
Gene Expression Programming: A New Adaptive
Algorithm for Solving Problems

Cândida Ferreira!

Departamento de Ciências Agrárias,
Universidade dos Açores,
9701-851 Terra-Chã
Angra do Herosmo, Portugal

Gene expression programming, a genotype/phenotype genetic algorithm
(linear and ramified), is presented here for the first time as a new technique
for the creation of computer programs. Gene expression programming
uses character linear chromosomes composed of genes structurally orga-
nized in a head and a tail. The chromosomes function as a genome and are
subjected to modification by means of mutation, transposition, root trans-
position, gene transposition, gene recombination, and one- and two-point
recombination. The chromosomes encode expression trees which are the
object of selection. The creation of these separate entities (genome and ex-
pression tree) with distinct functions allows the algorithm to perform with
high efficiency that greatly surpasses existing adaptive techniques. The
suite of problems chosen to illustrate the power and versatility of gene ex-
pression programming includes symbolic regression, sequence induction
with and without constant creation, block stacking, cellular automata
rules for the density-classification problem, and two problems of boolean
concept learning: the 11-multiplexer and the GP rule problem.

1. Introduction

Gene expression programming (GEP) is, like genetic algorithms (GAs)
and genetic programming (GP), a genetic algorithm as it uses popula-
tions of individuals, selects them according to fitness, and introduces
genetic variation using one or more genetic operators [1]. The funda-
mental difference between the three algorithms resides in the nature of
the individuals: in GAs the individuals are linear strings of fixed length
(chromosomes); in GP the individuals are nonlinear entities of different
sizes and shapes (parse trees); and in GEP the individuals are encoded
as linear strings of fixed length (the genome or chromosomes) which are
afterwards expressed as nonlinear entities of different sizes and shapes
(i.e., simple diagram representations or expression trees).

!Electronic mail and web addresses: candidaf@gene-expressionprogramming.com;
http://www.gene-expression-programming.com.
Present address: Gepsoft, 37 The Ridings, Bristol BS13 8NU, UK.

Complex Systems, 13 (2001) 87–129; " 2001 Complex Systems Publications, Inc.

88 C. Ferreira

If we have in mind the history of life on Earth (e.g., [2]), we can
see that the difference between GAs and GP is only superficial: both
systems use only one kind of entity which functions both as genome and
body (phenome). These kinds of systems are condemned to have one of
two limitations: if they are easy to manipulate genetically, they lose in
functional complexity (the case of GAs); if they exhibit a certain amount
of functional complexity, they are extremely difficult to reproduce with
modification (the case of GP).

In his book, River Out of Eden [3], R. Dawkins gives a list of thresh-
olds of any life explosion. The first is the replicator threshold which
consists of a self-copying system in which there is hereditary varia-
tion. Also important is that replicators survive by virtue of their own
properties. The second threshold is the phenotype threshold in which
replicators survive by virtue of casual effects on something else—the
phenotype. A simple example of a replicator/phenotype system is the
DNA/protein system of life on Earth. For life to move beyond a very
rudimentary stage, the phenotype threshold should be crossed [2, 3].

Similarly, the entities of both GAs and GP (simple replicators) survive
by virtue of their own properties. Understandingly, there has been an
effort in recent years by the scientific community to cross the phenotype
threshold in evolutionary computation. The most prominent effort is
developmental genetic programming (DGP) [4] where binary stings are
used to encode mathematical expressions. The expressions are decoded
using a five-bit binary code, called genetic code. Contrary to its analo-
gous natural genetic code, this “genetic code,” when applied to binary
strings, frequently produces invalid expressions (in nature there is no
such thing as an invalid protein). Therefore a huge amount of computa-
tional resources goes toward editing these illegal structures, which limits
this system considerably. Not surprisingly, the gain in performance of
DGP over GP is minimal [4, 5].

The interplay of chromosomes (replicators) and expression trees (phe-
notype) in GEP implies an unequivocal translation system for translat-
ing the language of chromosomes into the language of expression trees
(ETs). The structural organization of GEP chromosomes presented in
this work allows a truly functional genotype/phenotype relationship, as
any modification made in the genome always results in syntactically cor-
rect ETs or programs. Indeed, the varied set of genetic operators devel-
oped to introduce genetic diversity in GEP populations always produces
valid ETs. Thus, GEP is an artificial life system, well established beyond
the replicator threshold, capable of adaptation and evolution.

The advantages of a system like GEP are clear from nature, but the
most important should be emphasized. First, the chromosomes are
simple entities: linear, compact, relatively small, easy to manipulate
genetically (replicate, mutate, recombine, transpose, etc.). Second, the
ETs are exclusively the expression of their respective chromosomes; they

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 89

are the entities upon which selection acts and, according to fitness, they
are selected to reproduce with modification. During reproduction it is
the chromosomes of the individuals, not the ETs, which are reproduced
with modification and transmitted to the next generation.

On account of these characteristics, GEP is extremely versatile and
greatly surpasses the existing evolutionary techniques. Indeed, in the
most complex problem presented in this work, the evolution of cellular
automata rules for the density-classification task, GEP surpasses GP by
more than four orders of magnitude.

The present work shows the structural and functional organization of
GEP chromosomes; how the language of the chromosomes is translated
into the language of the ETs; how the chromosomes function as genotype
and the ETs as phenotype; and how an individual program is created,
matured, and reproduced, leaving offspring with new properties, thus,
capable of adaptation. The paper proceeds with a detailed description
of GEP and the illustration of this technique with six examples chosen
from different fields.

2. An overview of gene expression algorithms

The flowchart of a gene expression algorithm (GEA) is shown in Fig-
ure 1. The process begins with the random generation of the chromo-
somes of the initial population. Then the chromosomes are expressed
and the fitness of each individual is evaluated. The individuals are then
selected according to fitness to reproduce with modification, leaving
progeny with new traits. The individuals of this new generation are, in
their turn, subjected to the same developmental process: expression of
the genomes, confrontation of the selection environment, and reproduc-
tion with modification. The process is repeated for a certain number of
generations or until a solution has been found.

Note that reproduction includes not only replication but also the
action of genetic operators capable of creating genetic diversity. During
replication, the genome is copied and transmitted to the next generation.
Obviously, replication alone cannot introduce variation: only with the
action of the remaining operators is genetic variation introduced into
the population. These operators randomly select the chromosomes to
be modified. Thus, in GEP, a chromosome might be modified by one or
several operators at a time or not be modified at all. The details of the
implementation of GEP operators are shown in section 5.

3. The genome of gene expression programming individuals

In GEP, the genome or chromosome consists of a linear, symbolic string
of fixed length composed of one or more genes. It will be shown that
despite their fixed length, GEP chromosomes can code ETs with different
sizes and shapes.

Complex Systems, 13 (2001) 87–129

90 C. Ferreira

Figure 1. The flowchart of a GEA.

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 91

3.1 Open reading frames and genes

The structural organization of GEP genes is better understood in terms
of open reading frames (ORFs). In biology, an ORF, or coding sequence
of a gene, begins with the “start” codon, continues with the amino acid
codons, and ends at a termination codon. However, a gene is more than
the respective ORF, with sequences upstream from the start codon and
sequences downstream from the stop codon. Although in GEP the start
site is always the first position of a gene, the termination point does
not always coincide with the last position of a gene. It is common for
GEP genes to have noncoding regions downstream from the termination
point. (For now we will not consider these noncoding regions, because
they do not interfere with the product of expression.)

Consider, for example, the algebraic expression:!
(a # b) $ (c % d), (3.1)

which can also be represented as a diagram or ET:

where “Q” represents the square root function. This kind of diagram
representation is in fact the phenotype of GEP individuals, being the
genotype easily inferred from the phenotype as follows:

01234567

Q*+-abcd (3.2)

which is the straightforward reading of the ET from left to right and
from top to bottom. Expression (3.2) is an ORF, starting at “Q” (po-
sition 0) and terminating at “d” (position 7). These ORFs were named
K-expressions (from the Karva language, the name I chose for the lan-
guage of GEP). Note that this ordering differs from both the postfix and
prefix expressions used in different GP implementations with arrays or
stacks [6].

The inverse process, that is, the translation of a K-expression into an
ET, is also very simple. Consider the following K-expression:

01234567890

Q*+*a*Qaaba (3.3)

The start position (position 0) in the ORF corresponds to the root of
the ET. Then, below each function are attached as many branches as

Complex Systems, 13 (2001) 87–129

92 C. Ferreira

there are arguments to that function. The assemblage is complete when
a baseline composed only of terminals (the variables or constants used
in a problem) is formed. In this case, the following ET is formed:

Looking only at the structure of GEP ORFs, it is difficult or even
impossible to see the advantages of such a representation, except perhaps
for its simplicity and elegance. However, when ORFs are analyzed in
the context of a gene, the advantages of such representation become
obvious. As stated previously, GEP chromosomes have fixed length and
are composed of one or more genes of equal length. Therefore the length
of a gene is also fixed. Thus, in GEP, what varies is not the length of
genes (which is constant) but the length of the ORFs. Indeed, the length
of an ORF may be equal to or less than the length of the gene. In the
first case, the termination point coincides with the end of the gene, and
in the second case, the termination point is somewhere upstream from
the end of the gene.

So, what is the function of these noncoding regions in GEP genes?
They are, in fact, the essence of GEP and evolvability, for they allow
modification of the genome using any genetic operator without restric-
tions, always producing syntactically correct programs without the need
for a complicated editing process or highly constrained ways of imple-
menting genetic operators. Indeed, this is the paramount difference
between GEP and previous GP implementations, with or without linear
genomes (for a review on GP with linear genomes see [7]).

3.2 Gene expression programming genes

GEP genes are composed of a head and a tail. The head contains
symbols that represent both functions (elements from the function set
F) and terminals (elements from the terminal set T), whereas the tail
contains only terminals. Therefore two different alphabets occur at
different regions within a gene. For each problem, the length of the
head h is chosen, whereas the length of the tail t is a function of h and
the number of arguments of the function with the most arguments n,
and is evaluated by the equation

t & h(n % 1) # 1. (3.4)

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 93

Consider a gene composed of 'Q, !, /,%,#, a, b(. In this case n & 2. For
instance, for h & 10 and t & 11, the length of the gene is 10 # 11 & 21.
One such gene is shown below (the tail is shown in bold):

012345678901234567890

+Q-/b*aaQbaabaabbaaab (3.5)

and it codes for the following ET:

In this case, the ORF ends at position 10, whereas the gene ends at
position 20.

Suppose now a mutation occurred at position 9, changing the “b”
into “+”. Then the following gene is obtained:

012345678901234567890

+Q-/b*aaQ+aabaabbaaab (3.6)

and its ET is:

In this case, the termination point shifts two positions to the right (po-
sition 12).

Suppose now that a more radical modification occurred, and the
symbols at positions 6 and 7 in gene (3.5) change respectively into “+”
and “!”, creating the following gene:

012345678901234567890

+Q-/b*+*Qbaabaabbaaab (3.7)

Complex Systems, 13 (2001) 87–129

94 C. Ferreira

giving the ET:

In this case the termination point shifts several positions to the right
(position 14).

Obviously the opposite also happens, and the ORF is shortened.
For example, consider gene (3.5) and suppose a mutation occurred at
position 5, changing the “!” into “a”:

012345678901234567890

+Q-/baaaQbaabaabbaaab (3.8)

its expression results in the following ET:

In this case, the ORF ends at position 7, shortening the original ET by
three nodes.

Despite its fixed length, each gene has the potential to code for ETs
of different sizes and shapes, the simplest being composed of only one
node (when the first element of a gene is a terminal) and the most
complicated composed of as many nodes as the length of the gene (when
all the elements of the head are functions with the maximum number of
arguments, n).

It is evident from the preceding examples, that any modification
made in the genome, no matter how profound, always results in a valid
ET. Obviously the structural organization of genes must be preserved,
always maintaining the boundaries between head and tail and not allow-
ing symbols from the function set on the tail. Section 5 shows how GEP
operators work and how they modify the genome of GEP individuals
during reproduction.

3.3 Multigenic chromosomes

GEP chromosomes are usually composed of more than one gene of equal
length. For each problem or run, the number of genes, as well as the

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 95

Figure 2. Expression of GEP genes as sub-ETs. (a) A three-genic chromosome
with the tails shown in bold. The arrows show the termination point of each
gene. (b) The sub-ETs codified by each gene.

length of the head, is chosen. Each gene codes for a sub-ET and the sub-
ETs interact with one another forming a more complex multi-subunit
ET. The details of such interactions are fully explained in section 3.4.

Consider, for example, the following chromosome with length 27,
composed of three genes (the tails are shown in bold):

012345678012345678012345678

-b*babbab*Qb+abbba-*Qabbaba (3.9)

It has three ORFs, and each ORF codes for a sub-ET (Figure 2). Position
0 marks the start of each gene; the end of each ORF, though, is only ev-
ident upon construction of the respective sub-ET. As shown in Figure 2,
the first ORF ends at position 4 (sub-ET1); the second ORF ends at po-
sition 5 (sub-ET2); and the last ORF also ends at position 5 (sub-ET3).
Thus, GEP chromosomes code for one or more ORFs, each express-
ing a particular sub-ET. Depending on the task at hand, these sub-ETs
may be selected individually according to their respective fitness (e.g.,
in problems with multiple outputs), or they may form a more complex,
multi-subunit ET and be selected according to the fitness of the whole
multi-subunit ET. The patterns of expression and the details of selection
will be discussed throughout this paper. However, keep in mind that
each sub-ET is both a separate entity and a part of a more complex,
hierarchical structure, and, as in all complex systems, the whole is more
than the sum of its parts.

3.4 Expression trees and the phenotype

In nature, the phenotype has multiple levels of complexity, the most
complex being the organism itself. But tRNAs, proteins, ribosomes,
cells, and so forth, are also products of expression, and all of them are

Complex Systems, 13 (2001) 87–129

96 C. Ferreira

ultimately encoded in the genome. In all cases, however, the expression
of the genetic information starts with transcription (the synthesis of
RNA) and, for protein genes, proceeds with translation (the synthesis
of proteins).

3.4.1 Information decoding: Translation

In GEP, from the simplest individual to the most complex, the expression
of genetic information starts with translation, the transfer of informa-
tion from a gene into an ET. This process has already been presented
in section 3.2 where decoding of GEP genes is shown. In contrast to
nature, the expression of the genetic information in GEP is very sim-
ple. Worth emphasizing is the fact that in GEP there is no need for
transcription: the message in the gene is directly translated into an ET.

GEP chromosomes are composed of one or more ORFs, and obvi-
ously the encoded individuals have different degrees of complexity. The
simplest individuals are encoded in a single gene, and the “organism”
is, in this case, the product of a single gene—an ET. In other cases,
the organism is a multi-subunit ET, in which the different sub-ETs are
linked together by a particular function. In other cases, the organism
emerges from the spatial organization of different sub-ETs (e.g., in plan-
ning and problems with multiple outputs). And, in yet other cases, the
organism emerges from the interactions of conventional sub-ETs with
different domains (e.g., neural networks). However, in all cases, the
whole organism is encoded in a linear genome.

3.4.2 Interactions of sub-expression trees

We have seen that translation results in the formation of sub-ETs with
different complexity, but the complete expression of the genetic infor-
mation requires the interaction of these sub-ETs with one another. One
of the simplest interactions is the linking of sub-ETs by a particular
function. This process is similar to the assemblage of different protein
subunits into a multi-subunit protein.

When the sub-ETs are algebraic or boolean expressions, any mathe-
matical or boolean function with more than one argument can be used
to link the sub-ETs into a final, multi-subunit ET. The functions most
chosen are addition or multiplication for algebraic sub-ETs, and OR or
IF for boolean sub-ETs.

In the current version of GEP the linking function is a priori chosen
for each problem, but it can be easily introduced in the genome; for
instance, in the last position of chromosomes, and also be subjected to
adaptation. Indeed, preliminary results suggest that this system works
very well.

Figure 3 illustrates the linking of two sub-ETs by addition. Note that
the root of the final ET (+) is not encoded by the genome. Note also that

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 97

Figure 3. Expression of multigenic chromosomes as ETs. (a) A two-genic chro-
mosome with the tails shown in bold. (b) The sub-ETs codified by each gene.
(c) The result of posttranslational linking with addition.

the final ET could be linearly encoded as the following K-expression:

0123456789012

+Q**-bQ+abbba (3.10)

However, to evolve solutions for complex problems, it is more effective
to use multigenic chromosomes, for they permit the modular construc-
tion of complex, hierarchical structures, where each gene codes for a
small building block. These small building blocks are separated from
each other, and thus can evolve independently. For instance, if we tried
to evolve a solution for the symbolic regression problem presented in
section 6.1 with single-gene chromosomes, the success rate would fall
significantly (see section 6.1). In that case the discovery of small building
blocks is more constrained as they are no longer free to evolve indepen-
dently. This kind of experiment shows that GEP is in effect a powerful,
hierarchical invention system capable of easily evolving simple blocks
and using them to form more complex structures [8, 9].

Figure 4 shows another example of sub-ET interaction, where three
boolean sub-ETs are linked by the function IF. The multi-subunit ET
could be linearized as the following K-expression:

01234567890123456789012

IINAIAINu1ca3aa2acAOab2 (3.11)

Figure 5 shows another example of sub-ET interaction, where the
sub-ETs are of the simplest kind (one-element sub-ETs). In this case,
the sub-ETs are linked 3 by 3 with the IF function, then these clusters
are, in their turn, linked also 3 by 3 with another IF function, and the

Complex Systems, 13 (2001) 87–129

98 C. Ferreira

Figure 4. Expression of multigenic chromosomes as ETs. (a) A three-genic
chromosome with the tails shown in bold (“N” is a function of one argument
and represents NOT; “A” and “O” are functions of two arguments and represent
respectively AND and OR; “I” is a function of three arguments and represents
IF; the remaining symbols are terminals). (b) The sub-ETs codified by each gene.
(c) The result of posttranslational linking with IF.

three last clusters are also linked by IF, forming a large multi-subunit ET.
This kind of chromosomal architecture was used to evolve solutions for
the 11-multiplexer problem of section 6.5.2 and also to evolve cellular
automata rules for the density-classification problem. The individual of
Figure 5 could be converted into the following K-expression:

IIIIIIIIIIIII131u3ab2ubab23c3ua31a333au3 (3.12)

And finally, the full expression of certain chromosomes requires the
sequential execution of small plans, where the first sub-ET does a little
work, the second continues from that, and so on. The final plan results
from the orderly action of all subplans (see the block stacking problem
in section 6.3).

The type of linking function, as well as the number of genes and the
length of each gene, are a priori chosen for each problem. So, we can
always start by using a single-gene chromosome, gradually increasing

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 99

Figure 5. Expression of multigenic chromosomes as ETs. (a) A 27-genic chro-
mosome composed of one-element genes. (b) The result of posttranslational
linking with IF.

the length of the head; if it becomes very large, we can increase the
number of genes and of course choose a function to link them. We can
start with addition or OR, but in other cases another linking function
might be more appropriate. The idea, of course, is to find a good
solution, and GEP provides the means of finding one.

4. Fitness functions and selection

In this section, two examples of fitness functions are described. Other
examples of fitness functions are given in the problems studied in sec-
tion 6. The success of a problem greatly depends on the way the fitness
function is designed: the goal must be clearly and correctly defined in
order to make the system evolve in that direction.

4.1 Fitness functions

One important application of GEP is symbolic regression or function
finding (e.g., [9]), where the goal is to find an expression that performs
well for all fitness cases within a certain error of the correct value.
For some mathematical applications it is useful to use small relative
or absolute errors in order to discover a very good solution. But if
the range of selection is excessively narrowed, populations evolve very
slowly and are incapable of finding a correct solution. On the other
hand, if the opposite is done and the range of selection is broadened,
numerous solutions will appear with maximum fitness that are far from
good solutions.

To solve this problem, an evolutionary strategy was devised that per-
mits the discovery of very good solutions without halting evolution. So,
the system is left to find for itself the best possible solution within a
minimum error. For that a very broad limit for selection to operate is
given, for instance, a relative error of 20%, that allows the evolutionary
process to get started. Indeed, these founder individuals are usually very

Complex Systems, 13 (2001) 87–129

100 C. Ferreira

unfit but their modified descendants are reshaped by selection and pop-
ulations adapt wonderfully, finding better solutions that progressively
approach a perfect solution. Mathematically, the fitness fi of an individ-
ual program i is expressed by equation (4.1a) if the error chosen is the
absolute error, and by equation (4.1b) if the error chosen is the relative
error:

fi &
Ct"
j&1

(M %)C(i,j) % Tj)) (4.1a)

ft &
Ct"
j&1

#M % $$$$$$$$C(i,j) % Tj

Tj
* 100

$$$$$$$$% (4.1b)

where M is the range of selection, C(i,j) the value returned by the indi-
vidual chromosome i for fitness case j (out of Ct fitness cases), and Tj is
the target value for fitness case j. Note that for a perfect fit C(i,j) & Tj
and fi & fmax & Ct *M. Note that with this kind of fitness function the
system can find the optimal solution for itself.

In another important GEP application, boolean concept learning or
logic synthesis (e.g., [9]), the fitness of an individual is a function of the
number of fitness cases on which it performs correctly. For most boolean
applications, though, it is fundamental to penalize individuals able to
solve correctly about 50% of the fitness cases, as most probably this
only reflects the 50% likelihood of correctly solving a binary boolean
function. So, it is advisable to select only individuals capable of solving
more than 50 to 75% of the fitness cases. Below that mark a symbolic
value of fitness can be attributed, for instance fi & 1. Usually, the
process of evolution is put in motion with these unfit individuals, for
they are very easily created in the initial population. However, in future
generations, highly fit individuals start to appear, rapidly spreading
in the population. For easy problems, like boolean functions with
two through five arguments, this is not really important, but for more
complex problems it is convenient to choose a bottom line for selection.
For these problems, the following fitness function can be used:

If n + 1/2Ct, then fi & n, else fi & 1 (4.2)

where n is the number of fitness cases correctly evaluated, and Ct is the
total number of fitness cases.

4.2 Selection

In all the problems presented in this work, individuals were selected
according to fitness by roulette wheel sampling [10] coupled with the
cloning of the best individual (simple elitism). A preliminary study of
different selection schemes (roulette wheel selection with and without

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 101

elitism, tournament selection with and without elitism, and various
kinds of deterministic selection with and without elitism) suggests that
there is no appreciable difference between them as long as the cloning
of the best individual is guaranteed (results not shown). Some schemes
perform better in one problem, others in another. However, for more
complex problems it seems that roulette wheel selection with elitism is
best.

5. Reproduction with modification

According to fitness and the luck of the roulette, individuals are se-
lected to reproduce with modification, creating the necessary genetic
diversification that allows evolution in the long run.

Except for replication, where the genomes of all the selected individ-
uals are rigorously copied, all the remaining operators randomly pick
chromosomes to be subjected to a certain modification. However, ex-
cept for mutation, each operator is not allowed to modify a chromosome
more than once. For instance, for a transposition rate of 0.7, seven out
of 10 different chromosomes are randomly chosen.

Furthermore, in GEP, a chromosome might be chosen by none or sev-
eral genetic operators that introduce variation in the population. This
feature also distinguishes GEP from GP where an entity is never modified
by more than one operator at a time [9]. Thus, in GEP, the modifications
of several genetic operators accumulate during reproduction, producing
offspring very different from the parents.

We now proceed with the detailed description of GEP operators,
starting obviously with replication. (Readers less concerned with imple-
mentation details of genetic operators may wish to skip this section.)

5.1 Replication

Although vital, replication is the most uninteresting operator: alone it
contributes nothing to genetic diversification. (Indeed, replication, to-
gether with selection, is only capable of causing genetic drift.) According
to fitness and the luck of the roulette, chromosomes are faithfully copied
into the next generation. The fitter the individual the higher the proba-
bility of leaving more offspring. Thus, during replication the genomes
of the selected individuals are copied as many times as the outcome of
the roulette. The roulette is spun as many times as there are individuals
in the population, always maintaining the same population size.

5.2 Mutation

Mutations can occur anywhere in the chromosome. However, the struc-
tural organization of chromosomes must remain intact. In the heads
any symbol can change into another (function or terminal); in the tails

Complex Systems, 13 (2001) 87–129

102 C. Ferreira

terminals can only change into terminals. This way, the structural or-
ganization of chromosomes is maintained, and all the new individuals
produced by mutation are structurally correct programs.

Typically, a mutation rate (pm) equivalent to two point mutations per
chromosome is used. Consider the following 3-genic chromosome:

012345678012345678012345678

-+-+abaaa/bb/ababb*Q*+aaaba

Suppose a mutation changed the element in position 0 in gene 1 to “Q”,
the element in position 3 in gene 2 to “Q”, and the element in position
1 in gene 3 to “b”, obtaining:

012345678012345678012345678

Q+-+abaaa/bbQababb*b*+aaaba

Note that if a function is mutated into a terminal or vice versa, or a
function of one argument is mutated into a function of two arguments
or vice versa, the ET is modified drastically. Note also that the mutation
on gene 2 is an example of a neutral mutation, as it occurred in the
noncoding region of the gene.

It is worth noticing that in GEP there are no constraints neither in the
kind of mutation nor the number of mutations in a chromosome: in all
cases the newly created individuals are syntactically correct programs.

In nature, a point mutation in the sequence of a gene can slightly
change the structure of the protein or not change it at all, as neutral
mutations are fairly frequent (e.g., mutations in introns, mutations that
result in the same amino acid due to the redundancy of the genetic code,
etc.). Here, although neutral mutations exist (e.g., mutations in the
noncoding regions), a mutation in the coding sequence of a gene has a
much more profound effect: it usually drastically reshapes the ET.

5.3 Transposition and insertion sequence elements

The transposable elements of GEP are fragments of the genome that can
be activated and jump to another place in the chromosome. In GEP
there are three kinds of transposable elements. (1) Short fragments with
a function or terminal in the first position that transpose to the head of
genes, except to the root (insertion sequence elements or IS elements).
(2) Short fragments with a function in the first position that transpose
to the root of genes (root IS elements or RIS elements). (3) Entire genes
that transpose to the beginning of chromosomes.

The existence of IS and RIS elements is a remnant of the developmen-
tal process of GEP, as the first GEA used only single-gene chromosomes,
and in such systems a gene with a terminal at the root was of little
use. When multigenic chromosomes were introduced this feature re-

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 103

mained as these operators are important to understand the mechanisms
of genetic variation and evolvability.

5.3.1 Transposition of insertion sequence elements

Any sequence in the genome might become an IS element, therefore
these elements are randomly selected throughout the chromosome. A
copy of the transposon is made and inserted at any position in the head
of a gene, except at the start position.

Typically, an IS transposition rate (pis) of 0.1 and a set of three
IS elements of different length are used. The transposition operator
randomly chooses the chromosome, the start of the IS element, the
target site, and the length of the transposon. Consider the 2-genic
chromosome below:

012345678901234567890012345678901234567890

*-+*a-+a*bbabbaabababQ**+abQbb*aabbaaaabba

Suppose that the sequence “bba” in gene 2 (positions 12 through 14)
was chosen to be an IS element, and the target site was bond 6 in gene
1 (between positions 5 and 6). Then, a cut is made in bond 6 and the
block “bba” is copied into the site of insertion, obtaining:

012345678901234567890012345678901234567890

*-+*a-bba+babbaabababQ**+abQbb*aabbaaaabba

During transposition, the sequence upstream from the insertion site
stays unchanged, whereas the sequence downstream from the copied IS
element loses, at the end of the head, as many symbols as the length of
the IS element (in this case the sequence “a!b” was deleted). Note that,
despite this insertion, the structural organization of chromosomes is
maintained, and therefore all newly created individuals are syntactically
correct programs. Note also that transposition can drastically reshape
the ET, and the more upstream the insertion site the more profound
the change. Thus, these kinds of operators (IS transposition and RIS
transposition below) may be seen as having a high hit rate at the lowest
levels of ETs [7].

5.3.2 Root transposition

All RIS elements start with a function, and thus are chosen among the
sequences of the heads. For that, a point is randomly chosen in the head
and the gene is scanned downstream until a function is found. This
function becomes the start position of the RIS element. If no functions
are found, it does nothing.

Typically a root transposition rate (pris) of 0.1 and a set of three RIS
elements of different sizes are used. This operator randomly chooses
the chromosome, the gene to be modified, the start of the RIS element,

Complex Systems, 13 (2001) 87–129

104 C. Ferreira

and its length. Consider the following 2-genic chromosome:

012345678901234567890012345678901234567890

-ba*+-+-Q/abababbbaaaQ*b/+bbabbaaaaaaaabbb

Suppose that the sequence “+bb” in gene 2 was chosen to be an RIS
element. Then, a copy of the transposon is made into the root of the
gene, obtaining:

012345678901234567890012345678901234567890

-ba*+-+-Q/abababbbaaa+bbQ*b/+bbaaaaaaaabbb

During root transposition, the whole head shifts to accommodate the
RIS element, losing, at the same time, the last symbols of the head (as
many as the transposon length). As with IS elements, the tail of the gene
subjected to transposition and all nearby genes stay unchanged. Note,
again, that the newly created programs are syntactically correct because
the structural organization of the chromosome is maintained.

The modifications caused by root transposition are extremely rad-
ical, because the root itself is modified. In nature, if a transposable
element is inserted at the beginning of the coding sequence of a gene,
causing a frameshift mutation, it radically changes the encoded protein.
Like mutation and IS transposition, root insertion has a tremendous
transforming power and is excellent for creating genetic variation.

5.3.3 Gene transposition

In gene transposition an entire gene functions as a transposon and trans-
poses itself to the beginning of the chromosome. In contrast to the other
forms of transposition, in gene transposition the transposon (the gene)
is deleted in the place of origin. This way, the length of the chromosome
is maintained.

The chromosome to undergo gene transposition is randomly chosen,
and one of its genes (except the first, obviously) is randomly chosen
to transpose. Consider the following chromosome composed of three
genes:

012345678012345678012345678

*a-*abbab-QQ/aaabbQ+abababb

Suppose gene 2 was chosen to undergo gene transposition. Then the
following chromosome is obtained:

012345678012345678012345678

-QQ/aaabb*a-*abbabQ+abababb

Note that for numerical applications where the function chosen to
link the genes is addition, the expression evaluated by the chromosome

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 105

is not modified. But the situation differs in other applications where the
linking function is not commutative, for instance, the IF function cho-
sen to link the sub-ETs in the 11-multiplexer problem in section 6.5.2.
However, the transforming power of gene transposition reveals itself
when this operator is conjugated with crossover. For example, if two
functionally identical chromosomes or two chromosomes with an iden-
tical gene in different positions recombine, a new individual with a
duplicated gene might appear. It is known that the duplication of genes
plays an important role in biology and evolution (e.g., [11]). Interest-
ingly, in GEP, individuals with duplicated genes are commonly found in
the process of problem solving.

5.4 Recombination

In GEP there are three kinds of recombination: one-point, two-point,
and gene recombination. In all cases, two parent chromosomes are
randomly chosen and paired to exchange some material between them.

5.4.1 One-point recombination

During one-point recombination, the chromosomes cross over a ran-
domly chosen point to form two daughter chromosomes. Consider the
following parent chromosomes:

012345678012345678

-b+Qbbabb/aQbbbaab

/-a/ababb-ba-abaaa

Suppose bond 3 in gene 1 (between positions 2 and 3) was randomly
chosen as the crossover point. Then, the paired chromosomes are cut at
this bond, and exchange between them the material downstream from
the crossover point, forming the offspring below:

012345678012345678

-b+/ababb-ba-abaaa

/-aQbbabb/aQbbbaab

With this kind of recombination, most of the time, the offspring cre-
ated exhibit different properties from those of the parents. One-point
recombination, like the above mentioned operators, is a very important
source of genetic variation, being, after mutation, one of the operators
most chosen in GEP. The one-point recombination rate (p1r) used de-
pends on the rates of other operators. Typically a global crossover rate
of 0.7 (the sum of the rates of the three kinds of recombination) is used.

5.4.2 Two-point recombination

In two-point recombination the chromosomes are paired and the two
points of recombination are randomly chosen. The material between the

Complex Systems, 13 (2001) 87–129

106 C. Ferreira

recombination points is afterwards exchanged between the two chro-
mosomes, forming two new daughter chromosomes. Consider the fol-
lowing parent chromosomes:

0123456789001234567890

+*a*bbcccac*baQ*acabab-[1]

*cbb+cccbcc++**bacbaab-[2]

Suppose bond 7 in gene 1 (between positions 6 and 7) and bond 3 in
gene 2 (between positions 2 and 3) were chosen as the crossover points.
Then, the paired chromosomes are cut at these bonds, and exchange the
material between the crossover points, forming the offspring below:

0123456789001234567890

+*a*bbccbcc++*Q*acabab-[3]

*cbb+ccccac*ba*bacbaab-[4]

Note that the first gene is, in both parents, split downstream from the
termination point. Indeed, the noncoding regions of GEP chromosomes
are ideal regions where chromosomes can be split to cross over without
interfering with the ORFs. Note also that the second gene of chromo-
some 1 was also cut downstream from the termination point. However,
gene 2 of chromosome 2 was split upstream from the termination point,
profoundly changing the sub-ET. Note also that when these chromo-
somes recombined, the noncoding region of gene 2 of chromosome 1
was activated and integrated into chromosome 3.

The transforming power of two-point recombination is greater than
one-point recombination, and is most useful to evolve solutions for more
complex problems, especially when multigenic chromosomes composed
of several genes are used.

5.4.3 Gene recombination
In gene recombination an entire gene is exchanged during crossover. The
exchanged genes are randomly chosen and occupy the same position in
the parent chromosomes. Consider the following parent chromosomes:

012345678012345678012345678

/aa-abaaa/a*bbaaab/Q*+aaaab

/-*/abbabQ+aQbabaa-Q/Qbaaba

Suppose gene 2 was chosen to be exchanged. In this case the following
offspring is formed:

012345678012345678012345678

/aa-abaaaQ+aQbabaa/Q*+aaaab

/-*/abbab/a*bbaaab-Q/Qbaaba

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 107

The newly created individuals contain genes from both parents. Note
that with this kind of recombination, similar genes can be exchanged
but, most of the time, the exchanged genes are very different and new
material is introduced into the population.

It is worth noting that this operator is unable to create new genes:
the individuals created are different arrangements of existing genes. In
fact, when gene recombination is used as the unique source of genetic
variation, more complex problems can only be solved using very large
initial populations in order to provide for the necessary diversity of
genes (see section 6.1). However, the creative power of GEP is based
not only in the shuffling of genes or building blocks, but also in the
constant creation of new genetic material.

6. Six examples of gene expression programming in problem solving

The suite of problems chosen to illustrate the functioning of this new
algorithm is quite varied, including not only problems from different
fields (symbolic regression, planning, boolean concept learning, and
cellular automata rules) but also problems of great complexity (cellular
automata rules for the density-classification task).

6.1 Symbolic regression

The objective of this problem is the discovery of a symbolic expression
that satisfies a set of fitness cases. Consider we are given a sampling of
the numerical values from the function

y & a4 # a3 # a2 # a (6.1)
over 10 chosen points and we want to find a function fitting those values
within 0.01 of the correct value.

First, the set of functions F and the set of terminals T must be chosen.
In this case F & '#,%, !, /(and T & 'a(. Then the structural organization
of chromosomes, namely the length of the head and the number of genes,
is chosen. It is advisable to start with short, single-gene chromosomes
and then gradually increase h. Figure 6 shows such an analysis for this
problem. A population size P of 30 individuals and an evolutionary
time G of 50 generations were used. A pm equivalent to two one-
point mutations per chromosome and a p1r & 0.7 were used in all the
experiments in order to simplify the analysis. The set of fitness cases
is shown in Table 1 and the fitness was evaluated by equation (4.1a),
being M & 100. If)C(i,j) %Tj) is equal to or less than 0.01 (the precision),
then)C(i,j) % Tj) & 0 and f(i,j) & 100; thus for Ct & 10, fmax & 1000.

Note that GEP can be useful in searching the most parsimonious
solution to a problem. For instance, the chromosome

0123456789012

*++/**aaaaaaa

Complex Systems, 13 (2001) 87–129

108 C. Ferreira

Figure 6. Variation of success rate (Ps) with chromosome length. For this analysis
G & 50, P & 30, and Ps was evaluated over 100 identical runs.

a f (a)
2.81 95.2425
6 1554
7.043 2866.55
8 4680

10 11110
11.38 18386
12 22620
14 41370
15 54240
20 168420

Table 1. Set of fitness cases for the symbolic regression problem.

with h & 6 codes for the ET:

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 109

which is equivalent to the target function. Note also that GEP can
efficiently evolve solutions using large values of h, that is, it is capable
of evolving large and complex sub-ETs. It is worth noting that the
most compact genomes are not the most efficient. Therefore a certain
redundancy is fundamental to efficiently evolve good programs.

In another analysis, the relationship between success rate and pop-
ulation size P, using an h & 24 was studied (Figure 7). These results
show the supremacy of a genotype/phenotype representation, as this
single-gene system, which is equivalent to GP, greatly surpasses that
technique [9]. However, GEP is much more complex than a single-gene
system because GEP chromosomes can encode more than one gene (see
Figure 8).

Suppose we could not find a solution after the analysis shown in
Figure 6. Then we could increase the number of genes and choose a
function to link them. For instance, we could choose an h & 6 and then
increase the number of genes gradually. Figure 8 shows how the success
rate for this problem depends on the number of genes. In this analysis,
the pm was equivalent to two one-point mutations per chromosome,
p1r & 0.2, p2r & 0.5, pgr & 0.1, pis & 0.1, pris & 0.1, pgt & 0.1, and three
transposons (both IS and RIS elements) of lengths 1, 2, and 3 were used.
Note that GEP can cope very well with an excess of genes: the success
rate for the 10-genic system is still very high (47%).

In Figure 9 another important relationship is shown: how the suc-
cess rate depends on evolutionary time. In contrast to GP where 51
generations are the norm, for after that nothing much can possibly be
discovered [7], in GEP, populations can adapt and evolve indefinitely be-
cause new material is constantly being introduced into the genetic pool.

Finally, suppose that the multigenic system with sub-ETs linked by
addition could not evolve a satisfactory solution. Then we could choose
another linking function, for instance, multiplication. This process is
repeated until a good solution has been found.

As stated previously, GEP chromosomes can be easily modified in
order to encode the linking function as well. In this case, for each
problem the ideal linking function would be found in the process of
adaptation.

Consider, for instance, a multigenic system composed of three genes
linked by addition. As shown in Figure 8, the success rate has in this
case the maximum value of 100%. Figure 10 shows the progression of
average fitness of the population and the fitness of the best individual
for run 0 of the experiment summarized in Table 2, column 1. In this
run, a correct solution was found in generation 11. The sub-ETs are
linked by addition:

012345678901201234567890120123456789012

-*a+aaaaaaa++a*aaaaaaa*+-a/aaaaaaaa

Complex Systems, 13 (2001) 87–129

Figure 7. Variation of success rate (Ps) with population size. For this analysis
G & 50, and a medium value of 49 for chromosome length (h & 24) was used.
Ps was evaluated over 100 identical runs.

Figure 8. Variation of success rate (Ps) with the number of genes. For this
analysis G & 50, P & 30, and h & 6 (a gene length of 13). Ps was evaluated over
100 identical runs.

Figure 9. Variation of success rate (Ps) with the number of generations. For
this analysis P & 30, pm & 0.051, p1r & 0.7, and a chromosome length of 79
(a single-gene chromosome with h & 39) was used. Ps was evaluated over 100
identical runs.

Figure 10. Progression of average fitness of the population and the fitness of the
best individual for run 0 of the experiment summarized in Table 2, column 1
(symbolic regression).

112 C. Ferreira

SR SI SI* BS 11-M
Number of runs 100 100 100 100 100
Number of generations 50 100 100 100 400
Population size 30 50 50 30 250
Number of fitness cases 10 10 10 10 160
Head length 6 6 7 4 1
Number of genes 3 7 8 3 27
Chromosome length 39 91 184 27 27
Mutation rate 0.051 0.022 0.011 0.074 0.074
One-point

recombination rate 0.2 0.7 0.5 0.1 0.7
Two-point

recombination rate 0.5 0.1 0.2 – –
Gene recombination rate 0.1 0.1 0.1 0.7 –
IS transposition rate 0.1 0.1 0.1 0.1 –
IS elements length 1,2,3 1,2,3 1 1 –
RIS transposition rate 0.1 0.1 0.1 0.1 –
RIS elements length 1,2,3 1,2,3 1 1 –
Gene transposition rate 0.1 0.1 0.1 – –
Random constants

mutation rate – – 0.01 – –
Dc specific IS

transposition rate – – 0.013 – –
Selection range 100 20% 20% – –
Error 0.01 0.0% 0.0% – –
Success rate 1 0.83 0.31 0.7 0.57

Table 2. Parameters for the symbolic regression (SR), sequence induction (SI),
sequence induction using ephemeral random constants (SI*), block stacking
(BS), and 11-multiplexer (11-M) problems.

and mathematically corresponds to the target function (the contribution
of each sub-ET is indicated in brackets):

y & (a4) # (a3 # a2 # a) # (0) & a4 # a3 # a2 # a.

The detailed analysis of this program shows that some of the actions
are redundant for the problem at hand, like the addition of 0 or multi-
plication by 1. However, the existence of these unnecessary clusters, or
even pseudogenes like gene 3, is important to the evolution of more fit
individuals (compare, in Figures 6 and 8, the success rate of a compact,
single-gene system with h & 6 with other less compact systems both with
more genes and h greater than 6).

The plot for average fitness in Figure 10 (and also Figures 12, 13,
and 17 below) suggests different evolutionary dynamics for GEP popu-
lations. The oscillations on average fitness, even after the discovery of a
perfect solution, are unique to GEP. A certain degree of oscillation is due
to the small population sizes used to solve the problems presented in this
work. However, an identical pattern is obtained using larger population
sizes. Figure 11 compares six evolutionary dynamics in populations of
500 individuals for 500 generations. Plot 1 (all operators active) shows

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 113

Figure 11. Possible evolutionary dynamics for GEP populations. For this analysis
P & 500. The plots show the progression of average fitness of the population.
Plot 1: All operators switched on with rates as shown in Table 2, column 1; in
this case a perfect solution was found in generation 1. Plot 2: Only mutation
at pm & 0.051; in this case a perfect solution was found in generation 3. Plot 3:
Only gene recombination at pgr & 0.7 plus gene transposition at pgt & 0.2 were
switched on; in this case a perfect solution was found in generation 2. Plot 4:
Only one-point recombination at p1r & 0.7; in this case a perfect solution was
found in generation 3. Plot 5: Only two-point recombination at p2r & 0.7;
in this case a perfect solution was found in generation 1. Plot 6: Only gene
recombination at pgr & 0.7; in this case a perfect solution was not found, the
best of run has fitness 980 and was found in generation 2.

the progression of average fitness of an experiment identical to the one
summarized in Table 2, column 1, that is, with all the genetic opera-
tors switched on. The remaining dynamics were obtained for mutation
alone (Plot 2), for gene recombination combined with gene transposition
(Plot 3), for one-point recombination (Plot 4), two-point recombination
(Plot 5), and gene recombination (Plot 6).

It is worth noticing the homogenizing effect of all kinds of recombi-
nation. Interestingly, this kind of pattern is similar to the evolutionary
dynamics of GAs and GP populations [9, 10]. Also worth noticing is the
plot for gene recombination alone (Figure 11, Plot 6): in this case a per-
fect solution was not found. This shows that sometimes it is impossible
to find a perfect solution only by shuffling existing building blocks, as
is done in all GP implementations without mutation. Indeed, GEP gene
recombination is similar in effect to GP recombination, for it permits

Complex Systems, 13 (2001) 87–129

114 C. Ferreira

exclusively the recombination of mathematically concise blocks. Note
that even a more generalized shuffling of building blocks (using gene
recombination combined with gene transposition) results in oscillatory
dynamics (Figure 11, Plot 3).

6.2 Sequence induction and the creation of constants

The problem of sequence induction is a special case of symbolic regres-
sion where the domain of the independent variable consists of the non-
negative integers. However, the sequence chosen is more complicated
than the expression used in symbolic regression, as different coefficients
were used.

The solution to this kind of problem involves the discovery of certain
constants. Here two different approaches to the problem of constant
creation are shown: one without using ephemeral random constants [9],
and another using ephemeral random constants.

In the sequence 1, 15, 129, 547, 1593, 3711, 7465, 13539, 22737,
35983, 54321,. . ., the nth (N) term is

N & 5a4
n # 4a3

n # 3a2
n # 2an # 1 (6.2)

where an consists of the nonnegative integers 0, 1, 2, 3,. . . .
For this problem F & '#,%, !, /(and T & 'a(. The set of fitness cases

is shown in Table 3 and the fitness was evaluated by equation (4.1b),
being M & 20%. Thus, if the 10 fitness cases were computed exactly,
fmax & 200.

Figure 12 shows the progression of average fitness of the population
and the fitness of the best individual for run 1 of the experiment sum-
marized in Table 2, column 2. In this run, a perfect solution was found
in generation 81 (the sub-ETs are linked by addition):

0123456789012012345678901201234567890120123456789012...

*a/+a*aaaaaaa**-/**aaaaaaa**+++*aaaaaaa+-+a/*aaaaaaa...

...012345678901201234567890120123456789012

...*a*-a+aaaaaaa-+++-+aaaaaaa+*/*/+aaaaaaa

and mathematically corresponds to the target sequence (the contribu-
tion of each sub-ET is indicated in brackets):

y & (a2 # a) # (a4 % a3) # (4a4 # 4a3)
(a2 # 2a % 1) # (a3) # (%a) # (a2 # 2).

As shown in column 2 of Table 2, the probability of success for this
problem using the first approach is 0.83. Note that all the constants
are created from scratch by the algorithm. It seems that in real-world
problems this kind of approach is more advantageous because, first, we
never know beforehand what kind of constants are needed and, second,

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 115

a N
1 15
2 129
3 547
4 1593
5 3711
6 7465
7 13539
8 22737
9 35983

10 54321

Table 3. Set of fitness cases for the sequence induction problem.

Figure 12. Progression of average fitness of the population and the fitness of the
best individual for run 1 of the experiment summarized in Table 2, column 2
(sequence induction without ephemeral random constants).

Complex Systems, 13 (2001) 87–129

116 C. Ferreira

the number of elements in the terminal set is much smaller, reducing the
complexity of the problem.

However, ephemeral random constants can be easily implemented in
GEP. For that an additional domain Dc was created. Structurally, the Dc
comes after the tail, has a length equal to t, and consists of the symbols
used to represent the ephemeral random constants.

For each gene the constants are created at the beginning of a run,
but their circulation is guaranteed by the genetic operators. Besides, a
special mutation operator was created that allows the permanent intro-
duction of variation in the set of random constants. A domain-specific
IS transposition was also created in order to guarantee an effective shuf-
fling of the constants. Note that the basic genetic operators are not
affected by the Dc: it is only necessary to keep the boundaries of each
region and not mix different alphabets.

Consider the single-genic chromosome with an h & 7:

01234567890123456789012

*?**?+?aa??a?a?63852085 (6.3)

where “?” represents the ephemeral random constants. The expression
of this kind of chromosome is done exactly as before, obtaining:

The “?” symbols in the ET are then replaced from left to right and from
top to bottom by the symbols in Dc, obtaining:

The values corresponding to these symbols are kept in an array. For
simplicity, the number represented by the symbol indicates the order in

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 117

the array. For instance, for the 10 element array

A & '%0.004, 0.839,%0.503, 0.05,%0.49,%0.556, 0.43,
%0.899, 0.576,%0.256(

the chromosome (6.3) above gives:

To solve the problem at hand using ephemeral random constants F &
'#,%, !(, T & 'a, ?(, the set of random constants R & '0, 1, 2, 3, 4, 5, 6, 7,
8, 9(, and the ephemeral random constant “?” ranged over the integers
0, 1, 2, and 3. The parameters used per run are shown in Table 2,
column 3. In this experiment, the first solution was found in generation
91 of run 8 (the sub-ETs are linked by addition):

Gene 0: -??*a-*aaa?a?aa26696253
A0 & '3, 1, 0, 0, 3, 3, 2, 2, 2, 3(

Gene 1: *-aa-a-???a?aaa73834168
A1 & '0, 1, 2, 3, 1, 3, 0, 0, 1, 3(

Gene 2: +a??-+??aaaa?aa43960807
A2 & '1, 2, 1, 3, 3, 2, 2, 2, 1, 3(

Gene 3: *a***+aa?a??aaa20546809
A3 & '3, 0, 1, 3, 0, 2, 2, 2, 2, 0(

Gene 4: *a***+aa?aa?aaa34722724
A4 & '2, 3, 3, 2, 1, 3, 0, 0, 2, 3(

Gene 5: *a*++*+?aa??a?a54218512
A5 & '1, 3, 3, 1, 0, 0, 2, 0, 0, 2(

Gene 6: +a*?a*-a?aaa??a94759218
A6 & '3, 0, 0, 2, 1, 1, 3, 1, 3, 2(

Gene 7: +-?a*a??a?aa??a69085824
A7 & '2, 2, 3, 1, 3, 1, 0, 0, 1, 0(

and mathematically corresponds to the target function (the contribution
of each sub-ET is indicated in brackets):

y & (%2) # (%3a) # (a # 3) # (a4 # 3a3) # (4a4) # (a3 # 3a2) # (3a).

Complex Systems, 13 (2001) 87–129

118 C. Ferreira

As shown in column 3 of Table 2, the probability of success for this
problem is 0.31, considerably lower than the 0.83 of the first approach.
Furthermore, only the prior knowledge of the solution enabled us, in
this case, to correctly choose the random constants. Therefore, for
real-world applications where the magnitude and type of coefficients
are unknown, it is more appropriate to let the system find the constants
for itself. However, for some numerical applications the discovery of
constants is fundamental and they can be easily created as indicated here.

6.3 Block stacking

In block stacking, the goal is to find a plan that takes any initial config-
uration of blocks randomly distributed between the stack and the table
and places them in the stack in the correct order. In this case, the blocks
are the letters of the word “universal”. (Although the word universal
was used as illustration, in this version the blocks being stacked may
have identical labels like, for instance, in the word “individual”.)

The functions and terminals used for this problem consisted of a set
of actions and sensors, being F & 'C, R, N, A((move to stack, remove
from stack, not, and do until true, respectively), where the first three
take one argument and “A” takes two arguments. In this version, the
“A” loops are processed at the beginning and are solved in a particular
order (from bottom to top and from left to right). The action argument
is executed at least once despite the state of the predicate argument and
each loop is executed only once, timing out after 20 iterations. The
set of terminals consisted of three sensors 'u, t, p((current stack, top
correct block, and next needed block, respectively). In this version, “t”
refers only to the block on the top of the stack and whether it is correct
or not; if the stack is empty or has some blocks, all of them correctly
stacked, the sensor returns True, otherwise it returns False; and “p”
refers obviously to the next needed block immediately after “t”.

A multigenic system composed of three genes of length 9 was used
in this problem. The linking of the sub-ETs consisted of the sequential
execution of each sub-ET or subplan. For instance, if the first sub-
ET empties all the stacks, the next sub-ET may proceed to fill them,
and so on. The fitness was determined against 10 fitness cases (initial
configurations of blocks). For each generation, an empty stack plus
nine initial configurations with one to nine letters in the stack were
randomly generated. The empty stack was used to prevent the untimely
termination of runs, as a fitness point was attributed to each empty stack
(see below). However, GEP is capable of efficiently solving this problem
using 10 random initial configurations (results not shown).

The fitness function was as follows: for each empty stack one fitness
point was attributed; for each partially and correctly packed stack (i.e.,
with one to eight letters in the case of the word “universal”) two fitness

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 119

Figure 13. Progression of average fitness of the population and the fitness of the
best individual for run 2 of the experiment summarized in Table 2, column 4
(block stacking).

points were attributed; and for each completely and correctly stacked
word three fitness points were attributed. Thus, the maximum fitness
was 30. The idea was to make the population of programs hierarchically
evolve solutions toward a perfect plan. And, in fact, usually the first
useful plan discovered empties all the stacks, then some programs learn
how to partially fill those empty stacks, and finally a perfect plan is
discovered that fills the stacks completely and correctly (see Figure 13).

Figure 13 shows the progression of average fitness of the population
and the fitness of the best individual for run 2 of the experiment sum-
marized in Table 2, column 4. In this run, a perfect plan was found in
generation 50:

012345678012345678012345678

ARCuptppuApNCptuutNtpRppptp

Note that the first subplan removes all the blocks and stacks a correct
letter; the second subplan correctly stacks all the remaining letters; and

Complex Systems, 13 (2001) 87–129

120 C. Ferreira

the last subplan does nothing. It should be emphasized that the plans
which evolved maximum fitness are in fact perfect, universal plans:
each generation they are tested against nine randomly generated initial
configurations, more than sufficient to allow the algorithm to generalize
the problem (as shown in Figure 13, once reached, the maximum fitness
is maintained). Indeed, with the fitness function and the kind of fitness
cases used, all plans with maximum fitness are universal plans.

As shown in the fourth column of Table 2, the probability of success
for this problem is very high (0.70) despite using nine (out of 10) ran-
dom initial configurations. It is worth noting that GP uses 167 fitness
cases, cleverly constructed to cover the various classes of possible initial
configurations [9]. Indeed, in real-life applications it is not always pos-
sible to predict the kind of cases that would make the system discover a
solution. So, algorithms capable of generalizing well in face of random
fitness cases are more advantageous.

6.4 Evolving cellular automata rules for the density-classification problem

Cellular automata (CA) have been studied widely as they are idealized
versions of massively parallel, decentralized computing systems capa-
ble of emergent behaviors. These complex behaviors result from the
simultaneous execution of simple rules at multiple local sites. In the
density-classification task, a simple rule involving a small neighborhood
and operating simultaneously in all the cells of a one-dimensional cel-
lular automaton, should be capable of making the CA converge into a
state of all 1s if the initial configuration (IC) has a higher density of 1s,
or into a state of all 0s if the IC has a higher density of 0s.

The ability of GAs to evolve CA rules for the density-classification
problem was intensively investigated [12–15], but the rules discovered
by the GA performed poorly and were far from approaching the accu-
racy of the GKL rule, a human-written rule. GP was also used to evolve
rules for the density-classification task [16], and a rule was discovered
that surpassed the GKL rule and other human-written rules.

This section shows how GEP is successfully applied to this dif-
ficult problem. The rules evolved by GEP have accuracy levels of
82.513% and 82.55%, thus exceeding all human-written rules and the
rule evolved by GP.

6.4.1 The density-classification task

The simplest CA is a wrap-around array of N binary-state cells, where
each cell is connected to r neighbors from both sides. The state of each
cell is updated by a defined rule. The rule is applied simultaneously in
all the cells, and the process is iterated for t time steps.

In the most frequently studied version of this problem, N & 149 and
the neighborhood is 7 (the central cell is represented by “u”; the r & 3
cells to the left are represented by “c”, “b”, and “a”; the r & 3 cells

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 121

Figure 14. A one-dimensional, binary-state, r & 3 cellular automaton with N &
11. The arrows represent the periodic boundary conditions. The updated
state is shown only for the central cell. The symbols used to represent the
neighborhood are also shown.

to the right are represented by “1”, “2”, and “3”). Thus the size of
the rule space to search for this problem is the huge number of 2128.
Figure 14 shows a CA with N & 11 and the updated state for the cellular
automaton “u” upon application of a certain transition rule.

The task of density-classification consists of correctly determining
whether ICs contain a majority of 1s or a majority of 0s, by making
the system converge, respectively, to an all 1s state (black or “on”
cells in a space-time diagram), and to a state of all 0s (white or “off”
cells). Because the density of an IC is a function of N arguments, the
actions of local cells with limited information and communication must
be coordinated with one another to correctly classify the ICs. Indeed, to
find rules that perform well is a challenge, and several algorithms were
used to evolve better rules [14–17]. The best rules with performances
of 86.0% (coevolution 2) and 85.1% (coevolution 1) were discovered
using a coevolutionary approach between GA-evolved rules and ICs
[17]. However, the aim of this section is to compare the performance
of GEP with GAs and GP when applied to a difficult problem. And, in
fact, GEP does evolve better rules than the GP rule, using computational
resources that are more than four orders of magnitude smaller than those
used by GP.

6.4.2 Two gene expression programming discovered rules

In one experiment F & 'A, O, N, I((“A” represents the boolean function
AND, “O” represents OR, “N” represents NOT, and “I” stands for IF)
and T & 'c, b, a, u, 1, 2, 3(. The parameters used per run are shown in
Table 4, column 1.

The fitness was evaluated against a set of 25 unbiased ICs (i.e., ICs
with equal probability of having a 1 or a 0 at each cell). In this case,
the fitness is a function of the number of ICs i for which the system
stabilizes correctly to a configuration of all 0s or 1s after 2 $ N time
steps, and it was designed in order to privilege individuals capable of
correctly classifying ICs both with a majority of 1s and 0s. Thus, if
the system converged, in all cases, indiscriminately to a configuration
of 1s or 0s, only one fitness point was attributed. If, in some cases, the
system correctly converged either to a configuration of 0s or 1s, f & 2.

Complex Systems, 13 (2001) 87–129

122 C. Ferreira

GEP1 GEP2

Number of generations 50 50
Population size 30 50
Number of ICs 25 100
Head length 17 4
Number of genes 1 3
Chromosome length 52 39
Mutation rate 0.038 0.051
One-point recombination rate 0.5 0.7
IS transposition rate 0.2 –
IS elements length 1,2,3 –
RIS transposition rate 0.1 –
RIS elements length 1,2,3 –

Table 4. Parameters for the density-classification task.

In addition, rules converging to an alternated pattern of all 1s and all 0s
were eliminated, as they are easily discovered and invade the populations
impeding the discovery of good rules. And finally, when an individual
program could correctly classify ICs both with majorities of 1s and 0s,
a bonus equal to the number of ICs C was added to the number of
correctly classified ICs, being in this case f & i # C. For instance, if
a program correctly classified two ICs, one with a majority of 1s and
another with a majority of 0s, it receives 2 # 25 & 27 fitness points.

In this experiment a total of seven runs were made. In generation 27
of run 5, an individual evolved with fitness 44:

0123456789012345678901234567890123456789012345678901

OAIIAucONObAbIANIb1u23u3a12aacb3bc21aa2baabc3bccuc13

Note that the ORF ends at position 28. This program has an accuracy
of 0.82513 tested over 100,000 unbiased ICs in a 149$298 lattice, thus
better than the 0.824 of the GP rule tested in a 149 $ 320 lattice [16,
17]. The rule table of this rule (GEP1) is shown in Table 5. Figure 15
shows three space-time diagrams for this new rule.

As a comparison, GP used populations of 51,200 individuals and
1000 ICs for 51 generations [16], thus a total of 51,200 * 1,000 * 51 &
2,611,200,000 fitness evaluations were made, whereas GEP only made
30 * 25 * 50 & 37,500 fitness evaluations. Therefore, in this problem,
GEP outperforms GP by more than four orders of magnitude (69,632
times).

In another experiment a rule slightly better than GEP1, with an accu-
racy of 0.8255, was obtained. Again, its performance was determined
over 100,000 unbiased ICs in a 149$298 lattice. In this case F & 'I, M(
(“I” stands for IF, and “M” represents the majority function with three
arguments), and T was obviously the same. In this case, a total of

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 123

GEP1 00010001 00000000 01010101 00000000
00010001 00001111 01010101 00001111
00010001 11111111 01010101 11111111
00010001 11111111 01010101 11111111

GEP2 00000000 01010101 00000000 01110111
00000000 01010101 00000000 01110111
00001111 01010101 00001111 01110111
11111111 01010101 11111111 01110111

GP rule 00000101 00000000 01010101 00000101
00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111
01010101 11111111 01010101 11111111

Table 5. Description of the two new rules (GEP1 and GEP2) discovered using
GEP for the density-classification problem. The GP rule is also shown. The
output bits are given in lexicographic order starting with 0000000 and finishing
with 1111111.

100 unbiased ICs and three-genic chromosomes with sub-ETs linked by
IF were used. The parameters used per run are shown in the second
column of Table 4.

The fitness function was slightly modified by introducing a ranking
system, where individuals capable of correctly classifying between 2
and 3/4 of the ICs receive one bonus equal to C; if between 3/4 and
17/20 of the ICs are correctly classified two bonus C; and if more than
17/20 of the ICs are correctly classified three bonus C. Also, in this
experiment, individuals capable of correctly classifying only one kind
of situation, although not indiscriminately, were differentiated and had
a fitness equal to i.

By generation 43 of run 10, an individual evolved with fitness 393:
012345678901201234567890120123456789012

MIuua1113b21cMIM3au3b2233bM1MIacc1cb1aa

Its rule table is shown in Table 5. Figure 16 shows three space-time
diagrams for this new rule (GEP2). Again, in this case the comparison
with GP shows that GEP outperforms GP by a factor of 10,444.

6.5 Boolean concept learning

The GP rule and the 11-multiplexer are, respectively, boolean functions
of seven and 11 activities. Whereas the solution for the 11-multiplexer is
a well-known boolean function, the solution of the GP rule is practically
unknown, as the program evolved by GP [16] is so complicated that it
is impossible to know what the program really does.

This section shows how GEP can be efficiently applied to evolve
boolean expressions of several arguments. Furthermore, the structural

Complex Systems, 13 (2001) 87–129

124 C. Ferreira

Figure 15. Three space-time diagrams describing the evolution of CA states for
the GEP1 rule. The number of 1s in the IC (Ρ0) is shown above each diagram. In
(a) and (b) the CA correctly converged to a uniform pattern; in (c) it converged
incorrectly to a uniform pattern.

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 125

Figure 16. Three space-time diagrams describing the evolution of CA states for
the GEP2 rule. The number of 1s in the IC (Ρ0) is shown above each diagram.
In (a) and (b) the CA converges, respectively, to the correct configuration of all
0s and all 1s; in (c) the CA could not converge to a uniform pattern.

Complex Systems, 13 (2001) 87–129

126 C. Ferreira

organization of the chromosomes used to evolve solutions for the 11-
multiplexer is an example of a very simple organization that can be used
to efficiently solve certain problems. For example, this organization
(one-element genes linked by IF) was successfully used to evolve CA
rules for the density-classification problem, discovering better rules than
the GKL rule (results not shown).

6.5.1 The genetic programming rule problem

For this problem F & 'N, A, O, X, D, R, I, M((representing, respectively:
NOT, AND, OR, XOR, NAND, NOR, IF, and Majority, the first being
a function of one argument, the second through fifth are functions of
two arguments, and the last two are functions of three arguments), and
T & 'c, b, a, u, 1, 2, 3(. The rule table (27 & 128 fitness cases) is
shown in Table 5 and the fitness was evaluated by equation (4.2). Thus,
fmax & 128.

Three different solutions were discovered in one experiment:

MA3OOAMOAuOMRa1cc3cubcc2cu11ba2aacb331ua122uu1

X3RRMIMODIAIAAI3cauuc313bub2uc33ca12u233c22bcb

MMOIOcXOMa3AXAu3cc112ucbb3331uac3cu3auubuu2ab1

Careful analysis of these programs shows that the GP rule is, like the
GKL rule, a function of five arguments: c, a, u, 1, and 3.

6.5.2 The 11-multiplexer problem

The task of the 11-bit boolean multiplexer is to decode a 3-bit binary
address (000, 001, 010, 011, 100, 101, 110, 111) and return the value
of the corresponding data register (d0, d1, d2, d3, d4, d5, d6, d7). Thus,
the boolean 11-multiplexer is a function of 11 arguments: three, a0 to
a2, determine the address, and eight, d0 to d7, determine the answer. As
GEP uses single-character chromosomes, T & 'a, b, c, 1, 2, 3, 4, 5, 6,
7, 8(which correspond, respectively, to 'a0, a1, a2, d0, d1, d2, d3, d4, d5,
d6, d7(.

There are 211 & 2048 possible combinations for the 11 arguments
of the boolean 11-multiplexer function. For this problem a random
sampling of the 2048 combinations was used each generation as the
cases for evaluating fitness. The fitness cases were assembled by address,
and for each address a subset of 20 random combinations was used each
generation. Therefore, a total of 160 random fitness cases were used
each generation as the adaptation environment. In this case, the fitness
of a program is the number of fitness cases for which the boolean value
returned is correct, plus a bonus of 180 fitness points for each subset
of combinations solved correctly as a whole. Therefore, a total of 200
fitness points was attributed for each correctly decoded address, being
the maximum fitness 1600. The idea was to make the algorithm decode

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 127

Figure 17. Progression of average fitness of the population and the fitness of the
best individual for run 1 of the experiment summarized in Table 2, column 5
(11-multiplexer).

one address at a time. And, in fact, the individuals learn to decode first
one address, then another, until the last one (see Figure 17).

To solve this problem, multigenic chromosomes composed of 27
genes were used, each gene consisting of only one terminal. Thus, no
functions were used to generate the chromosomes, although the sub-ETs
were posttranslationally linked by IF.

The parameters used per run are shown in Table 2, column 5. The first
correct solution in this experiment was found in generation 390 of run 1
(the characters are linked 3 by 3, forming an ET with depth 4, composed
of 40 nodes, the first 14 nodes being IFs, and the remaining nodes, the
chromosome characters; see K-expression (3.12) and Figure 5):

3652bb5bbba4c87c43bcca62a51

which is a universal solution for the 11-multiplexer. Figure 17 shows
the progression of average fitness of the population and the fitness of
the best individual for run 1 of the experiment summarized in Table 2,
column 5.

Complex Systems, 13 (2001) 87–129

128 C. Ferreira

As shown in the fifth column of Table 2, GEP solves the 11-multiplexer
with a success rate of 0.57. It is worth noting that GP could not solve
the 11-multiplexer with a population size 500 for 51 generations [18],
and could only solve it using 4000 individuals [9].

7. Conclusions

The details of implementation of gene expression programming (GEP)
were thoroughly explained allowing other researchers to implement this
new algorithm. Furthermore, the problems chosen to illustrate the func-
tioning of GEP show that the new paradigm can be used to solve several
problems from different fields with the advantage of running efficiently
in a personal computer. The new concept behind the linear chromo-
somes and the ETs enabled GEP to considerably outperform existing
adaptive algorithms. Therefore, GEP offers new possibilities for solv-
ing more complex technological and scientific problems. Also important
and original is the multigenic organization of GEP chromosomes, which
makes GEP a truly hierarchical discovery technique. And finally, gene
expression algorithms represent nature more faithfully, and therefore
can be used as computer models of natural evolutionary processes.

Acknowledgments

I am very grateful to José Simas for helping with hardware problems,
for reading and commenting on the manuscript, and for his enthusiasm
and support while I was grasping the basic ideas and concepts of GEP.

References

[1] M. Mitchell, An Introduction to Genetic Algorithms (MIT Press, 1996).

[2] J. Maynard Smith and E. Szathmáry, The Major Transitions in Evolution
(W. H. Freeman, 1995).

[3] R. Dawkins, River Out of Eden (Weidenfeld and Nicolson, 1995).

[4] W. Banzhaf, “Genotype-phenotype Mapping and Neutral Variation—A
Case Study in Genetic Programming,” in Parallel Problem Solving from
Nature III, Volume 866 of Lecture Notes in Computer Science, edited by
Y. Davidor, H.-P. Schwefel, and R. Männer (Springer-Verlag, 1994).

[5] R. E. Keller and W. Banzhaf, “Genetic Programming Using Genotype-
phenotype Mapping from Linear Genomes into Linear Phenotypes,” in
Genetic Programming 1996: Proceedings of the First Annual Conference,
edited by J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L. Riolo (MIT
Press, 1996).

Complex Systems, 13 (2001) 87–129

Gene Expression Programming: A New Adaptive Algorithm for Solving Problems 129

[6] M. J. Keith and M. C. Martin, “Genetic Programming in C++: Imple-
mentation Issues,” in Advances in Genetic Programming, edited by K. E.
Kinnear (MIT Press, 1994).

[7] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone, Genetic Pro-
gramming: An Introduction: On the Automatic Evolution of Computer
Programs and its Applications (Morgan Kaufmann, San Francisco, 1998).

[8] J. H. Holland, Adaptation in Natural and Artificial Systems: An Intro-
ductory Analysis with Applications to Biology, Control, and Artificial
Intelligence, second edition (MIT Press, 1992).

[9] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection (MIT Press, Cambridge, MA, 1992).

[10] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning (Addison-Wesley, 1989).

[11] M. Lynch and J. S. Conery, “The Evolutionary Fate and Consequences of
Duplicated Genes,” Science, 290 (2000) 1151–1155.

[12] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the Edge of
Chaos: Evolving Cellular Automata to Perform Computations,” Complex
Systems, 7 (1993) 89–130.

[13] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving Cellular Au-
tomata to Perform Computations: Mechanisms and Impediments,” Phys-
ica D, 75 (1994) 361–391.

[14] J. P. Crutchfield and M. Mitchell, “The Evolution of Emergent Computa-
tion,” Proceedings of the National Academy of Sciences, USA, 82 (1995)
10742–10746.

[15] R. Das, M. Mitchell, and J. P. Crutchfield, “A Genetic Algorithm Discovers
Particle-based Computation in Cellular Automata,” in Parallel Problem
Solving from Nature—PPSN III, edited by Y. Davidor, H.-P. Schwefel,
and R. Männer (Springer-Verlag, 1994).

[16] J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane, Genetic Program-
ming III: Darwinian Invention and Problem Solving (Morgan Kaufmann,
San Francisco, 1999).

[17] H. Juillé and J. B. Pollack, “Coevolving the ‘Ideal’ Trainer: Applica-
tion to the Discovery of Cellular Automata Rules,” in Genetic Program-
ming 1998: Proceedings of the Third Annual Conference, edited by J. R.
Koza, W. Banzhaf, K. Chellapilla, M. Dorigo, D. B. Fogel, M. H. Gar-
zon, D. E. Goldberg, H. Iba, and R. L. Riolo (Morgan Kaufmann, San
Francisco, 1998).

[18] U.-M. O’Reilly and F. Oppacher, “A Comparative Analysis of Genetic
Programming,” in Advances in Genetic Programming 2, edited by P. J.
Angeline and K. E. Kinnear (MIT Press, 1996).

Complex Systems, 13 (2001) 87–129

