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In this paper the convergence behavior of the population based incremen-
tal learning algorithm (PBIL) is analyzed using discrete dynamical systems.
A discrete dynamical system is associated with the PBIL algorithm. We
demonstrate that the behavior of the PBIL algorithm follows the iterates
of the discrete dynamical system for a long time when the parameter o
is near zero. We show that all the points of the search space are fixed
points of the dynamical system, and that the local optimum points for the
function to optimize coincide with the stable fixed points. Hence it can
be deduced that the PBIL algorithm converges to the global optimum in
unimodal functions.

| 1. Introduction

During the 1990s many real combinatorial optimization problems were
solved successfully by means of genetic algorithms (GAs). But the exis-
tence of deceptive problems, where the performance of GAs is very poor,
has motivated the search for new optimization algorithms. To overcome
these difficulties a number of researches have recently suggested a family
of new algorithms called estimation of distribution algorithms (EDAs)
(1, 2].

Introduced by Miihlenbein and Paag [2], EDAs constitute an exam-
ple of stochastic heuristics based on populations of individuals, each of
which encodes a possible solution of the optimization problem. These
populations evolve in successive generations as the search progresses,
organized in the same way as most evolutionary computation heuris-
tics. In contrast to GAs, which consider the crossover and mutation
operators as essential tools to generate new populations, EDAs replace
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those operators by the estimation and sampling of the joint probability
distribution of the selected individuals.

However, the bottleneck of this new heuristic lies in estimating the
joint probability distribution associated with the database containing
the selected individuals. To avoid this problem, several authors have
proposed different algorithms where simplified assumptions concern-
ing the conditional (in)dependencies between the variables of the joint
probability distribution are made. A review of the different approaches
in the combinatorial and numerical fields can be found in [3-5].

The population based incremental learning algorithm (PBIL) can be
considered as an EDA, as proposed in [6]. PBIL supposes that all the
variables are independent. At each step of the algorithm a probabil-
ity vector is maintained. This vector is sampled A times to obtain A
new solutions. The u < A best solutions are selected and these are
used to modify the probability vector with a neural networks-inspired
rule.

Recently, there has been increasing interest in PBIL and many papers
have appeared in the literature. Some of these papers are concerned
with applications of the algorithm [7-11]. Others are concerned with
extensions of the method to general cardinality spaces [12], with contin-
uous spaces [13-16], with parallel versions [17], and with comparisons
[18, 19]. Finally there are papers concerned with modifications of the
method: adding genetics information [20] and extending the algorithm
to nonstatic multiobjective problems [21]. However, despite the effort
devoted to applications or to creating new variants, little attention has
been given to the theoretical aspects of PBIL.

In this paper we introduce a new framework for studying the PBIL
algorithm theoretically. We assign a discrete dynamical system to PBIL.
It will be shown that the behavior of PBIL follows the iterations of the
discrete dynamical system when an algorithm’s parameter « is near zero.
This fact enables us to study the discrete dynamical system instead of
the iterations of PBIL. We discover that all the points of the search space
are fixed points for the discrete dynamical system. Moreover, the local
optima are stable fixed points and the other points of the search space
are unstable fixed points. This result has various outcomes, the most
important of which is that PBIL converges to the global optimum in
unimodal functions.

The remainder of this work is organized as follows. Section 2 de-
scribes the PBIL algorithm. Section 3 reviews the work carried out in the
theoretical analysis of PBIL. Section 4 introduces the discrete dynam-
ical system associated with PBIL. The relation between PBIL and the
dynamical system is analyzed in section 5, while the dynamical system
is studied in section 6. Finally we draw conclusions in section 7.
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2. An introduction to the population based incremental learning
algorithm

Before presenting the algorithm, let us introduce some notation. We
denote a vector or a matrix by a bold-face letter and a component of
a vector by a normal letter. The random variables will be written in
capital letters. We use the letters 72 and r as component indexes, and
the letters i and k as vector indexes, hence y;,, will represent the mth
component of the y, individual.

PBIL was introduced by Baluja [6] in 1994 and further improved by
Baluja and Caruana [22] in 1995. This algorithm is based on the idea
of substituting the individuals of a population by a set of their statistics.
In our case we suppose that the function to optimize is defined in the
binary space Q = {0, 1} with |Q| = 2/ = #. Given a population, the set of
statistics is expressed by a vector of probabilitiesp = (P, ..., P, - - > P})»
where p,, represents the probability of obtaining a value of 1 in the mth
component.

The algorithm works as follows. At each step, drawing the probabil-
ity vector p, A individuals are obtained and the u best of them (u < 1),
Y1 Yoo - s Yy A€ selected. These selected individuals will be used
to modify the probability vector. A Hebbian-inspired rule is used to
update the probability vector:

1 (t)
p“! = (1-a)p" +a— > yi (1)

where p® is the probability vector at step ¢, and a € (0, 1] is an algo-
rithm’s parameter. Figure 1 shows a pseudocode for the PBIL algorithm.

Once we have seen Figure 1, it is useful to note that the behavior of
the algorithm is the same in two functions f; and f, if:

Vy, ¥y e, fily)>hHly)ehly)>hy) (2)

Obtain an initial probability vector p(¥)
while no convergence do
begin
Usine o obtain 4 indiv o ®
sing p'¥ obtain A individuals y1 ,y2,...,yx
Evaluate and rank y(1t), y(zt), e y&t)
Select the u < A best individuals y(1t;)a, y(zt;)A, e y,(f);t
H (1)
P = (1 -a)p"” + al/p Tp=1 e

end

Figure 1. Pseudocode for the PBIL algorithm.
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Moreover the important thing is not the particular value that a function
f has in an individual y but the ranking implied by this function on Q.
Below we assume that we have a minimization problem. Keeping in
mind the previous argument we can consider a function

f:Q-R

as a permutation of the elements of Q. In this case the last individual of
Q, y, has the smallest function value, the penultimate y, , the second
smallest, and so on, with the first individual y; being the one with the
biggest function value:

fly) = =fly,_1) =f(y,) (3)

Therefore the number of different injective functions on  is given
by n!. In order to simplify notation, we assume in the rest of the paper
that we have to optimize an injective function. However, the results can
easily be extended to noninjective functions.

3. Previous approaches to modeling population based incremental
learning mathematically

In the literature we have found different ways to mathematically model
PBIL.

It can be modeled by means of Markov chains given that the proba-
bility vector p*1) at step ¢ + 1 only depends on the probability vector
p¥) at step t. However, this chain has infinite numerable states once an
initial probability vector p'?), a value for the parameter @, and values
for A and u have been established. In that case the chain is neither ir-
reducible nor aperiodic, hence not much information can be extracted.
However, using this model it is shown in [23] that for PBIL with A = 2
and p=1 applied to the OneMax function in two dimensions:

P@mﬂ”zwﬁgal (4)
when a —» 1, p9 - (a,b), and (a,b) € {0,1}>. This shows a strong
dependence of PBIL on the initial parameters.
In [24] it is shown that if we denote by E[p'*'] the expectation of the
probability vector in time ¢, then for a linear function:
limE[p"] =y

-0

* (5)
where y, is the optimum point of Q.

In [25] a statistical framework for combinatorial optimization over
fixed-length binary strings is presented and it is shown that the PBIL
algorithm can be derived from a gradient dynamical system acting on
Bernoulli probability vectors.
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When a = 1, a particular case of PBIL, the univariate marginal dis-
tribution algorithm (UMDA) [26] is found. In [27] it is shown that
UMDA with infinite population and proportional selection stops at lo-
cal optima.

4. Assigning a discrete dynamical system to population based
incremental learning

A new approach can be opened if we model PBIL by means of discrete
dynamical systems. This idea has been used previously for the simple
GA [28, 29] obtaining important results. Our approach and notation
are strongly inspired by these previous works. The key question is to
associate PBIL with a discrete dynamical system, such that, the trajecto-
ries followed by the probability vectors {p”},_,, , in PBIL are related
to the iterations of the discrete dynamical system.

PBIL can be considered as a sequence of probability vectors, each one
given by a transition stochastic rule 7:

(0) t+1) T

p® 5 pM 5 p@ 5 5t 5 o

that is, p**! = r(p) = **1(p?)). We are interested in the trajectories

followed by the iterations of 7, and in particular, in its limit behavior:
lim 7 (p”). (6)

-0

We define a new operator G:
G:10,1]' > [0,1]

such that G(p) = (G,(p), ..., G(p)) = E[7(p)]. The operator G is a de-
terministic function that gives the expected value of random operator 7.
The iterations of G are defined as G*(p) = G(G" ' (p)). We are interested
in the relation between the iterations of T and the iterations of G, and in
particular we want to answer the question: Is there any relation between
7'(p) and G'(p)? However, before looking for this relation we calculate
the expression of G(p).
The operator G can be expressed as follows:

i
G(p) = E {(1 —alp+ar ) Vi

k=1

1 H
=(1-a)p+ a//—lE [Z Y,,lp|. (7)

k=1

Hence, we have to calculate the expected sum of the y best individuals
given that A have been sampled from the probability vector p. Our
analysis is restricted to the case u = 1 (the most frequent in the literature).
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In this case the G operator can be calculated explicitly, which we do in
several steps.

First, the expected value E[et Y ,..Ip] is reduced for the case u = 1
to:

E[Y,.lp] = ) y,P(Yy, =, |p) (8)
=1

where P(Y,,, =y, | p) denotes the probability of obtaining y; as the best
individual after an iteration of the algorithm. Let P(S =y, | p) denote
the probability of sampling vector y;. The probability that y; is the best
individual, given that we have sampled A individuals and the probability
vector is p, can be expressed as follows [24]:

A
P(Yy, =y, 1p)=P(S=y,1p) ) P | p)"'P(QF | p)'* (9)
k=1
where:
Q7 =y, € Qlfly,) > f(y,)} (10)
Q7 ={y; € Qlfly) = f(y,) (11)

Finally, it is important to note that, given a probability vector p, the
probability of sampling a particular individual y = (y4,...,¥,,,---¥))
is:

i
q,(p)=PS=ylp)=[[pr(1-p,) . (12)
m=1

According to the previous results it can be said that the operator G
can be expressed as a polynomial function of the probability vector p.
In fact, if we take into account that each function can be considered
as a permutation of Q (only the individuals preceding y; have a bigger
function value than y;), then:

i—1
PO 1p1= 3, 0 13)
/=1

PQ71p) = ) g, (p) (14)
j=1

Finally G(p) can be expressed in our study case (u = 1) as follows:

G(p) = (1-a)p
k-1 ; A-k
qy7<p>] [qu/<p>] ] (15)
j=1

a3 v, 0 [2[

—_

i=1

N
—_
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I 5. Relationship between 7*(p) and G*(p)

In this section we demonstrate that when the parameter « is near 0, then
the stochastic operator 7 follows the deterministic operator G for a long
time. First we set up the relation between G and 7 and then we study
the relation between their iterates.

Lemma 1. Given e > 0 and y < 1, there exists ¢, > 0 independent of
the probability vector p such that with probability at least y:

a<ay=>lr(p)-Gpll<e (16)

Proof. Suppose that 7(p) = (1 — @)p + @y. The discrepancy between G
and 7 can be bounded by:

lIr(p) =GP = (1 - a)p + ay — (1 —a)p — aE[Y,Ip]ll
=ally - E[Y ., Ip]ll < al. (17)

Since the right-hand side goes to zero as @ — 0 the proof is completed. m

Theorem 1. Given k > 0, € > 0, and y < 1, there exists @, such that
with probability at least y and for all 0 < # < k:

a<qy,>tp) -Gpl<e (18)

Proof. We make the proof by induction on k. The base case k = 1
coincides with Lemma 1. Given that G is uniformly continuous (it is
continuous in the compact [0, 1]’), choose ¢ such that

I~ (p) = G (Pl < 6 > IG( (P - GG (PNl < 5. (19)

By the inductive hypothesis, if @ < @, then with probability at least
1 - (1 -17)/2 we have

It (p) - 6 1 (p)ll < 6. (20)
By Lemma 1 (applied to 7*~'(p) instead of p) let @, be such that with

probability at least 1 — (1 —y)/2

@ <a, = I(p) - G+ (p))ll < § (21)

It follows that if @ < @, = min{e,, @, }, then with probability at least y

lIi*(p) — G* (PNl < IG(=* 1 (p)) - G* (p)I

Hitk(p) - G )l < 5 + 5. m (22)

Theorem 1 means that when « is near 0, the stochastic operator 7
follows, with high probability and for a long time, the iterations of the
deterministic operator G.
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The operator G can be thought of as a discrete dynamical system:

p,G(p),....G(p),....

I 6. The discrete dynamical system G

In this section we try to find properties of the discrete dynamical sys-
tem G that will give some information concerning the behavior of the
PBIL algorithm. Before studying the discrete dynamical system G, it is
important to note that the following discrete dynamical system G:

n A (i1 k=t Ak
G(p) = ). v.q,,(P) Z[qu,,(m] {qu,.(m] (23)
i=1 j=1

k=1 \j=1

has the same behavior as G in the points of the search space. All the
results obtained here for G are valid for G. In particular they have the
same singular points, so we study the dynamical system of equation (23)
instead of the operator G.

Theorem 2. All the points of Q are fixed points of G.

Proof. Giveny € Q, clearly E[Y,,Ip = y] = y, because the probability
of sampling an individual different from y given p =y is zero. Hence:

Gly)=E[Y  p=yl=y.= (24)

Before introducing Theorem 3, we define what we mean by a “local
optimum” for the Hamming distance. We also give a result borrowed
from page 126 in [30], that will be useful in the proof of the theorem.

Definition 1. Given a real function f defined in Q, a point y is a local
minimum for the Hamming distance d,; if:

i
for all y’ such that dy(y’,y) = Z v, —v,l=1=Ffy)=fly). (25)

m=1
Lemma 2. Let x be a fixed point of a discrete dynamical system G.

= If the eigenvalues of DG(x) all have absolute value less than 1 then x is a
stable fixed point of G.

= If some eigenvalue of DG(x) has absolute value greater than 1 then x is
an unstable fixed point of G.

Theorem 3. Given a real function f defined on Q, we have the follow-
ing.

= All the local optima of f with respect to the Hamming distance are stable
fixed points of G.
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= All the nonlocal optima of f with respect to the Hamming distance are
unstable fixed points of G.

Proof. We use Lemma 2 in order to prove these affirmations.

We first show that all the local optima are stable points; and, in a
second step, the last result.

Let y € Q be a local optimum of a function f (i.e., all the individuals
in Q whose Hamming distance from y is one, precede y in the order
imposed by f in ). We will see that in this case DG|, = 0. In fact, we
will see that

0 ’i =0forallr,m=1,2,...,1, (26)
pmly

where G, is the rth component of equation (23):

n A (i=1 k=1 Ak
=Zy,«,,qyi<p>{2{2qy/<p>] {qu}p)] ] (27)
i=1 j=1

k=1 \j=1

To show equation (26), we must first take into account the follow-
ing results which can be checked easily using the definition of g, (p)
(equation (12)):

qy,(y) =0 forall y +y, (28)
dy,(vp) = 1forall y, € O (29)
aqyk i 1 if Ve =1
Bl {—1 if Vi = (30)
0
% =0 for all y such that dy(y,y,) =2 (31)

m by

9y,| {1 ifdyly,y))=1landy,, =1,y,=0 )

W, l, -1 ifdy(y,y,)=1landy, =0y, =1
0
% =0 ifdy(y,y,) =1andy,, =v,. (33)

m iy

The partial derivative of G, with respect to p,, can be expressed as:

Zapm [yi,rqy‘ [2 [Zl qy/]k_l [,Zlqy]m]} L34

= i=1
k=1\j y

apm

We analyze each adding term of 6@,/6pmly separately and split it into
three different cases. The partial derivative of a term of equation (34)
must be written first (y;, has been eliminated, because it is a constant

Complex Systems, 12 (2000) 465-479
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term):

A i— _ i A—
0ay, (The1 (T} 4y (20 9, 1)
P,

y

A (i1 k=1 Ak
Z{ qyi(y>] [qu/m]

=1

9 (Zher (B2 4y U2 4y 1)
p,

+qy (y) (35)

y

We split the problem into the following three different cases.

1.

Let y; € Q be an individual such that d;;(y,y,;) = 2. In this case, using
aqyi/apmly = 0 (equation (31)) and qyi(y) = 0 (equation (28)), equa-
tion (35) has a value of 0.

. Let y; € Q be an individual such that d;(y,y;) = 1. In this case, in the

second term we again have qy.(y) = 0 (equation (28)) but, in the first,
q,,10p,,l, could be different from zero. However in this case (because
y; is before y in the order in Q and then qy( )=0forallj=1,...,i)

the second multiplicative term (Zizl(zg qyf)’e ](Z/ 14y, - ) has a value

of zero in y. Hence equation (35) has a value of zero for this kind of
individual.

. Finally we take into account the term corresponding to individual y. If

¥,, = 0 this term does not appear in the sum. In the other case (y,, = 1), if
i represents the place that individual y takes in the ordering of Q (y =y,),
equation (35) can be expressed by:

[5l50) T

O (X (2t a4y (2 4y, )

|
|
+q,(y) o, I
Yy
| (S oz A8
= i, [Z SR A
Yy
where A,(y) = % 1qy( )and B/(y) = ¥, ay,(¥)-
In the next reasoning, note that A,(y) = 0 and B,(y) = 1.
The first term of equation (36) is:
9q
8?% (B,'(Y)/\_l + A,‘(Y>Bi(}’)/1_2 +oee Ai(yyt_l) =1. (37)
mly
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The second term of equation (36) can be expressed as:

(BT + ABY 4+ AN

i — (L= 1)B.(v)2 ii
4y (y) o RCRLC |
=1
IR By + Ay - 2By O
P T
y y
bt (L= DAy 2 041
op,, |
ly
_ -2 OB, 9A, -2
R R R (38)

dq dq d
Y] I Y S GG e
dplyjy)=2 W ly dyly;»y)=1 b Do
j<i 2
—_———
=0
aq,, aq,,
] ]
+ Z op ! + Z op ! ’ (39)
dgtypyzz LMY dy(yy)=1 MY
j<i
—_———
=0

Taking into account that y, is such that dy(y,y;) = 1, y;,, = 0, and
y,, = 1 we find that the second term of equation (36) is:

(A-1) aqyki + 6qyfi +1 ]+ aqyki + 6qyfi = —1.(40)
m 1Y e D, ly 0, ly F— 0, ly
- Yim=Ym -1 Yimn=Ym
=0 =0

Hence DG(y) = 0 for all local optimum points y and all the eigen-
values have a value of zero. Moreover, we have shown that the local
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optimum points for a function f are stable fixed points of the discrete
dynamical system G.

In the case of a point y of Q that is not a local optimum, following
arguments similar to the previous case, it can be shown that:

9G,
Mo ly
In all the previous cases the adding terms have a value of zero, except
for the case that there exists y’ such that d(y,y’) = 1, ¥, # v,, and in
addition f(y’) > f(y) (y is before y’ in the order imposed by f in Q),
the adding terms corresponding to y and y’ are different from zero but
their sum is zero.
In the case r = m, there exists m € {1, ...,1} such that
4G,,
apm Yy
From Theorem 3 it can be deduced that when the value of @ is near
0, then the PBIL algorithm can only converge to the local optima of f.

So, the PBIL algorithm converges to the global optimum in unimodal
functions.

=0 for all r # m. (41)

>1.m

| 7. Conclusions and future work

We have opened a new approach to the theoretical study of PBIL: us-
ing discrete dynamical systems. Associating an appropiate dynamical
system we have shown that the PBIL algorithm follows the iterates of
the dynamical system. In addition, we have seen that PBIL can only
converge to local optima; meaning, in the case of unimodal functions,
that PBIL converges to the global optimum.

This is a preliminary analysis and much work remains to be done.
Our first objective is to generalize the results to the case in which u > 1
individuals are selected. Furthermore, we plan to study the size of the
basin of attraction of each local optimum to calculate the probability of
convergence to each local optimum.
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