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Identification of genetic regulatory networks and genetic signal transduc-
tion pathways from gene expression data is one of the key problems in
computational molecular biology. Boolean networks offer a discrete time
Boolean model of gene expression. In this model, each gene can be in
one of two states (on or off) at any given time, and the expression of a
given gene at time t " 1 can be modeled by a Boolean function of the
expression of at most k genes at time t. Typically k # n, where n is
the total number of genes under consideration. This paper motivates and
introduces a generalization of the Boolean network model to address de-
pendencies among activity of genes that span for more than one unit of
time. The resulting model, called the temporal Boolean network or the
TBN(n, k, T) model, allows the expression of each gene to be controlled
by a Boolean function of the expression levels of at most k genes at times
in $t . . . t % (T % 1)&. We apply an adaptation of a popular machine learn-
ing algorithm for decision tree induction for inference of a TBN(n, k, T)
network from artificially generated gene expression data. Preliminary
experiments with synthetic gene expression data generated from known
TBN(n, k, T) networks demonstrate the feasibility of this approach. We
conclude with a discussion of some of the limitations of the proposed
approach and some directions for further research.

1. Introduction

The central dogma of modern biology states that the functional state of
an organism is determined largely by the pattern of expression of it’s
genes. Thus, the function of a cell, how well a cell performs its function,
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and even the determination of a cell type is controlled by the level at
which genes are expressed in the cell. Many biological processes of in-
terest (e.g., cellular differentiation during development, aging, disease)
are controlled by complex interactions over time between hundreds of
genes. Furthermore, each gene is involved in multiple functions. There-
fore, understanding the nature of complex biological processes such as
development, cellular differentiation, carcinogenesis, and so forth, re-
quires determining the spatio-temporal expression patterns of thousands
of genes, and, more importantly, seeking out the organizing principles
that allow biological processes to function in a coherent manner un-
der different environmental conditions. Given the fact that thousands
of genes are involved in determining the functional state of an organ-
ism, the task of assigning functions to genes, identifying underlying
genetic signalling pathways, genetic control and regulatory networks is
a formidable task.

A number of emerging high-throughput technologies are revolution-
izing the means by which genetic signalling pathways involving hun-
dreds of genes can be studied. Many of these technologies exploit the
power of multiplexed data acquisition from addressable solid-state ar-
rays of biomolecules (BioArrays). Such technologies allow researchers
to obtain, in a single experiment, significant amounts of biological in-
formation regarding thousands of genes. In order to determine gene ex-
pression levels, messenger RNA samples are collected from a population
of cells under a given set of experimental conditions or at different times
during the execution of a biological pathway or process (e.g., glycolysis
[6], cell cycle [7], and development [8]). Using DNA microarrays, the
levels of mRNA expression are measured. Similar methods for deter-
mining protein concentrations exist [9] but have a lower throughput.

These advances in data aquisiton make possible, at least in principle,
the inference of models of genetic (regulatory and control) networks
from gene expression data. However, the large number of genes in-
volved, complexity of the pathways, and existence of pleiotropic and
multigenic interactions [2] make this a challenging task. Some issues
that arise in genetic network inference from gene expression data are dis-
cussed in [10, 11]. Less sophisticated methods such as clustering [8, 22,
23] can also be used in order to analyze gene expression data but the in-
formation that can be obtained by these methods are mainly restricted to
either positive or negative correlations among gene expression patterns.

A variety of formal models for capturing the interactions and func-
tional dependencies in genetic networks have been proposed in the lit-
erature. These include: electrical circuits [12], Boolean Networks [1–3,
14, 15] Fourier coefficients [4], Bayesian Networks [25], differential
equations [16], Petri nets [17, 18], and Weight matrices [19]. Each of
these approaches has its own strengths and limitations in terms of the
following considerations: faithfulness or accuracy of the model rela-
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tive to the biological phenomenon being modeled; transparency of the
model (or equivalently, its explanatory value); experimental feasibility
(in terms of data requirements) of model construction; and computa-
tional tractability of automated model inference from data.

The focus of this paper is on Boolean Network models of genetic net-
works wherein each gene can be in one of two states: ON (expressed)
or OFF (not expressed). One of their main advantages is their compre-
hensibility due to the transparency of the representation. It is possible
to extend such network models in order to allow for a discrete set of
states for each gene, instead of just two states, or even to allow states
that take on real (and hence an infinite) set of values.

Previous work on the inference of Boolean models of genetic networks
[3, 14] has focused on data that randomly sample the state transitions,
typically under the assumption that the state of a gene at a given time
step is influenced by the states of a subset of genes in the network at
the previous time step. Since many experiments involve obtaining gene
expression data by monitoring the expression of genes interacting in
some biological process (e.g., cell or neural development) over a period
of time, the resulting data is in the form of a time series. In such a
setting, it is of interest to understand how the expression of a gene at
some stage in the process is influenced by the expression levels of other
genes during the stages of the process preceding it.

In order to model the temporal dependencies that span several time
steps, we introduce in this paper, a generalization of Boolean Networks
called Temporal Boolean Networks. This will basically transform the
Boolean Networks from a Markov(1) to Markov(T) model where T is
the length of the time window during which a gene can influence another
gene. We will demonstrate how Temporal Boolean Networks can be ef-
ficiently inferred using an adaptation of a greedy decision tree learning
algorithm [5]. The main contribution of this paper is in terms of compu-
tational techniques for genetic network inference from gene expression
time series. The insights into the nature of functionally significant inter-
actions among genes provided by the inferred genetic networks might
also suggest novel ways to exploit artificial genetic networks to solve spe-
cific computational problems, for example, in evolutionary algorithms.

The rest of the paper is organized as follows. Section 2 provides a
brief overview of gene expression data analysis. Section 3 motivates and
introduces the Temporal Boolean model for genetic networks. In section
4 we present some theoretical results concerning data-driven inference
of Temporal Boolean Networks from randomly sampled transitions.
Section 5 describes our approach to inferring a Temporal Boolean Net-
work from time series data. Section 6 presents experimental results
that demonstrate the feasibility of the proposed approach. Section 7
concludes with a summary and discussion of some directions for further
research.
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2. Gene expression data analysis

The widespread use of DNA microarray and related technologies have
led to increased availability of gene expression data from plants and ani-
mals. Consequently, there is a growing need for sophisticated computa-
tional tools for extracting biologically significant information from gene
expression data, assigning functions to genes, and identifying shared ge-
netic signaling pathways and genetic regulatory networks. The data
from a series of m microarray measurements involving n genes can be
represented as an m ( n gene expression table ! where each of the n
columns consist of m entries (numbers that correspond to the measured
expression levels of a single gene across m measurements). Thus, the
entry eti in row t and column i of the matrix ! denotes the expression
level of gene i in the tth measurement. The rows can represent expres-
sion values measured under different experimental conditions, or data
obtained by monitoring the expression levels of genes at different times
during a biological process (e.g., neural development). Given this data,
a number of different types of analysis are possible [20, 21]. One of
the simplest forms of analysis involves the clustering of gene expression
patterns (columns of the table) based on some predefined clustering cri-
terion or distance measure, but with no knowledge of the functional
classes of the genes. If a subset of expression patterns form a tight clus-
ter, it can be hypothesized that the genes in question are co-expressed,
or even possibly co-regulated.

3. Temporal Boolean Networks

In order to model the dependence among the expression levels of the
genes we will use a generalized version of Boolean Networks. The main
advantage of these models is their high level of transparency. In this
section we will examine the Boolean Networks model followed by the
discussion of some issues that may arise with respect to this model. The
need to address these issues provides the motivation for generalizing
Boolean Networks to the Temporal Boolean Networks model, which
will be defined at the end of this section.

3.1 Boolean Networks

Boolean Networks, introduced by Kaufmann [1] and explored in [2,
3, 14, 15] offer an attractive discrete time, Boolean model for gene
expression. In this model, each gene can be in one of two states, either
ON or OFF, at any given time. The expression of a given gene at time
t " 1 is modeled by a Boolean function whose inputs are the expression
levels of at most k genes at time t. Typically k# n, where n is the total
number of genes under consideration. We call this family of models
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Figure 1. A Boolean Network, from left to right: the network, its wiring diagram,
and the functional dependency table (from [3]).

BN(n, k) networks. Some of the attractive features of this model include
its conceptual simplicity and transparency as well as the availability of
algorithms for automated inference of the model from expression data.

Following Akutsu et al. [3], we are going to give more precise def-
initions for the Boolean Networks. A Boolean Network is specified
by a pair G(V, F), where the V * $v1, . . . , vn& is a set of nodes repre-
senting the genes of the network (one node for each gene) and a list
F * (f1, . . . , fn) of Boolean functions. Each node vi has an associated
expression value that is either 1 (for expressed) or 0 (for not expressed)
that will be denoted also by vi. A Boolean function fi(vi1

, . . . , vik
) + F

with inputs from the specified nodes vi1
, . . . , vik

is assigned to each node
vi. The nodes vi1

, . . . , vik
correspond to the genes that influence the ex-

pression of the gene associated with node vi, and fi represents the exact
functional dependence of this influence. For example, in Figure 1 the
gene v2 is influenced by genes v1 and v3 and the functional dependence
is v2 * v1 AND v3. This functional dependence basically says that v2 is
expressed if and only if both v1 and v3 are expressed.

For a subset U , V, an expression pattern Ψ of U is a function from
U to $0, 1&. An expression pattern of V is called a state of a Boolean
Network. That is, Ψ represents the states of nodes (genes), where each
node is assumed to take either 0 (not expressed) or 1 (expressed) as its
state value. Typically, when the usage is clear from the context, we omit
Ψ. For example, we write vi * 1 for denoting Ψ(vi) * 1. In a Boolean
Network, the expression pattern Ψt"1 at time t " 1 is determined by
the Boolean functions F from the expression pattern Ψt at time t (i.e.,
Ψt"1(vi) * fi(vi1

, . . . , vik
)).

For better visualization, it is convenient to consider the wiring dia-
gram [2, 14] G)(V), F)) of a Boolean Network G(V, F) (see Figure 1).
For each node vi in V, let vi1

, . . . , vik
be input nodes to vi in G(V, F).

For each such node vi, we consider an additional node v)i , and we con-
struct an edge from vij

to v)i for each 1 . j . k. Let G) * (V), F)) be
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the network with nodes v1, . . . , vn, v)1, . . . , v)n constructed in this way.
Then the expression pattern of the set $v)1, . . . , v)n& is determined by
v)i * fi(vi1

, . . . , vik
). That is, the expression of pattern $v1, . . . , vn& cor-

responds to one at a time t and the expression pattern of $v)1, . . . , v)n&
corresponds to one at time t " 1. Moreover, it is convenient to consider
the expression pattern of $v1, . . . , vn& as the INPUT, and the expression
pattern of $v)1, . . . , v)n& as the OUTPUT.

The wiring diagram basically shows how the expression levels of
genes at time t (INPUT) influence the expression levels at time t " 1
(OUTPUT). The exact transition diagram for every combination of IN-
PUT values can thus be given by a table as shown in Figure 1.

3.2 Motivations for generalizing the Boolean Network model

Our proposed generalization of the Boolean Network model to a Tem-
poral Boolean Network model is motivated by the following considera-
tions.

Boolean Networks described above are incapable of modeling the exis-
tence of latency periods (lasting more than one unit of time) between the
expression of a gene and the observation of its effect. For example, a gene
(say, g4) whose inhibitory effect (say, on gene g5) depends on an inducer
(say, g3) first has to bind with this inducer in order to be able to bind
to the inhibition site on g5. Therefore there can be a significant delay
between the expression of the inhibitor gene g4 and its observed effect,
that is, the inhibition of the gene g5.

Not all variables that can influence the expression level of a gene are
necessarily observable. For instance, assume that genes g1, g2, . . . , g1000
are the genes under study. Suppose that the expression of genes g1 at
time t might turn on a gene gu at time t " 1. It is quite possible that gu
is not among the genes that are being monitored in the experiment, or
even among the genes that are currently known. Suppose gene gu being
on at time t " 1 results in a gene g2 being turned on at time t " 2. Since
the expression of gu cannot be observed, the Boolean Network model
described above will be unable to implicate g1 in the control of g2.

Note that even if all the genes are monitored in an experiment the un-
known factor denoted by gu may stand for a nongenetic environmental
factor. Also, long temporal delays observed in our new model might
indicate the presence of hidden factors, thus providing hints for their dis-
covery and therefore contributing to the improvement of the quality of
the data collected in future experiments.

In what follows, we introduce a generalization of the Boolean Net-
work model to address dependencies among the activity of genes that
span for more than one unit of time. The resulting model is called the
TBN(n, k, T) model and allows the expression of each gene at time t"1
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Figure 2. A Temporal Boolean Network.

to be controlled by a Boolean function of the expression levels of at
most k genes at times in $t . . . t % (T % 1)&.

3.3 Temporal Boolean Networks

In Temporal Boolean Networks we will allow the state of a gene at time
t"1 to depend on the state of other genes at times t, t%1, . . . , t% (T%1),
instead of only t. The representation of such a network, by analogy
with Boolean Networks, is given in Figure 2.

The only change from the Boolean Network model depicted in Fig-
ure 1 is that the expression level of gene v2 at time t " 1 depends on the
value of the gene v1 at time t % 1 instead of time t. This is represented
by a label of %1 on the edge between v1 and v2. By default the edges
are assumed to carry a value of 0, which means that the dependency
they represent is from time t to time t " 1. In general an edge labeled
as %k will represent a dependency between the values at time t % k and
t " 1. The wiring diagram is changed accordingly in order to be able to
represent dependencies that represent the added functional t % 1 depen-
dencies. In general, each edge in the network can have a set of labels
drawn from the set $0 . . .T % 1&. The functional dependency will be
represented by a Boolean table for each gene, but this time the inputs
can be gene expression values at more than one time step in the past.

It is straightforward to extend the proposed model to allow for
multiple discrete levels of expression yielding Temporal Discrete Net-
works TDN(n, k, T, D) wherein each gene can be expressed at levels
0, 1, . . .D % 1. Furthermore, it is also possible to allow for continuous
expression levels as well, yielding TCN(n, k, T, R) wherein the expres-
sion level of a gene gi at time t is a real number in the interval [%R, R].
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4. Theoretical results

Identification of a member of the BN(n, k) family from noiseless as
well as noisy data have been explored in [3, 13]. They assume that
the genes in the (unknown) network to be inferred can be set to any
arbitrary pattern of 0s and 1s and the resulting state at the next time
step can be observed. Further, it is assumed that such “input–output”
observations can be performed by uniformly randomly sampling the
inputs. Under similar assumptions, we can state the corresponding
results for TBN(n, k, T) networks.

Theorem 1. O(22k / (2k " Α) / log nT) uniformly randomly sampled in-
put patterns and the corresponding outputs of an (unknown) Temporal
Boolean Network Τ + TBN(n, k, T) are sufficient to guarantee exact
inference of Τ with probability at least 1%n%Α, where Α > 1 is any fixed
constant.

The proof of this theorem is a straightforward adaptation of similar
results given in [3] in the case of Boolean Networks. See appendix A
for additional details.

Note that although the sample and time complexities are exponential
in k (the degree of interaction) they are only logarithmic in nT (the
product of the number of genes and the maximum time span of temporal
dependence T). Since typically k# nT, such exact inference is feasible
for small values of k. However, in general, it might be necessary to
sacrifice exactness of inference in exchange for computational efficiency.

It is worth noting that these theoretical guarantees (like their coun-
terparts given in [3, 13]) rely on the assumption that the input patterns
constitute a uniformly random sample and that the output correspond-
ing to each such input can be observed. Since many experiments involve
obtaining gene expression data by monitoring the expression of genes
involved in some biological process (e.g., cell or neural development)
over a period of time, the resulting data is in the form of a time series.
Since the sequence of states in a time series are strongly temporally cor-
related, the assumption of uniform random sampling is no longer valid.
Each such time series provides a trajectory through the state space of
a genetic network. Each trajectory has a transient part which provides
useful information about the underlying network and a steady state part
that corresponds to an attractor of the network. Derivation of suitable
bounds on the number of time series samples (as opposed to uniformly
random samples) by identifying the necessary and sufficient constraints
on the temporal structure of the time series data relative to the structure
of the underlying network in this case is a topic of current research.

In a manner similar to that in [3] we can develop an information
theoretic lower bound on the number of transitions needed to identify
TBN(n, k, T) given by Theorem 2.
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Figure 3. A decision tree that represents the fact that if genes g2 and g3 are
expressed (turned ON), it leads to the expression of gene g1 (turned ON).

Theorem 2. At least 2(2k " k log nT) INPUT/OUTPUT pairs are re-
quired in the worst case to identify a Temporal Boolean Network
TBN(n, k, T). (See appendix A for details.)

In what follows, we describe an approach to inference of Temporal
Boolean Networks from expression data in the form of a time series.

5. Inference of Temporal Boolean Networks from time series data

Temporal Boolean Networks model functional dependencies among
genes using Boolean functions. Boolean functions have several alterna-
tive representations. The simplest (and the most explicit) representation
is a truth table as shown in Figure 1. However, functions that corre-
spond to descriptions of natural phenomena typically lend themselves to
more compact representations in the Conjunctive Normal Form (CNF),
Disjunctive Normal Form (DNF), or in the form of decision trees, de-
cision lists, and so forth. We have chosen to represent the Boolean
functions used to describe Temporal Boolean Networks in the form of
decision trees.

For example, consider gene g1 that is induced by a complex formed
from the products of two genes g2 and g3 and these are the only genes
that influence g1. A decision tree that describes this dependence is given
in Figure 3. Similarly, for each gene we can construct such a decision
tree. The genes that control the expression of gene gi appear as nodes
in its corresponding decision tree.

Since every k-input Boolean function can be represented by a decision
tree of depth at most k, we can ensure that the resulting representation
is expressive enough to describe any member of the Temporal Boolean
Network family TBN(n, k, T). We use n decision trees, one for each
gene, to collectively describe a Temporal Boolean Network model of
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a genetic network. The output of each decision tree represents the
expression level (0 or 1) of the corresponding gene based on at most k
expression levels over a time window of length at most T.

Several algorithms for inferring decision trees from data (in the form
of sample input–output pairs) are available in the machine learning
literature. The ID3 algorithm [5] and its variants are based on a greedy
search through the space of decision trees in order to identify a compact
decision tree that adequately models the observed data and (under some
reasonable assumptions) has high predictive accuracy on unobserved
data. This search for a compact tree, guided by the entropy reduction
(or information gain) criterion corresponds to a greedy version of the
approach used in REVEAL [14]. Greedy search makes this approach
computationally tractable for large genetic networks. A large body
of empirical results in the machine learning literature suggest that the
decision trees inferred by greedy search compare favorably with those
inferred using exhaustive search in terms of predictive accuracy. Hence,
we used a greedy search guided by information gain, over the space of
depth k decision trees.

The training data for a decision tree modeling the functional depen-
dency of the level of expression of gene gi consists of observed input–
output pairs where each input is a nT bit Boolean vector encoding the
activities of each of the n genes at times t, t%1, t%2 . . . t% (T%1) and the
corresponding output is the observed expression level of gi at time t"1.
For a given gene gi, m %T input–output samples (or training examples)
are obtained by sliding a window of length T (where T < m) over the
rows of a gene expression time series ! (see section 2). Thus, an m ( n
gene expression matrix yields m % T training samples for each of the n
decision trees. Examples obtained from multiple time series are used for
inferring a genetic network.

6. Experimental setting and results

The experiments described in this section were designed to explore the
performance of the proposed approach to genetic network inference
on randomly generated Temporal Boolean Networks. In generating a
network, we assume that the probability that the expression level of a
gene at time t"1 depends on the expression levels of genes at time t%∆ is
proportional to Ζ∆ 5t such that 0 . t . T %1 for some choice of Ζ where
0 < Ζ . 1. For each network, we generated 20 time series of length 100,
by setting the expression levels over a window of length T to random
values and recording network output over 100 time steps. Thus, each
time series resulted in an n ( (100 " T) Boolean matrix !. The 20 time
series collectively provided 100 ( 20 training examples for each of the
n genes. Each time point contains the expression levels for all genes at
that moment of time. A decision tree was inferred for each gene.
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Then we evaluated the results in terms of the sensitivity, specificity,
and accuracy of the inferred decision tree DTi with respect to the cor-
responding Temporal Boolean Network TBNi for each gene gi.

We denote the fact that the decision tree DTi captures the dependence
of the expression level of gene gi at time (t " 1) on the expression level
of the gene gj at time (t % Τ) where Τ + $0, . . . , (T % 1)&, by writing
(Τ, j) + DTi. Similarly, we denote the fact that the expression level of
gene gi at time (t " 1) depends on the expression level of gene gj at time
(t%Τ) if gene gi were controlled by the Temporal Boolean Network TBNi
by writing (Τ, j) + TBNi. Let

DEPDTi
* $(Τ, j)6(Τ, j) + DTi&.

Let

DEPTBNi
* $(Τ, j)6(Τ, j) + TBNi&.

Then the sensitivity of the decision tree DTi for gene gi is defined as
follows:

sensitivity(i) *
6DEPTBNi

7DEPDTi
6

6DEPTBNi
6

.

The sensitivity of the inferred decision tree measures the degree to which
this tree succeeds in capturing the dependency of gene gi on other genes,
with respect to the true Temporal Boolean Network.

The sensitivity of the inferred set of decision trees DT * $DTi6i +
$1, . . . , n&& relative to the corresponding Temporal Boolean Network is
given by:

sensitivity(DT, TBN) *
1
n

n!
i*1

sensitivity(i).

The specificity of the decision tree inferred for gene gi is defined as
follows:

specificity(i) *
6DEPTBNi

7DEPDTi
6

6DEPDTi
6

.

Specificity of the inferred decision tree measures the degree to which it
misleads us regarding the dependency of gene gi on the various genes in
the genetic network.

The specificity of the inferred set of decision trees DT * $DTi6i +
$1, . . . , n&& relative to the corresponding Temporal Boolean Network is
given by:

specificity(DT, TBN) *
1
n

n!
i*1

specificity(i).
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The accuracy of the decision tree inferred for gene gi is defined to
reflect the degree to which it correctly predicts the expression level of
gene gi (as estimated from a set of gene expression time series data).

Let 8 be a set of gene expression time series used to evaluate the
accuracy of a decision tree inferred for gene gi.

Then we will denote by accuracy(i, Λ) the accuracy of the tree for
gene gi on a time series Λ + 8. accuracy(i, Λ) represents the fraction
of expression levels of gene gi from the time series Λ that are correctly
predicted by the inferred decision tree DTi, relative to the total size of
Λ. Thus, if Λ is a time series of length 100, and at 80 of the 100 time
points, the expression level of gene gi predicted by DTi agrees with the
corresponding values observed in Λ, accuracy(i, Λ) * 0.8. The accuracy
of DTi is estimated as follows:

accuracy(i) *
1
686!

Λ+8

accuracy(i, Λ).

The accuracy of an inferred decision tree DTi was estimated using
an independently generated test set of 20 time series each of length 100
generated from TBNi. The estimated accuracy of the inferred set of
decision trees DT * $DTi6i + $1, . . . , n&& relative to the corresponding
Temporal Boolean Network is given by:

accuracy(DT, TBN) *
1
n

n!
i*1

accuracy(i).

Each experiment consisted of 10 independent runs of this procedure
(each with a new randomly generated network) and the results presented
show averages over these runs.

The first experiment presented in Figure 4 shows the effect of varying
k on the sensitivity, specificity, and accuracy of inference of a Boolean
Network with 16 genes, with T * 3 as k is varied from 2 to 10. Simi-
lar results were obtained for networks with 32 genes. The experiment
shows that the sensitivity increases as the degree of interaction k in-
creases.

The second experiment (presented in Figure 5) explores the effec-
tiveness of the inference algorithm when multiple levels of expression
are allowed for each gene. This experiment involved inference of a 4-
ary network with 16 (n * 16) genes, T * 3 as k is varied from 2 to
10. This corresponds to a Temporal Discrete Network (TDN) (n * 16,
k * 2 % 10, T * 3, D * 4). In this case we observe sensitivity and
specificity increasing and accuracy decreasing with increase in k. These
experiments show that as we increase the complexity of the model (in
this case the number of expression levels) the sensitivity, which repre-
sents the probability that we will identify genes that represent the true
dependency, increases (compare the sensitivities in Figures 4 and 5).
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k
1098765432
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1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4

Figure 4. Effect of varying k on the inference of a Boolean net with 16 genes
(n * 16) and T * 3.

Accuracy
Specificity
Sensitivity

k
8765432

1.3
1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4

Figure 5. Effect of varying k on the inference of a 4-ary network with 16 genes
(n * 16) and T * 3.

Further experiments revealed that the reduction in accuracy can be
explained by the necessity for additional data as k increases, in the con-
ditions of a 4-ary network where for each gene we have to disambiguate
among 44k 4-ary functions versus 22k in the 2-ary (Boolean) case (once
the dependencies are known qualitatively).

The third experiment presented in Figure 6 explores the effect of
varying T on the performance of the inference algorithm. In this case,
we see that for a Boolean Network with n * 16 genes, k * 6 the
sensitivity, specificity, and accuracy vary little across different values of
T (from T * 1 to T * 8).
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Accuracy
Specificity
Sensitivity

T
87654321

1.3
1.2
1.1

1
0.9
0.8
0.7
0.6
0.5
0.4

Figure 6. Effect of varying T on the inference of a Boolean net with 16 genes
(n * 16).

7. Summary and discussion

This paper introduced the Temporal Boolean Networks (and Temporal
Discrete Networks) which generalize the Boolean Network model in
order to cope with dependencies that span over more than one unit of
time. Some bounds on the size of data needed to infer Temporal Boolean
Networks from time series data under uniformly random sampling as-
sumptions are stated. We also showed how the problem of Temporal
Boolean Network inference can be translated into a problem of inferring
a set of decision trees. We demonstrated, through a series of experiments
using artificially generated networks, the effectiveness of a simple and
fast decision tree inference algorithm for inferring Temporal Boolean
Networks and Temporal Discrete Networks from time series data.

The main hindrance against applying the Temporal Boolean Network
inference algorithm on real data is the lack of sufficiently large data sets.
This hindrance is likely to become less serious as additional data are
gathered.

The approaches to genetic network inference from gene expression
data rely on the assumption that only the expression of a gene is likely to
be controlled by a relatively small number (say k) of genes. Biologically
meaningful values of k are currently unknown, but are believed to be
much smaller than the total number of genes n [1]. It is clear from
the sample complexity results presented in this paper that purely data-
driven approaches to inference of Temporal Boolean Networks will be
computationally infeasible unless k# n.

Work in progress is aimed at evaluating the effectiveness of the de-
scribed approach for inferring genetic networks from biological gene
expression time series data.
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Some directions for future work include investigating variations of
the model to accommodate probabilistic Boolean and Discrete valued
functional dependencies, and continuous valued expression levels as well
as alternative (e.g., event-based and interval-based) representations of
time. Investigation of techniques for incorporating prior knowledge (in
the form of known biological constraints) into the inference algorithm
represents another direction for future research. Also of interest are
active learning approaches wherein the learning algorithm helps identify
promising experiments as opposed to the purely data-driven passive
learning approach examined in this paper.
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Appendix

A. Theoretical results

Theorem 1. O(22k / (2k " Α) / log nT) uniformly randomly sampled in-
put patterns and the corresponding outputs of an (unknown) Temporal
Boolean Network Τ + TBN(n, k, T) are sufficient to guarantee exact
inference of Τ with probability at least 1%n%Α, where Α > 1 is any fixed
constant.

Proof Sketch. The proof of this theorem is an adaptation of the cor-
responding theorem proved in [3] in the case of Boolean Networks.
The proof in [3] is based on a brute-force algorithm for identifying a
Boolean function from the set of all Boolean functions with less than
k inputs chosen from a set of n possibilities (i.e., roughly 22k / nk func-
tions). A precise characterization can be given to a minimal set of
INPUT/OUTPUT pairs that will allow the algorithm to identify (in the
worst case) a Boolean Network exactly. Then the bound stated by the
theorem (i.e., O(22k / (2k " Α) / log nT)) is derived as the number of
uniformly random sampled INPUT/OUTPUT pairs needed, in order to
be sure that our sample will contain the minimal set with probability at
least 1 % n%Α.

The only difference in the case of Temporal Boolean Networks is that
we have to do the identification from the set of all Boolean functions
with less than k inputs chosen from a set of nT possibilities (i.e., roughly
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22k / (nT)k functions). Aside from this the proof follows along the same
lines as the one in [3].

Theorem 2. At least 2(2k " k log nT) INPUT/OUTPUT pairs are re-
quired in the worst case to identify a Temporal Boolean Network
TBN(n, k, T).

Proof Sketch. The proof for this theorem follows from a standard
information theoretic argument.

The general problem in the information theoretic setting is the follow-
ing: “We want to identify an element e, from a set S of finite cardinality
6S6, by asking D-ary questions (i.e., that have D possible answers) about
where in the set S the element e is to be found. And the problem is to
find what is the minimum number of D-ary questions that we need in
the worst case in order to identify the element e." The solution to this
problem is as follows. We need at least 2(logD 6S6) questions in order to
identify the element e. This is because a D-ary question splits the set S
into D subsets and at least one of these sets has a size of at least 6S6/D. If
we iterate this procedure for l successive questions then we get that the
size of at least one of the subsets has to be at least 6S6/Dl. By setting this
size equal to 1 (in order to obtain a 100% identification of e) and solving
the equation we obtain a minimum of 2(logD 6S6) questions needed for
the identification of e.

Returning to our problem, if we are to recast it in information theo-
retic terms, the element that we want to identify is a Temporal Boolean
Network from the set of all possible Temporal Boolean Networks of
the type (n, k, T) (i.e., having n genes, dependency of at most k, and
having a dependency timespan of at most T). The questions in our
case are the INPUTs (which are n ( T matrices that represent the levels
of expression for all n genes during the previous T timesteps) and the
answers to these questions are represented by the OUTPUTs (which are
the levels of expression for all of the n genes at the current moment of
time). Therefore in our case an INPUT/OUTPUT is equivalent to an
answer to a 2n-ary question (because there are 2n possible OUTPUT
patterns, hence 2n possible answers). The number of Temporal Boolean
Networks of the type (n, k, T) is given by all the possible combinations
of n (one for each gene) Boolean functions with k inputs chosen from
n / T possibilities. Since there are 22k possible Boolean functions with k
inputs and2((nT)k) ways to chose those k inputs from n /T possibilities,
it follows that there are 2((22k / (n / T)k)n) possible Temporal Boolean
Networks of type (n, k, T). Now applying the information theoretic
argument it follows that we need 2(log2n (22k / (n / T)k)n) questions. But
this is the same as 2(2k " k log2 nT) (because logan bn * loga b). Which
completes the proof.
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Note that Theorem 2 can be generalized also for the case when we
have D-ary Temporal Networks by replacing 2 in all the places with D
(including the base of the logarithm).
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