1

N"
i#1

pi(x)
233333
4

1/N

,

let V ? % ln Y # W/N, where W # !N
i#1 Wi and Wi # % ln(pi(x)),

as defined in the product case. From equations (B.1) and (B.2), the
probability density and distribution functions of V are

fV(v) # NfW(Nv) #
N(Nv)N%1e%Nv

@(N)
, v 6 0,
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and

FV(v) # FW(Nv) #
;'

j#N

e%Nv (Nv)j

j!
,

from which it can be seen that V is a Gamma(N, N) random variable.
The distribution of Y is now given by

fY(y) #
fV(% ln y)

y
#

N(%N ln y)N%1eN ln y

y@(N)
#

N(%N ln y)N%1yN%1

(N % 1)!

and

FY(y) # 1 % FV(% ln y) #
N%1'
j#0

(%N ln y)jyN

j!
y + [0, 1]. (B.3)

Furthermore,

E[Y] # E[e%V] # . ;

0
e%vfV(v)dv # )1 &

1
N
*%N

.

Asymptotic lower and upper bounds are derived now for MN # E[Z],
where Z # max(Y1, . . . , YN&1* is the performance of a locally-stable
system and Y1, . . . , YN&1 are i.i.d. random variables with the distribution
of Y defined by equation (B.3).

Observe first that

E[Z] # E[max(Y1, . . . , YN&1*] 6 max(E[Y1], . . . , E[YN&1]* # )1 &
1
N
*%N

,

therefore,

lim inf
N9;

MN 6 e%1. (B.4)

It is next shown that lim supN9; MN $ e%1. The proof makes use
of large-deviation type inequalities [12] but the result is independently
derived here for completeness. Because 0 $ Z $ 1, MN # E[Z] #- 1

0 P[Z 6 u]du and, using equation (9),

MN # . 1

0
(1 % FZ(u))du # 1 % . 1

0
FZ(u)du # 1 % . 1

0
(FY(u))N&1du.

Choose Ε with 0 < Ε < e % 1, so, 0 < e%1(1 & Ε) < 1. Then, since FY(u) is
nondecreasing and nonnegative,

MN $ 1 % . 1

e%1(1&Ε)
(FY(u))N&1du

$ 1 % [FY(e%1(1 & Ε))]N&1(1 % e%1(1 & Ε))
# 1 % [1 % F̄Y(e%1(1 & Ε))]N&1(1 % e%1(1 & Ε))
$ 1 % [1 % (N & 1)F̄Y(e%1(1 & Ε))](1 % e%1(1 & Ε)), (B.5)
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where F̄Y(y) # 1 % FY(y).
Let Θ # ln(1 & Ε). It then follows that, for any t 6 0,

F̄Y(e%1(1 & Ε)) # P[Y 6 e%(1%Θ)]
# P[ln Y 6 %(1 % Θ)]

# P

CDDDDDDDDDDE
%

N'
i#1

Wi 6 %N(1 % Θ)

FGGGGGGGGGGH

# P 6e%t!N
i#1 Wi 6 e%Nt(1%Θ)7 , (B.6)

where the Wi are i.i.d. exponentially distributed random variables with
rate 1. The Markov inequality then yields that

F̄Y(e%1(1 & Ε)) $ E[e%t!N
i#1 Wi ]eNt(1%Θ) # (E[e%tW1 ])NeNt(1%Θ).

Since W1 follows an exponential distribution with rate 1,

E[e%tW1 ] # . ;

0
e%twe%wdw #

1
t & 1

,

thus,

F̄Y(e%1(1 & Ε)) $ e%Nh(t,Θ), (B.7)

where h(t, Θ) # ln(t & 1) % t(1 % Θ). Since inequality (B.7) is true for all
t 6 0, it is also true that

F̄Y(e%1(1 & Ε)) $ e%Nh!(Θ), (B.8)

where h!(Θ) # supt60 h(t, Θ).
It can now easily be shown that h(t, Θ) is concave in t for fixed Θ and

that h!(Θ) # h(Θ/(1 % Θ), Θ) # % ln(1 % Θ) % Θ > 0 for all Θ. Therefore,
equation (B.5) becomes

MN $ 1 % [1 % (N & 1)e%Nh!(Θ)](1 % e%1(1 & Ε)),

and, since limN9;(N & 1)e%Nh!(Θ) # 0 for any Θ,

lim sup
N9;

MN $ 1 % (1 % e%1(1 & Ε)),

for all 0 < Ε < e % 1. By letting Ε 9 0 in the last inequality, it follows
that

lim sup
N9;

MN $ 1 % (1 % e%1) # e%1. (B.9)

Combining inequalities (B.4) and (B.9), it follows that

lim
N9;

MN # e%1.
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