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The gene expression process in nature plays a key role in evaluating the
fitness of DNA through the production of different proteins in differ-
ent cells. The production of proteins from DNA goes through different
stages. Among others, the transcription stage produces the mRNA from
the DNA and translation produces the amino acid sequence in proteins
from the mRNA. The translation process is accomplished by mapping
the mRNA sequence using a transformation called the genetic code. This
code considers every consequent triplet (codon) of nucleic acids in the
mRNA sequence and maps it to a corresponding amino acid. This pa-
per shows that genetic code-like transformations (GCTs) introduce very
interesting properties to the representation of a genetic fitness function.
It presents a Fourier1 analysis of GCTs. It points out that such trans-
formations can convert some function representations of exponential
description in Fourier basis to a description that is highly suitable for
polynomial-complexity approximation. More precisely, such transfor-
mations can construct a Fourier representation with only a polynomial
number of terms that are exponentially more significant than the rest.
Polynomial-complexity approximation of functions from data is a funda-
mental problem in inductive learning, data mining, search, and optimiza-
tion. Therefore the work has important implications in these areas. It
is unlikely that such representations can be constructed for all functions.
However, since such transformations appear to work well in nature, the
class of such functions may not be trivial and should be explored fur-
ther.

1. Introduction

Learning functions from data is important in many fields such as in-
ductive learning, statistics, and data mining. It may also be important
for nonenumerative optimization in the absence of sufficient domain
knowledge; this is because such optimization may require inductively
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1The analysis is identical to that using Walsh basis [4, 45]; however, the term Fourier

is chosen because of its historical [18, 32] use in function approximation literature.
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detecting the structure of the objective function for intelligent guessing
about the desired solution.

Representation plays an important role in learning functions. For
example, if the function has an exponentially large (in the number of
variables defining the function) description in the chosen representation
then its polynomial-time computation is not possible. On the other
hand, a representation with polynomially bounded size is amenable to
efficient computation. A function with an exponentially large descrip-
tion may be efficiently computed when it can be approximated using a
function that has a polynomially bounded description size. This may
be possible when the target function has an exponentially large repre-
sentation with only a polynomial number of “significant” components.
In that case, we may be able to neglect the “insignificant” components
and still enjoy a high degree of accuracy. Therefore, constructing func-
tion representations with a “small” number of significant components
is important for efficient function induction.

This paper considers Fourier basis representation of some well-known
functions and shows that there exists a class of transformations that of-
fers this property in the Fourier space under some practical conditions.
The transformations are similar to the genetic code that transforms the
genetic fitness function defined over the protein sequences to the mRNA
representation in a living organism.

A living body starts its life from the DNA, the primary information
carrier in genetics. Almost every critical activity of the organism is
accomplished by proteins constructed from the DNA. The efficacy of the
organism; that is, the genetic fitness, depends on the proteins. For some
reason our body chooses different representations of the information
stored in the proteins. It uses the mRNA and the DNA sequences
to represent the proteins. It first transforms the DNA to the mRNA
representation and subsequently to the protein before evaluating the
fitness of the genome. This process of representation transformations
is called gene expression. Representation transformations are often
used in many fields like physics, engineering, machine learning, and
mathematics for transforming difficult problems into suitable forms that
are easier to solve. Therefore representation transformations in gene
expression allude intriguing possibilities.

This paper investigates the possible role of the gene expression in
making genetic search efficient. It considers one important part of
gene expression, the translation, that transforms the mRNA sequence to
protein. Translation is governed by the genetic code. This paper presents
a Fourier analysis of genetic code-like transformations (GCTs) in the
binary sequence space and demonstrates a quite interesting property
of such representation transformations. It points out that there exist
some GCTs that can convert some functions with an exponentially long
description in Fourier basis to a representation where only a polynomial
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number of terms are exponentially more significant than the rest when
fitter proteins are given more copies through redundant and equivalent
representation.

Section 2 describes the gene expression process in nature. Section 3
briefly reviews previous work on the computation in gene expression.
Section 4 reviews the basics of Fourier representation. Section 5 analyzes
the effect of GCTs on the representation of the genetic fitness function
and proves the main results of this paper. Finally, section 6 concludes
this paper.

2. Gene expression and the genetic code

The DNA is the primary carrier of the genetic information that is trans-
mitted from one generation to another. DNA molecules consist of two
long complementary chains held together by base pairs. DNA consists
of four kinds of bases joined to a sugar-phosphate backbone. The four
bases in DNA are adenine (A), guanine (G), thymine (T), and cytosine
(C). Chromosomes are made of DNA double helices. Bases in DNA
helices obey the complementary base pairing rule. T and G pair with A
and C respectively. In other words, if the base at a particular position
of a helix is T then the corresponding base in the other helix should be
A. The information coded in the DNA is extracted during the process
of gene expression.

Expression of genetic information coded in DNA requires construc-
tion of the mRNA sequence, followed by that of proteins. The main
steps follow.

Transcription. Formation of mRNA (messenger ribonucleic acid) from
DNA.

Translation. Formation of protein from mRNA.

Protein folding.

In a particular cell, transcription produces the mRNA from a small
portion of the DNA. The mRNA defines another level of representation
of the genetic information. It consists of four types of bases joined to
a ribose-sugar-phosphodiester backbone. The four bases are adenine
(A), uracil (U), guanine (G), and cytosine (C). All the bases defining the
mRNA are the same as those in DNA sequences, except that T is replaced
by U. The mRNA is produced from the DNA by RNA Polymerase and
the regulatory proteins following the complementary base-pairing rules
similar to those in DNA. The RNA Polymerase initiates the transcription
at a place of the DNA marked by the promoter region (start site). It splits
the DNA double helix and continues generating the mRNA using one
of the DNA strands as a template. The RNA Polymerase stops when
it finds a termination signal sequence (stop site) in the DNA strand.
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Protein feature mRNA codons

Alanine GCA GCC GCG GCU
Cysteine UGC UGU
Aspartic acid GAC GAU
Glutamic acid GAA GAG
Phenylalanine UUC UUU
Glycine GGA GGC GGG GGU
Histidine CAC CAU
Isoleucine AUA AUC AUU
Lysine AAA AAG
Leucine UUA UUG CUA CUC CUG CUU
Methionine AUG
Asparagine AAC AAU
Proline CCA CCC CCG CCU
Glutamine CAA CAG
Arginine AGA AGG CGA CGC CGG CGU
Serine AGC AGU UCA UCC UCG UCU
Threonine ACA ACC ACG ACU
Valine GUA GUC GUG GUU
Tryptophan UGG
Tyrosine UAC UAU
STOP UAA UAG UGA

Table 1. The universal genetic code.

Note that only a small portion of the DNA strand is transcribed and
different cells may transcribe different regions of the DNA for producing
proteins.

The mRNA acts as the template for protein synthesis. A protein is
defined by a sequence of amino acids, joined by peptide bonds. The
mRNA is transported to the cell cytoplasm for producing protein in the
ribosome. There exists a set of rules that defines the correspondence
between nucleotide triplets (known as codons) and the amino acids in
proteins. This is known as the genetic code. Each codon is comprised
of three adjacent nucleotides in a DNA chain and it produces a unique
amino acid. With a few exceptions the genetic code for most eukaryotic
and prokaryotic organisms is the same. An amino acid sequence defines
a new representation of the information coded in mRNA.

The final level of representation of genetic information is defined by
the three-dimensional structure of folded proteins. Although amino
acid sequences fundamentally define proteins, formation of the three-
dimensional structure of proteins involves a complex process, often
called protein folding. This process involves interaction between mul-
tiple amino acid subsequences, resulting in the emergence of a folded
structure from the sequence.
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Figure 1. Different steps of gene expression.

Figure 1 shows the different steps of the gene expression process.
Although proteins play a key role in determining genetic fitness, the
purpose of the two additional layers of representation (mRNA and
DNA) for representing the fitness function is not clear. Representation
transformations are often used in physics, engineering, and machine
learning for solving problems efficiently. Therefore, the role of gene
expression in efficient genetic search is really intriguing. This paper
investigates gene expression from this perspective. First, let us review
the existing related literature.

3. Previous work

The importance of gene expression in genetic search was realized in the
early days of the field of genetic algorithms (GAs). Holland [15] de-
scribed the dominance operator as a possible way to model the effect of
gene expression in diploid chromosomes. He also noted the importance
of the process of protein synthesis from DNA in the computational
model of genetics. Despite the fact that dominance maps are tradition-
ally explained from the mendelian perspective, Holland made an inter-
esting leap by connecting it to the synthesis of protein by gene signals,
which today is universally recognized as gene expression. He realized
the relation between the dominance operator with the “operon” model
of the functioning of the chromosome in evolution [19] and pointed out
the possible computational role of gene signaling in evolution [15].

Several other efforts have been made to model some aspects of
gene expression. Diploidy and dominance have also been used else-
where [1, 7, 16, 38, 40]. Most of these take their inspiration from
the mendelian view of genetics. The under-specification and over-
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specification decoding operator of messy GAs has been viewed as a
mechanism similar to gene signaling [13]. The structured GA [8] also
shares motivations from gene expression: it uses a structured hierarchi-
cal representation in which genes are collectively switched on and off.
This provides the search algorithm with a richer representation and helps
capture properties of the landscape better. An empirical study of genetic
programming using artificial genetic code is presented in [31]. In [30]
Kauffman offered an interesting perspective of the natural evolution that
realizes the importance for gene expression. However, Kauffman’s work
does not explain the process in basic computational terms on analytical
grounds and does not relate the issue to the complexity of search. The
complex nature of the representation in the DNA itself created interest
among the researchers. The eukaryotic DNA typically contains many
segments that are not used in the gene expression process for producing
proteins. An empirical investigation of the role of such “noncoding”
segments (introns) in genetic search can be found in [46]. A survey of
evolutionary algorithms with intron-based representations is presented
in [47].

The neutral network theory [36, 39] also considers sequence-to-
structure mapping from the perspective of random graph construction.
This work approaches gene expression from the perspective of random
graph construction and points out the existence of fitness invariant neu-
tral networks. The translation process maps multiple mRNA sequences
to the same protein sequence. As a result, it creates a genetic space
that contains multiple genomes with the same fitness, known as neutral
networks. This work provides interesting insights into the effect of such
neutral networks in genetic search. However, its contribution towards
polynomial-time representation construction of genetic fitness functions
is not clear.

Another related effort to understand the properties of the fitness
landscape defined by the mRNA can be found in [37]. This work
presents a Fourier analysis of the landscapes derived from the RNAs
using fast Fourier transformation (FFT). Although the time complexity
of the FFT is better than the regular Fourier transformation, it still
grows exponentially with respect to the number of feature variables
defining the domain of the fitness function. This paper suggests that
the genetic code that transforms the RNA to protein itself may help
in designing a polynomial-time algorithm for the construction of the
Fourier representation which the FFT cannot offer.

There also exists a body of literature that investigates evolution of the
genetic code. An algebraic model for the evolution of the genetic code
is presented in [17]. This work searches for symmetries in the genetic
code and points out the existence of a unique approximate symmetry
group compatible with the codon assignments. The main idea behind
this work is to view the evolution of the genetic code as an iterative
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process of representation decomposition. The genetic code is viewed
as a 64-dimensional representation decomposed into several subrepre-
sentations with respect to different subgroups. The number of amino
acids correspond to the number of subrepresentations and the number
of codons for any amino acid corresponds to the dimension of that
subrepresentation. An extension of this work using Lie superalgebra is
presented in [3]. Additional work on the different biological theories
on the evolution of the genetic code can be found elsewhere [5, 10].

An alternate approach has been developed by Kargupta and his col-
leagues [2, 20–26, 28, 29]. This approach is mainly motivated by
a perspective of the gene expression as a mechanism to make genetic
search more efficient. This approach notes that the traditional model of
evolutionary computation (based on selection, crossover, and mutation)
[15] appears to have some serious scalability problems [42] for reason-
ably difficult problems. There are also few theoretical results available
that prove guaranteed polynomial-time performance of existing evolu-
tionary algorithms for reasonably difficult classes of problems. Since
the existing models of evolutionary computation do not address the
gene expression issue very well and gene expression changes the genetic
representation, it may become a natural candidate for exploring the un-
known mechanism that makes the genetic search in nature so efficient
and scalable.

The early exploration of gene expression-like mechanisms for efficient
inductive detection of function structure resulted in a class of heuristics-
based techniques, known as the gene expression messy GA (GEMGA)
[22]. In the recent past, more rigorous approaches using Fourier basis
representations are suggested. Fourier representations expose the un-
derlying function structure and are functionally complete. Therefore,
if we can learn such representations quickly, the purpose of function
induction is served. A randomized algorithm is presented in [27, 28]
that can induce a representation in Fourier basis in polynomial time for
problems with bounded variable interaction (BVI). The assumption of
BVI makes sure that among ! features defining the search domain, only
at most some k (a constant) number of variables can interact with each
other. In other words, the overall fitness function can be decomposed
into a collection of either overlapping or nonoverlapping subfunctions
where each of the subfunctions can depend on at most k variables. This
condition guarantees a polynomial-size description of the target func-
tion in Fourier representation. An alternate technique for estimating
the Fourier representations is proposed elsewhere [18, 32]. An exten-
sion of this technique for detecting function structure in GAs is reported
in [41].

Although many functions exist with a polynomial-size canonical rep-
resentation, it is not clear why the natural genetic fitness function should
have such a property. This paper suggests a possible direction to answer
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this question. It shows that GCTs can construct a Fourier representation
of at least some fitness functions where the contribution of Fourier coef-
ficients involving some q features decreases exponentially with q. This
may allow us to approximate the genetic fitness function with a Fourier
representation that neglects the effect of Fourier coefficients associated
with some k or higher features. In other words, the approximation will
satisfy the BVI property. If that is the case, then we can induce such
functions efficiently in polynomial time. The following section reviews
the fundamentals of Fourier representation.

4. Fourier representation and function induction

The role of the genetic code in the evaluation of fitness can be understood
in the context of an appropriately chosen set of basis functions. This
paper uses the Fourier basis functions to do that. The representation
is very similar to the Walsh basis [4, 45], frequently used by the GA
community. This paper uses the Fourier representation because of its
history in function induction literature [18, 32]. The following section
presents a brief review of the Fourier basis and its relation with the
problem of inducing functions from data.

4.1 A brief review of the Fourier basis

Fourier bases are orthogonal functions that can be used to represent
any function. In this paper we consider functions of binary variables.
Consider the function space over the set of all !-bit strings. The Fourier
basis set that spans this space is comprised of 2! functions. Each Fourier
basis function is defined as follows:

Ψj(x) $ (%1)(x&j). (1)

Where j and x are binary strings of length !. In other words, j $
j1, j2, . . . j!, x $ x1, x2, . . .x!, and j, x ' (0, 1)!; x & j denotes the inner
product of x and j which is nothing but !!i$1 xiji. Ψj(x) can either
be equal to 1 or %1. The string j is called a partition. The order
of a partition j is the number of 1s in j. A Fourier basis function
depends on some xi only when ji $ 1. Therefore a partition can also
be viewed as a representation of a certain subset of xis: every unique
partition corresponds to a unique subset of xis. If a partition j has
exactly Α number of 1s then we say the partition is of order Α since
the corresponding Fourier function depends on only those Α number of
variables corresponding to the 1s in the partition j. Fourier bases are
orthonormal. Therefore,

1
2!
"
x

Ψi(x)Ψj(x) $ 1 when i $ j

$ 0 when i + j.
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A function f , X! - ., that maps an !-dimensional space of binary
strings to a real-valued range, can be represented using the Fourier basis
functions:

f (x) $"
j

wjΨj(x) (2)

where wj is the Fourier coefficient (FC) corresponding to the partition j

wj $
1
2!
"
x

f (x)Ψj(x). (3)

We note from equation (2) that a function can be expressed as a linear
sum of the Fourier functions, each weighed by the corresponding FC.
The FC wj can be viewed as the relative contribution of the partition
j to the function value of f (x). Therefore, the absolute value of wj
can be used as the “significance” of the corresponding partition j. If
the magnitude of some wj is very small compared to other coefficients
then we may consider the jth partition to be insignificant and neglect its
contribution.

Fourier bases and their close relatives Walsh bases are frequently used
to study the behavior of GAs. Walsh bases [4] were first used by Bethke
[6] for analyzing GAs. Further investigation of this approach can be
found elsewhere [9, 11, 12, 14, 33–35, 43, 44].

4.2 Function induction from data and Fourier basis

Function induction from data plays an important role in adaptation, ma-
chine learning, and nonenumerative black-box optimization. In func-
tion induction, the goal is to learn a function f̂ , X! - Y from the data
set / $ ((x(1), y(1)), (x(2), y(2)), . . . (x(k), y(k))) generated by some under-
lying target function f , Xn - Y, such that the f̂ approximates f . Since
Fourier basis is functionally complete, any function can be represented
in Fourier basis. Therefore, learning a function f̂ can be posed as the
problem of approximating the Fourier representation of f . If we can ac-
curately estimate the significant coefficients (coefficients with relatively
large magnitude) of the Fourier representation of f then we can use
those coefficients to define f̂ . The complexity of inducing a function
in Fourier representation is directly proportional to the number of such
coefficients.

Note that the Fourier representation in the binary domain can poten-
tially have 2! coefficients and estimating all of them will require expo-
nential time. However, we may be able to get away with polynomial-
time computation if there is a way to accurately approximate the func-
tion with an exponentially long description by a function with only a
polynomially long description. For example, if the function has only a
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polynomial number of significant FCs then we may be able to construct
an approximation by considering only those significant coefficients and
neglecting the rest. In that case we can write f̂ $ !j w00j Ψj(x), where
w00j $ wj when 1wj1 2 Θ and w00j $ 0 otherwise. 1wj1 denotes the mag-
nitude of wj and Θ represents the chosen threshold. If the number of
FCs in f̂ is polynomially bound then its Fourier representation can be
computed in polynomial time [18, 27, 28, 32, 41].

Unfortunately, function representations may not always come with
such a nice property. The following section points out that there exists
some GCTs that can construct representations of functions with this
very desirable property.

5. Exploring genetic code-like transformations

The genetic code transforms the mRNA sequence to the protein se-
quence by assigning one protein feature for every codon in the mRNA
sequence. Although the cardinalities of the alphabet sets of the mRNAs
and proteins are more than two, understanding the underlying compu-
tation may require abstraction. In this section we will do so by assuming
that the protein and the mRNA sequences are binary strings. Our ob-
jective is to explore the effect of the genetic code-like representation
transformations in the binary domain using Fourier analysis. In order
to do that we first need to define what is meant by “genetic code-like
transformations.”

5.1 The notion of genetic code-like transformations

The genetic code defines the correspondence between an mRNA codon
and a protein feature value. Although in nature the codons are defined
by three mRNA feature values, the implication of the choice of number
“three” is yet to be explained. Therefore, the current analysis will treat
this as a parameter and the results of this paper can be specialized for any
size of codons, including three. As noted earlier, the analysis considers
the effect of such transformations in the binary space. Although strings
are binary, we will continue to use the terms mRNA, protein, and
genetic code accordingly for maintaining the link between biology and
the current analysis.

Let us use r and p to represent the mRNA and the protein sequences
respectively. Let !r and !p be their respective lengths. Just like the
natural translation process, our artificial translation maps the mRNA
sequence to the corresponding protein sequence using the genetic code.
The mapping in translation will be denoted by Ηc where the subscript
c denotes the number of mRNA features that define a codon. If three
features are used like natural codons, c $ 3; Ηc can be defined as Ηc ,
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Protein feature mRNA codon

1 100
1 000
1 001
1 010

0 111
0 101
0 110
0 011

Table 2. Code A: A GCT for binary representation. A single bit in the protein
space maps to 3-bit codons in the mRNA space.

Protein feature mRNA codon

0 100
0 000
0 001
0 010
0 111
0 101
0 110

1 011

Table 3. Code B: Another GCT for binary representation. Note that seven
unique mRNA codons map to the protein feature value of zero.

R!r - P!p . R!r and P!p denote the !r- and !p-dimensional space of all
mRNAs and proteins respectively. Note that !r $ c !p and for binary
representation R $ P $ (0, 1).

Consider the GCTs presented in Tables 2 and 3. Note that the genetic
code may be redundant. In other words, a unique protein feature value
may be produced by several mRNA codons. This is also true for natural
genetic code (Table 1). As a result, there exist many equivalent mRNA
sequences that produce the same protein sequence. All these mRNA
sequences have the same genetic fitness since they all map to the same
protein sequence. So we can view the space of mRNAs grouped into
different equivalence classes. We shall call this characteristic translation
introduced equivalence (TIE) and these groups of equivalent mRNAs
will be called the TIE classes. Let Rp be the TIE class for the protein
sequence p. We can also define Rp in the following manner: Rp $
(rj1rj

Ηc-p). The cardinality of the set Rp depends on the genetic code and
the protein sequence p. Let a0 and a1 be the total number of codons
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that map to a protein feature value of 0 and 1 respectively. Let !p,0 and
!p,1 be the number of 0s and 1s in p respectively. Then the cardinality
of the TIE class is 1Rp1 $ a0

!p,0a1
!p,1 .

Since one feature in the protein sequence maps to c mRNA features,
partitions defined in the mRNA and the protein spaces can be associated
with each other. Let j and j0 be partitions in the mRNA and the protein
spaces respectively. We will call j0, the reflection of j in the protein
space when j0i $ 1 if and only if j takes a value of 1 at the location(s)
corresponding to at least one of the mRNA features associated with j0i.
If j has 0s at all the locations corresponding to j0i then j0i $ 0.

For example, the reflection of the partition j $ 101000 using a genetic
code of codon size three is j0 $ 10. The left three bits of j are associated
with the leftmost bit of j0. Since two of those three bits are set to 1,
j
0

0 $ 1. However, none of the rightmost three bits in j takes the value 1,
so the corresponding j

0

1 $ 0. Note that the reflection of 100000 is also
10 since j

0

0 $ 1 as long as at least one of the leftmost three bits is set to
1. Similarly the reflection of 100110 under a genetic code of codon size
three is 11.

Note that different mRNA partitions may have the same reflection in
the protein space. If q is the number of ones in j0 then it is the reflection
of (2c % 1)q different partitions in the mRNA space. The number of 1s
in j0 will be called the absolute order of partition j.

Once the protein sequence is constructed from the mRNA sequence,
the protein folds into a three-dimensional structure and its shape deter-
mines its fitness. Let us use f , P!p - .5 for denoting this fitness func-
tion that maps the protein sequence to a nonnegative real-valued range.
Since the protein sequences are produced from the mRNA sequences,
we can also define the fitness over the domain of mRNA sequences. Let
Φ , R!r - .5 be this fitness function defined over the mRNA represen-
tation. Therefore, Φ(r) $ f (p) $ f (Ηc(r)) and Φ(r) can be viewed as a
different representation of the genetic fitness function f (p).

In this section we study the representations of f (p) and Φ(r). We will
be particularly interested in the effect of the representation transforma-
tion Ηc on the complexity of inducing the function. In other words, we
would like to know if Φ(r) has a more efficient description compared to
that of f (p). For example, if the size of the new representation is smaller
by a considerable factor then its learning will be computationally easier.
So it will be desirable over the original representation.

The rest of this paper will use two toy functions to illustrate the
analytical observations. These functions are defined in the following.
Let x be a boolean string of length ! and ones(x) returns the number of
ones in x.
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1. Needle-in-a-haystack (NH) function:

f (x,xopt) $ ! if x $ xopt,

$ 0 otherwise. (4)

Where xopt is the domain member with the maximum function value.
Different NH functions can be defined using different choices for xopt.

2. Trap function:

f (x) $ ! if ones(x) $ !
$ ! % ones(x) % 1 otherwise.

The following section explores the change in the properties of the FCs
under the genetic code-like representation transformations.

5.2 Exponential decay of individual Fourier coefficients

The jth FC in the mRNA space can be defined as:

wj $
1
2!r
"
r

Φ(r)Ψj(r)

$
1

2c !p "
p

f (p) "
ri'Rp

Ψj(ri). (5)

The magnitude of the second summation in equation (5) may take a
value between 0 and a0

!p,0a1
!p,1 (cardinality of Rp) depending upon the

nature of the set Rp. This imposes a scaling factor to the contribution
of every unique protein sequence to the jth FC. Let us explore the effect
of such scaling on the magnitude of an FC.

As noted earlier, the value of Ψj(r) depends only on those features
of r corresponding to the 1s in the partition j. The mRNA features
corresponding to the positions with 1s in the partition j may belong to
(1) the same mRNA codon, (2) different codons, and (3) a combination
of both. In other words, they originate from (1) the same protein feature
(since one feature in the protein sequence maps to c features in the
mRNA sequence), (2) different protein features, or (3) a combination of
both respectively. Next, we are going to represent j using a collection of
partitions (j0, j1, . . . jq) where j0 represents the null partition with all 0s
and every ji+0 represents a subpartition of the 1-contributing positions
of j that contains only those features that belong to the same protein
feature. Note that the reflection of any ji+0 in the protein space has
only one 1. The null partition always contributes a value of 1 and is
introduced only for taking care of the case when the partition j is a
sequence of all 0s. For example, consider a two-bit protein space that
maps to a six-bit mRNA space. The partition 110001 in the mRNA
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space can be represented in terms of the subpartitions 000000, 110000,
and 000001. Note that Ψ110001(r) $ Ψ000000(r)Ψ110000(r)Ψ000001(r). We
can writeΨj(r) $ 7Α$0,1,...q ΨjΑ (r). Therefore, we can rewrite equation (5)
as follows:

wj $
1

2c !p "
p

f (p) "
ri'Rp

#
Α$0,1,...q

ΨjΑ (ri). (6)

All the defining bits (with partition value of 1) of some jΑ belong
to only one protein feature by definition. Therefore, the value of
7Α$0,1,...q ΨjΑ (ri) depends only on the portion of ri defined by those q
protein features. For any given combination of q protein feature values,
we can define a subspace of mRNA subsequences.

If pΑ is the protein feature value in a given p corresponding to the
reflection of the Α-partition in the mRNA space, then let RpΑ

be the
set of all mRNA codons that maps to pΑ. Let Rj0,p be the cartesian
product of the RpΑ

s for Α $ 1, 2, . . .q. Every member of Rj0,p has c q
mRNA features. For example, consider p $ 110 and j $ 110000010.
So j0 $ 000000000, j1 $ 110000000, and j2 $ 000000010; j

0

1 $ 100
and j

0

2 $ 001; p1 $ 1, p2 $ 0, and j0 $ 101. In the case of code A,
Rp1
$ (100, 000, 001, 010) and Rp2

$ (111, 101, 110, 011). Therefore
R101,110 $ Rp1

8 Rp2
.

Note that the basis function ΨjΑ (rj,p) is well defined for any rj,p ' Rj0,p
for any Α since the feature values of rj,p are defined for every defining
location of the partition jΑ. This is indeed a slight abuse of the symbols
since the lengths of jΑ and rj,p are not the same. However, we take
that liberty since even if we pad rj,p with 1s and 0s in order to make
the lengths the same, the outcome will be identical. This is because the
corresponding values in jΑ are 0 by definition.

Let qp,j0,0 and qp,j0 ,1 be the number of 0s and 1s in p that are covered by
the fixed bits of j0, the reflection of j in the protein space; qp,j0,05qp,j0 ,1 $
q. In other words, q is the total number of 1s in j0. Now note that for
every rj,p ' Rj0,p there are a!p,0%qp,j0 ,0

0 a!p,1%qp,j0 ,1
1 strings in the corresponding

Rj0,p. So we can write from equation (6),

wj $
1

2c !p "
p

f (p) a!p,0%qp,j0 ,0
0 a!p,1%qp,j0 ,1

1 "
rj,p'Rj0 ,p

#
Α$0,1,...q

ΨjΑ (rj,p)

$
1

2c !p "
p

f (p) a!p,0%qp,j0 ,0
0 a!p,1%qp,j0 ,1

1 #
Α$0,1,...q

"
rj,p'RpΑ

ΨjΑ (rj,p). (7)

Let ejΑ,p
and ojΑ,p

be the number of members in RpΑ
that have an even

and odd number of ones respectively over the partition jΑ. For example,
if jΑ $ 110000 and p $ 10 then e110000,10 $ 2 and o110000,10 $ 2 for code
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A Striking Property of Genetic Code-like Transformations 15

A shown in Table 2. Now using equation (7) we can write,

wj $
1

2c !p "
p

f (p) a
!p,0%qp,j0 ,0
0 a

!p,1%qp,j0 ,1
1 Κ #

Α$0,1,...q

1ejΑ,p
% ojΑ,p

1, (8)

where Κ ' (%1, 1) and 1ejΑ,p
% ojΑ,p

1 denotes the magnitude of (ejΑ,p
% ojΑ,p

)
for all Α + 0. The value of 1ejΑ,p

% ojΑ,p
1 can be determined directly from

the genetic code. By definition, for the null partition Α $ 0, we set
1ej0,p % oj0,p1 $ 1. As before, this is done to take care of the case where j
is comprised of only 0s resulting in q $ 0.

Now let us specialize this equation for code A. For this code 1ejΑ,p
%

ojΑ,p
1 is either 2 or 0 for all the partitions (except the partition with all

0s). If 1ejΑ,p
%ojΑ ,p

1 is equal to zero for any given Α and the corresponding
protein feature value in p then the overall contribution of p to wj is
zero. Also note that since p is a binary string, any feature in p can take
only two values: 0 and 1. Therefore, if 1ejΑ,p

% ojΑ,p
1 is 0 for a certain

feature entry in p (corresponding to jΑ in the mRNA space) 1ejΑ,p
% ojΑ,p

1
must be 0 for the complementary feature value of p at the same location.
As a result, the corresponding coefficient wj will be zero. Therefore for
all nonzero wjs, except the coefficient w0, the value of 1ejΑ,p

% ojΑ,p
1 must

be equal to 2; w0 is the FC for the partition with all entries set to zero.
So for all nonzero coefficients except w0 in the representation using

the code A we can write,

wj $
1

2c !p "
p

Κ f (p) 4!p%q 2q

$
1

2!p5q "
p

Κ f (p)

:
1

2!p5q "
p

f (p) :
w0

2q . (9)

Note that w0 $ 1/2!p !p f (p). This equation shows an exponential
decay in the magnitude of the coefficients as the partition index of
the coefficients involve more and more defining bits. As we increase
the value of q (the number of 1s in j0, the reflection of the partition
j) the upper bound on the magnitude of the coefficient wj decreases
exponentially.

We can also specialize equation (8) for the genetic code B. Note that
1ejΑ,p

% ojΑ,p
1 $ 1 for all Α and p. Also a1 $ 1 and a0 $ 7. Therefore,

wj $
1

2c !p "
p

Κf (p) 7!p,0%qp,j0 ,0 .

Figure 2 (top) shows the effect of codes A and B on the Fourier
representation of function NH. The figure also shows the magnitude
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of the coefficients of the original Fourier representation without using
the representation transformation where all the coefficients have the
same magnitude. However, the magnitude decays exponentially with
respect to the absolute order of the mRNA partitions for representations
generated using codes A and B. Note that the magnitude of the nonzero
coefficients corresponding to partitions with the same absolute order are
the same. Figure 2 (bottom) shows similar results for the trap function.

Magnitudes of the individual coefficients do not tell the complete
story. Construction of an efficient representation requires considering
properties of all the coefficients together. This is particularly important
for the current case since these transformations expand the domain and
introduce many new partitions. Even if the magnitudes of individual
coefficients decrease, the increased number of coefficients (recall that
the mRNA representation uses more features) may result in no benefit
towards reducing the description size of the overall function representa-
tion. In other words, a large number of small coefficients together may
contribute significantly to the output of the function. The following sec-
tion explores this issue and points out that although code A offers little
benefit from this perspective, properties of code B are quite encouraging.

5.3 Energy of the Fourier spectrum

The energy of the Fourier spectrum can be defined as

E $"
j

w2
j . (10)

Let us now study the change in the overall energy of the spectrum due to
the genetic code-like representation transformations. Using equation (5)
and noting that Ψj(x) $ Ψx(j) we can write

w2
j $

1
22c !p "

p,s

f (p)f (s) "
ri'Rp ,rk'Rs

Ψj(ri)Ψj(rk)

"
j

w2
j $

1

22c !p "
p,s

f (p)f (s) "
ri'Rp ,rk'Rs

"
j

Ψri
(j)Ψrk

(j).

Exploiting the orthonormality condition we can write

"
j

w2
j $

1
2c !p "

p

f 2(p)a!p,0
0 a!p,1

1 . (11)

Let us now specialize this result for code A. For this code, a0 $ a1 $ 4
and c $ 3. Substituting these values in equation (11) we get

ER $
1

2!p
"
p

f 2(p) $ EP,
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Figure 2. (Top) Variation of the magnitude of the Fourier coefficients with respect
to the order (q) of the partitions in the original and transformed representations
of the NH function. It shows the result using code A, code B, and no trans-
formation. Note that the magnitude is invariant in the representation with no
transformation. On the other hand it decays exponentially when the transfor-
mations are applied. (Bottom) Similar result for the trap function. Note that all
coefficients of the same order have the same magnitude for both NH and trap
functions.
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Figure 3. Variation of the overall energy with increasing number of 1s in the
string (xopt) with nonzero function value for the function NH. Code B is used.

where ER and EP are the energies of the mRNA and the protein spaces.
The overall energy remains invariant under the transformation code A.

Code B however changes the overall energy. Figure 3 shows the
different values of the energy for different choices of the string with a
nonzero function value (xopt) in the function NH using code B. The
overall energy of the Fourier representation of the trap function with
four variables using code B is approximately 2.2778EP.

Although the overall energy is an interesting property to observe, the
most critical properties are the number of coefficients that significantly
contribute to the overall energy of the representation and the location
of those significant coefficients. If the number is small and the contribu-
tion from the rest is negligible, then we know that the function can be
approximated using a small number of coefficients. If we also know the
partitions that are associated with those significant coefficients then we
should be able to efficiently compute the representation. The following
section shows that both of these requirements can be satisfied by a class
of GCTs.

5.4 Distribution of the energy in partitions of different order

The distribution of energy among the coefficients of different order is a
very interesting property of a representation. For example, if we know
that a representation has a small number of significant coefficients and
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A Striking Property of Genetic Code-like Transformations 19

they are associated with a certain order of partitions then it will be easier
to compute such a representation. In this section we shall study such
properties of the Fourier representation produced by the GCTs.

Recall that the order of a partition j is the number of ones in j; in other
words, it is the number of features that define the corresponding basis
function Ψj(x). Let us define the order-k energy, E(k) $ !j1ones(j)$k w2

j .
We can compute this for both the protein and the mRNA space. Note
that an order-k partition in the mRNA space may correspond (through
reflection) to a lower order partition in the protein space since multiple
mRNA features are associated with the same protein feature. A careful
study of the effect of the representation transformations on the order-k
energy in the mRNA space may require understanding the properties
of the coefficients in the mRNA space that correspond to exactly k
features in the protein space. We are going to use the term absolute
order-k energy, defined as "(k) $ !j1ones(j0)$k w2

j ; as defined earlier, j0 is
the reflection of j in the protein space. Just like the association between
the partitions in the protein and the mRNA spaces through the concept
of reflection, the distribution of energies in these two representations
can be linked through the concept of absolute order-k energy.

Using equation (7) we can write

w2
j $

1
22c !p "

p,s

f (p)f (s) a!p,0%qp,j0 ,05!s,0%qs,j0 ,0
0 a!p,1%qp,j0 ,15!s,1%qs,j0 ,1

1

& #
Α$0,!q

"
rj,p'RpΑ

,tj,s'RtΑ

ΨjΑ (rj,p)ΨjΑ (tj,s)

$
1

22c !p "
p

f 2(p) a2(!p,0%qp,j0 ,0)
0 a2(!p,1%qp,j0 ,1)

1

& #
Α$0,1,!q

"
rj,p'RpΑ

,tj,p'RpΑ

ΨjΑ (rj,p)ΨjΑ (tj,p)

5
1

22c !p "
p+s

f (p)f (s) "
ri'Rp ,rk'Rs

Ψri
(j)Ψrk

(j). (12)

Now summing both sides of equation (12) over all partitions and noting
that the second term of the right-hand side disappears because of the
orthonormality property, we can write

"
j

w2
j $

1
22c !p "

p

f 2(p) "
j

a2(!p,0%qp,j0 ,0)
0 a2(!p,1%qp,j0 ,1)

1

& #
Α$0,1,!q

"
rj,p'RpΑ

,tj,p'RpΑ

ΨjΑ (rj,p)ΨjΑ (tj,p).
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Comparing this with equation (11) we note that

1
2c !p "

j

a!p,0%2qp,j0 ,0
0 a!p,1%2qp,j0 ,1

1

& #
Α$0,1,...q

"
rj,p'RpΑ

,tj,p'RpΑ

ΨjΑ (rj,p)ΨjΑ (tj,p) $ 1. (13)

Now let us explore the rate of convergence of expression in the left-hand
side of equation (13). If it approaches 1 very quickly with respect to
increasing order of the coefficients (q $ qp,j0 ,0 5 qp,j0 ,1) then we know
that only a small number of low order coefficients mainly contribute to
the overall energy of the Fourier representation.

Using equations (8) and (13) we can write

1
2c !p "

j

a!p,0%2qp,j,0
0 a!p,1%2qp,j,1

1 #
Α$0,1,...q

(1ejΑ,p
% ojΑ,p

1)2 $ 1. (14)

Although (1ejΑ,p
% ojΑ,p

1)2 $ (ejΑ,p
% ojΑ,p

)2 we have left the 1.1 symbol in
place since earlier we defined that 1ejΑ,p

% ojΑ,p
1 $ 1 for the partition with

all 0s (i.e., q $ 0). Equation (14) essentially controls the distribution of
the eneregy with respect to the order of the partitions. GCTs that can
provide an exponential convergence of the left-hand side of this equation
to 1 with respect to increasing order, will also offer an exponential decay
in the energy.

Let us now specialize equation (14) for code A. Since a0 $ a1 $ 4 and
c $ 3 for code A,

1
2!p
"
j

2%4q #
Α$0,1,...q

(1ejΑ,p
% ojΑ,p

1)2 $ 1. (15)

This can be further simplified by counting the number of partitions of
absolute order q that are associated with nonzero coefficients and noting

that 1ejΑ,p
% ojΑ,p

1 $ 2 for all of them. There are $!pq % order-q partitions

and by studying the genetic code A we observe that any protein feature
corresponds to four choices (note that the null partition is not a choice)
in the mRNA partition-space that can have nonzero coefficients. In
other words, there are only four choices of partitions over a particular
codon that can have nonzero coefficients. In a partition of absolute
order equal to q there are 4q such partitions. Therefore,

1
2!p

!p"
q$0

$!pq %2%4q4q22q $ 1

1
2!p

!p"
q$0

$!pq % $ 1. (16)
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Note that the case for a null partition (q $ 0) is taken care of since
40 $ 1. So the absolute order-k energy for the code A is

"(k)
A $

1
2!p
$!pk %EP. (17)

This equation clearly shows that the distribution of the energy among
different orders is controlled by only the total number of partitions in the
protein space with the same order. This is identical to the distribution
of order-k energy in the protein space. In other words, code A does not
really change the distribution of the energy among different orders. The
magnitudes of the individual coefficients decay only because the order-
k energy is distributed among an increased number of partitions. This
also means that code A does not necessarily offer a better representation
that is easier to approximate using a smaller number of coefficients.

The theoretical observations are supported by the experimentally
computed values of the FCs. Figure 4 (top) shows the distribution of
absolute order-k energy for the function NH using code A. Figure 4
(bottom) shows the distribution of the energy in the protein space for
the same function NH. As we see, both distributions are identical.

Let us now specialize equation (14) for code B. First note that 1ejΑ,p
%

ojΑ,p
1 $ 1 for code B. Therefore,

1
2c!p "

j

a!p,0%2qp,j0 ,0
0 a!p,1%2qp,j0 ,1

1 $ 1.

This can be further simplified by counting the number of partitions in
the mRNA space for each absolute order value of ones(j0),

1
2c !p

!p"
q$0

min(q,!p,0)"
qp,j,0$max(0,q%lp5lp,0)

&$!p,0
qp,j0 ,0%$!p%!p,0

q%qp,j0 ,0%(2c % 1)qa!p,0%2qp,j0 ,0
0 $ 1, (18)

where q is essentially ones(j0). The term with a1 disappeared since
a1 $ 1 for code B. Note that the left-hand side of equation (18) contains
a summation over different values of q from zero through !p. We are
interested in the convergence of the left-hand side to 1 as we continue
to add the contributions for different values of q. In order to study that
let us define,

g(!p, !p,0, k) $
1

2c !p

k"
q$0

min(q,!p,0)"
qp,j0 ,0$max(0,q%lp5lp,0)

&$!p,0
qp,j0 ,0%$!p%!p,0

q%qp,j0 ,0%(2c % 1)qa!p,0%2qp,j0 ,0
0
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Figure 4. (Top) Distribution of the absolute order energy using code A and the
function NH with xopt $ 0000. (Bottom) Distribution of the energy in the
protein space (i.e., with no representation transformation).
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where 0 : k : !p. We would like to study the convergence of g(!p, !p,0, k)
to 1 as k increases from 0 through !p. Note that g(!p, !p,0, k) is also a
function of !p,0, the number of 0s in a sequence p. Since we are dealing
with boolean sequences, !p,0 is sufficient to define any particular p.

Figure 5 shows the variation of g(4, !p,0, k) with respect to increasing
k and different !p,0s. Since the convergence characteristic depends only
on the number of 0s in p, not their exact locations in the string, the
variations are shown for the four different types (note that !p $ 4) of
ps. Figure 6 presents the variation of g(300, !p,0, k) for two boundary
cases !p,0 $ 0, !p,0 $ 300, and the intermediate case !p,0 $ 150.

Both Figures 5 and 6 convey an important message. Note that in
both cases, g(!p, !p,0, k) approaches 1 faster (with respect to k) when !p,0
is large. This is simply because code B assigns seven mRNA codons
for the protein feature 0. Now let us write the overall energy of the
representation constructed using code B,

ER $"
j

w2
j $

1
2c!p "

p

f 2(p)a!p,0
0 g(!p, !p,0, !p). (19)

Note that the protein sequences with high genetic fitness contribute sig-
nificantly to the overall energy ER since f 2(p) will be large for them.
Moreover, the effect of f 2(p) on the energy gets scaled up by the factor
a!p,0

0 . This essentially means that fitter protein sequences with a large
number of 0s will mainly contribute to ER. Now note that for pro-
teins with a large number of 0s (i.e., relatively large !p,0) the function
g(!p, !p,0, k) approaches 1 very fast. In other words, the main portion of
the overall energy comes from the highly fit proteins that have a greater
number of equivalent mRNA representations (implied by large value of
!p,0 and bias of code B towards the protein feature 0).

Equation (18) can also be further specialized for the function NH. If
the string with all 0s is the optimal solution then it is the only member
of the domain that contributes to the FCs. Therefore we can eliminate
the summation over all ps by only the string with all 0s. Noting that
!p,0 $ !p, qp,j,0 $ q we can write

1
2c!p

!p"
q$0

$!pq %(2c % 1)qa!p%2q
0 $ 1. (20)

These theoretical observations are also supported by experimentally
computed values of the FCs. Figure 7 shows the distribution of absolute
order-k energy for the function NH using code B. As we see, the con-
tribution to the overall energy from the coefficients of a certain order
diminishes as the order increases when the optimal solution contains all
0s. The NH function is an extreme case where everyone but one domain
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Figure 7. (Top) Distribution of the absolute order energy using code B for func-
tion NH. (Bottom) Distribution of the normalized value of the absolute order
energy using code B for function NH.
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member has a zero function value. As a result the distribution of the
absolute order-k energy depends solely on the property of the sequence
xopt. If we set xopt to sequences with a smaller number of 0s the decay
is preceded by an increase in energy.

Now let us consider a different example using the trap functions.
Note that in this case although the sequence with all 1s has the highest
function value, there are other sequences that have a nonzero function
value. The sequences with a larger number of 0s have relatively high
fitness values. This also matches with the bias of the genetic code B.
Therefore we should expect a good approximation using the low order
coefficients.

Figure 8 (top) shows the distribution of absolute order-k energy using
the code A, code B, and no transformation for a trap function with
!p $ 4. Note that the distribution of the energy using no transformation
and that using code A are identical as noted in equation (17). Also
note that the absolute order-k energy decreases exponentially for code
B. Figure 8 (bottom) shows the order-k energy using both codes A
and B for the trap function. Note that this is the order-k energy of the
mRNA representation, not the absolute order-k energy and 4-bit protein
sequences map to 12-bit mRNA sequences.

It is important to realize that the match between the bias of the
genetic code and the representation of the fitter proteins may not be
difficult to achieve. Fitter proteins will have larger values of f 2(p). If
we assign a greater number of codons to the most frequent feature value
(either 1 or 0 in the case of binary strings) used in the fitter proteins,
then the corresponding scaling factor (a!p,0

0 in the case of code B) will
also be large. For these proteins g(!p, !p,0, k) also approaches 1 very
fast with respect to k. In the case of code B, the larger the value of
!p,0 in a protein, the higher the rate of convergence and the larger the
scaling factor. On the other hand, the proteins with frequent feature
values that have a smaller number of codons assigned (1 in the case
of code B) will have a slower convergence rate for g(!p, !p,0, k) and
a smaller scaling factor. In the case of code B it will be protein se-
quences with smaller values for !p,0 (i.e., strings with relatively more
1s). Although the convergence rate will be slow, if the fitnesses of these
proteins are relatively low, their contribution to the overall energy will
be low since the scaling factor will be small for them. Note that if
the fitness value is relatively small compared to the scaling factor, the
latter will play a more significant role. For binary representation, the
issue is assigning a codon distribution among two possible protein fea-
tures 0 and 1. For representations with higher cardinality, the code
introduces richer transformations and we need to further explore the
implications.
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A and B for the trap function. Note that 4-bit protein space maps to 12-bit
mRNA representation since the codon size is three.

Complex Systems, 13 (2001) 1–32



28 H. Kargupta

6. Conclusions

This paper offered some intriguing properties of genetic code-like trans-
formations (GCTs) that may be extremely useful for inducing a func-
tion from observed data. It showed that there exist some GCTs that
can construct a Fourier representation of some fitness functions where
the low order coefficients are exponentially more significant than the
higher order coefficients. This is a very critical property that allows a
polynomial-complexity approximation of an exponentially long func-
tion representation.

The paper demonstrated this by considering two GCTs and a pair
of functions known to have exponentially long Fourier representations.
It first showed that the magnitude of individual Fourier coefficients
(FCs) decay at an exponential rate as the order (the number of features
associated with the coefficients) increases. However, such decay in
individual coefficients does not guarantee efficient representation. This
is because a large number of small coefficients together may contribute
an insignificant amount to the overall function value. So we needed to
explore the variation of the energy (sum of the square of the coefficients)
of the spectrum with respect to increasing order. We noted that one
of the transformations (code B) generated an exponentially decaying
energy distribution. This guarantees that a low order approximation of
the function will be accurate since the cumulative contribution from the
higher order terms is negligible.

Although the results are presented in the context of specific GCTs,
this paper makes an effort to characterize the class of GCTs that offer
such useful properties. Equation (14) essentially controls this property.
GCTs that can provide an exponential convergence of the left-hand
side of this equation to 1 will also offer an exponential decay in the
energy with respect to increasing order. Code B does that; however,
code A does not. This paper also outlines a physical conjecture for
constructing such transformations. It suggests that one possible way to
construct such GCTs may be to assign more equivalent copies to protein
sequences with higher genetic fitness values by introducing redundancy
in the genetic code.

The implication of this paper on the field of evolutionary computation
is important. A technique for efficient and scalable induction of function
representation will be useful in almost every application of evolutionary
algorithms. Examples include evolving programs, learning classifiers,
detecting patterns from data, and optimization. This work also suggests
that we should rethink our existing models of evolutionary computation.
We need to further explore the computational role of gene expression.
That may ultimately lead us toward unveiling the true power of genetic
search.
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