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In this paper the relationship between systems of real-valued, or con-
tinuous, one-dimensional cellular automata (CA) and a corresponding
one-dimensional nonlinear dynamical system is investigated. The CA
will be defined in a periodic domain and will satisfy requirements on the
function used to assign new values; the corresponding one-dimensional
dynamical system will be derived from the function used to assign new
values. It is shown that the qualitative behavior of the CA—the existence
of a stable orbit with the same value at all cells—is determined by the
corresponding one-dimensional system and the geometry of the CA.

1. Analysis

One-dimensional cellular automata (CA) are a class of dynamical sys-
tems, discrete in time and space. The discretized space is a regular
uniform lattice which in one dimension becomes a one-dimensional ar-
ray of “cells,” at each cell there is a variable. The values at each time
step are determined by the values of the variables at the previous time
step which are within some neighborhood of the variable [6].

Typically the values assigned to the cells are chosen from a finite set.
Here we will take the values from the unit interval [0,1] giving real-
valued or continuous cellular automata (CCA). In [5] Pederson uses
real-valued functions that interpolate between the values of a discrete
function, analyzing how the approximation of a discrete system com-
pares to the discrete system. In [4] Ostrov and Rucker use CCA to study
nonlinear wave equations.

In this paper we investigate a system where the lattice is periodic in
space and the variable is real-valued and restricted to values in [0, 1].
That is, there are N cells, !x1, . . . , xN" with each xi adjacent to xi#1 and
xi$1 and x1 is adjacent to xN, and at each of these cells there is a real
value in [0, 1].

We shall also require that the rule used to assign new values is a
symmetric function, fΜ & [0, 1] ' [0, 1] ' [0, 1] ( [0, 1], with

fΜ(x1, x2, x3) ) fΜ(xi, xj, xk), (1)
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where (i, j, k) is any permution of !1, 2, 3" and fΜ(x, x, x) has only one
attractive orbit under iteration.

We will use linear stability analysis to determine a condition when
a system of this type has a stable orbit determined by the associated
one-dimensional dynamical system.

Let us start by letting the !un ) (un
1, un

2, . . . , un
N) be the values at each

location at time step n. Then our values will satisfy

un$1
i ) fΜ(un

i#1, un
i , un

i$1). (2)

We can introduce the average value

ūn )
"N

i)1 un
i

N
(3)

and the difference

Εn
i ) un

i # ūn. (4)

Linearizing will give

ūn$1 $ Εn$1
i ) fΜ(ūn $ Εn

i#1, ūn $ Εn
i , ūn $ Εn

i )

) fΜ(ūn, ūn, ūn)

$
,fΜ

,ui#1
(ūn, ūn, ūn)Εn

i#1 $
,fΜ
,ui

(ūn, ūn, ūn)Εn
i

$
,fΜ

,ui$1
(ūn, ūn, ūn)Εn

i$1 $ !(max
i

!(Εn
i )2"). (5)

Exploiting symmetry will let us define

f̄Μ(ūn) ) fΜ(ūn, ūn, ūn) (6)

and

,f̄Μ
,u

(ūn) )
,fΜ

,ui#1
(ūn, ūn, ūn)

)
,fΜ
,ui

(ūn, ūn, ūn)

)
,fΜ

,ui$1
(ūn, ūn, ūn). (7)

Then we will have

ūn$1 $ Εn$1
i ) fΜ(ūn $ Εn

i#1, ūn $ Εn
i , ūn $ Εn

i )

) f̄Μ(ūn) $
,f̄Μ
,u

(ūn, ūn, ūn)(Εn
i#1 $ Εn

i $ Εn
i$1)

$ !(max
i

!(Εn
i )2"). (8)
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Summing each of these expressions from i ) 1 to i ) N and dividing by
N will give

ūn$1 ) f̄Μ(ūn) $ !(max
i

!(Εn
i )2") (9)

because "N
i)1 Εn

i ) 0. We can then subtract this expression from equa-
tion (7) to get for each Εn$1

i

Εn$1
i )

,f̄Μ
,u

(ūn)(Εn
i#1 $ Εn

i $ Εn
i$1) $ !(max

i
!(Εn

i )2"). (10)

If we let

B )

-........................./

1 1 0 ! 0 1
1 1 1 0 ! 0
0 1 1 1 0 ! "
" # 0
0 ! 0 1 1 1
1 0 ! 0 1 1

011111111111111111111111112

, (11)

(i.e., an N ' N matrix with 1s along the diagonal, the subdiagonal, and
the superdiagonal as well as in the upper right and lower left corners,
and 0s for all other entries) and!Ε n ) (Εn

1, Εn
2, ..., Εn

N)T (12)

then we can write!Ε n$1 )
,f̄Μ
,u

(ūn)B!Εn $ !(max
i

!(Εn
i )2"). (13)

The matrix B is a circulant matrix–each row is equal to the previous
row shifted one position to the right modulo the size of the matrix.
This special structure tells us the eigenvalues and eigenvectors. The
eigenvalues are given by

Λj ) a1 $ a2rj $ a3r2
j $! $ anrn#1

j (14)

where aj is the jth entry of the first row of B and rj is a solution of rn ) 1.
More specifically for our matrix this will be

Λj ) 1 $ rj $ rn#1
j

) 1 $ cos #2Π
n
$ $ i sin #2Π

n
$

$ cos #2(n # 1)Π
n

$ $ i sin #2(n # 1)Π
n

$
) 1 $ 2 cos #2Π

n
$ . (15)
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As j ranges from 0 to n # 1 the eigenvalues will range from a maximum
value of 3 to a minimum value (or values) determined by the value of
2Π/j closest to Π. If n is even, then for j ) n/2 the eigenvalue will be
#1; if n is odd there will be a pair of eigenvalues that are minimal. The
eigenvalues given by 1 and n # 1 will be the same as will those given by
2 and n # 2 and so forth.

The corresponding eigenvectors are given by!ui ) (1, ri, r2
i , . . . , rn#1

i ) (16)

from which a set of n real linear independent eigenvectors can be found,
since B is real symmetric. Let us refer to this set of real eigenvectors as
!
!
Ξj".

Taking the set of eigenvectors !
!
Ξj" as a basis, with

!
Ξ0 ) (1, 1, ..., 1)T ,

we can write for j between 1 and n # 1:

cn$1
j
!
Ξj )

,fΜ
,u

(ūn)Bcn
j
!
Ξj $ !(max

i
!(Εn

i )2")

)
,fΜ
,u

(ūn)cn
j Λj
!
Ξj $ !(max

i
!(Εn

i )2"). (17)

So if cn
j tends to 0 for each j except for 0, the coefficient of

!
Ξ0 )

(1, 1, ..., 1)T , then the system will tend to the orbit of the one-dimensional
dynamical system,

ūn$1 ) fΜ(ūn) $ !(max
i

!(Εn
i )2"), (18)

if the average values ūn are sufficiently close to the orbit of the one-
dimensional dynamical system. This happens only if

677777
8

n%
i)1

,fΜ
,u

(ūi)
9:::::
;
Λn

j < 0, (19)

as n goes to infinity. It will be sufficient for the product including Λ1
or Λn#1 to tend to 0 as these products will be larger than the products
including the other eigenvalues.

By assumption fΜ(ūn) has one attractive orbit, so we can see that for
a value of Μ the orbit of the CA will be attracted to fΜ(ūn)(1, 1, ..., 1)T if&&&&&&&&&c

n$p
1

cn
1

&&&&&&&&& )
&&&&&&&&&&Λp

1

p%
j)1

,fΜ
,u

(ūi))
&&&&&&&&&& < 1, (20)

where p is the period of the orbit. Notice that this depends on the orbit
of the one-dimensional system, in the form of the ūi; and the geometry
of the CA, in the form of Λ1.
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This formula requires that we know the orbit of the one-dimensional
system, which presents computational difficulties in practice. Let us
define

P )
&&&&&&&&&

p%
i)1

,fΜ
,u

(ūi$n)
&&&&&&&&&
1/p

, (21)

where p is the period of the orbit of fΜ, and suppose there are two
integers M1 and M2 with M2 > M1 = p and M2 # M1 = p. Then we
can write

M2 # M1 ) kp $ r, (22)

where k is the largest integer for which kp < M2 #M1, and r is an integer
with r > M2 # M1. We can divide to get

1 )
kp

M2 # M1
$

r
M2 # M1

. (23)

If we form the product&&&&&&&&&&
M2%

i)M1

,fΜ
,u

(ūi$n)
&&&&&&&&&&
1/(M2#M1)

)

&&&&&&&&&&&
M1$kp%
i)M1

,fΜ
,u

(ūi$n)
M2%

i)M1$kp$1

,fΜ
,u

(ūi$n)

&&&&&&&&&&&
1/(M2#M1)

)

&&&&&&&&&&&Pkp
M2%

i)M1$kp$1

,fΜ
,u

(ūi$n)

&&&&&&&&&&&
1/(M2#M1)

) Pkp/(M2#M1)

&&&&&&&&&&&
M2%

i)M1$kp$1

,fΜ
,u

(ūi$n)

&&&&&&&&&&&
1/(M2#M1)

. (24)

We see that as M2 #M1 becomes large relative to the period of the orbit
p, we will have

Pkp/(M2#M1) < P (25)

and &&&&&&&&&&&
M2%

i)M1$kp$1

,fΜ
,u

(ūi$n)

&&&&&&&&&&&
1/(M2#M1)

< 1. (26)

So then we may approximate the inequality in equation (20) by

Λ1

&&&&&&&&&&
M2%

i)M1

,fΜ
,u

(ūi$n)
&&&&&&&&&&
1/(M2#M1)

< 1. (27)

Complex Systems, 13 (2001) 131–142



136 R. E. Rausch

Let us define a function

g(Μ) )
&&&&&&&&&&

M2%
i)M1

,fΜ
,u

(ūi)
&&&&&&&&&&
1/(M2#M1)

, (28)

and observe that this function depends only on the rule used to define
the CA and not the geometry.

Using this function we may write a condition for the convergence to
a state where all cells have a uniform value,

Λ1g(Μ) < 1. (29)

Note that the function g(Μ) is determined by the rule used to assign new
values and does not depend on the number of cells, so this function can
be computed for the entire class of CCA that have this rule. Then the set
of parameter values Μ for which the CCA will have a stable orbit with
the same value at all cells can be determined by satisfying equation (28).

2. Examples

In this section we demonstrate the behavior discussed in the analysis
performed in section 1. Let us start with the system of CCA having new
cell values defined by the rule

un$1
i ) Μ(un

i#1 $ un
i $ un

i$1)(1 # un
i#1)(1 # un

i )(1 # un
i$1). (30)

The corresonding one-dimensional nonlinear dynamical system will be
defined by the map

Un$1 ) f (Un) ) Μ(3Un)(1 # Un)3. (31)

The map g(Μ) will be defined by

g(Μ) )
M2%

i)M1

Μ(1 # 4Ui)(1 # Ui)2. (32)

We need to check at this point that this map satisfies the condition of
having only one attractive orbit. First let us compute the Schwarzian
derivative of this function

Sf )
f ???

f ? #
3
2
# f ??

f ? $2
) #

12(3 # 10Un $ 10(Un)2)
(1 # 4Un)2(Un # 1)2

< 0. (33)

Then since Sf < 0 and f (U) has two critical points (at U ) 1/4 and
U ) 1), we can state that f has at most four attracting periodic orbits [2].
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By observing that if U @ (#A, 0) B (1,A) then f k(U) tend to negative
infinity, we can eliminate two attracting orbits leaving us the possibility
that there is one orbit that attracts 1/4 and an orbit that attracts 1. Then
note that if 1 > x > f (1/4) then f n(x) < f (1/4) for all n, and so there
is no open set W with x @ W where f (W) C W, so there is only one
attractive period orbit.

The finalstate diagrams for the CCA with seven cells and the one-
dimensional dynamical system are illustrated in Figure 1 along with
the graph of y ) 1 and y ) Λ1g(Μ). The finalstate diagrams were
generated by taking 100 evenly spaced values of Μ between 2 and 3 and
iterating to approximate the orbit at each of these values. For the CCA
diagram the procedure was the following. First, the one-dimensional
map was iterated 1000 times to find a value close to the orbit of the one-
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Figure 1. Finalstate diagrams for CCA with seven cells (top) and corresponding
one-dimensional map (middle), y ) 1 and y ) Λ1g(Μ) (bottom) for parameter
values of 2.0 to 3.0
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dimensional system. The cells of the CCA were then initialized to this
value, excepting one cell were the value was perturbed by 0.0001. The
CCA were then iterated 1000 times. Following this, the cell values of
the next 100 steps were plotted as a function of Μ to create the diagram.
This procedure is necessary to ensure that we start sufficiently close to
the orbit of the one-dimensional system—while equation (28) ensures
stability, it does not ensure stability for all initial states. For the one-
dimensional system an initial value of 0.25 was taken, then the system
was iterated for 1000 steps and the cell values of the next 100 steps were
plotted to create the finalstate diagram. To generate the graph of g(Μ) an
initial value of 0.25 was used with M1 ) 500 and M2 ) 1000. Notice
that for some values of the parameter the diagrams appear to be identical
while for some values the diagrams differ. Equation (28) is satisfied for
values of Μ less than approximately 2.35, for a narrow band of values of
Μ near 2.45 corresponding to period 5 in the one-dimensional system,
and for a wider band between approximately 2.6 and 2.7 corresponding
to period 3. In each of these cases we can find in the CCA finalstate
diagram data points that match those in the one-dimensional diagram.

Another example is illustrated by Figure 2. The same rule is used to
assign the new values as in the previous example, see equation (30), ex-
cept in this example there are 12 cells. The diagrams were generated in
the same manner as for the case with seven cells. Again we see windows
where equation (28) is satisfied, below approximately 2.25 the diagrams
coincide, and between 2.5 and 3 we see the period 6 window and the
coincidence of the CCA diagram and the one-dimensional system dia-
gram. Similarly there is agreement in the period 5 window between Μ
values of 2.4 and 2.45 and in the period 3 window between 2.6 and 2.7.

The next example is illustrated by Figure 3. The same rule is used
to assign the new values as in the previous example, see equation (30),
except in this case there are 23 cells. The diagrams were generated in
the same manner as for the case with seven cells. Again we see windows
where equation (28) is satisfied, below approximately 2.25 the diagrams
coincide, and between 2.5 and 3 we see the period 6 window and
the coincidence of the CCA diagram and the one-dimensional system
diagram. Similarly there is agreement in the period 5 window between Μ
values of 2.4 and 2.45 and in the period 3 window between 2.6 and 2.7.

Let us return to the 12-cell example and examine more closely one of
the windows where the CCA diagram and the one-dimensional system
diagram coincide. We will plot our diagrams for the range of parameter
values from 2.42 to 2.43, taking 100 evenly spaced steps. At the top
of Figure 4 we see the CCA finalstate diagram, in the middle is the
one-dimensional system finalstate diagram, and at the bottom the graph
of Λ1g(Μ). Here we can see at a finer resolution the correspondence
between satisfying the condition Λ1g(Μ) < 1 and the CCA converging to
the orbit of the one-dimensional system.
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Figure 2. Finalstate diagrams for CCA with 12 cells (top) and corresponding one-
dimensional map (middle), and y ) 1 and y ) Λ1g(Μ) (bottom) for parameter
values of 2.0 to 3.0.

In our last example we will examine the effect of starting the CCA at
a state that is not sufficiently close to the orbit of the one-dimensional
system to ensure convergence. In Figure 5 at top we have the finalstate
diagrams for the CCA initialized with a starting value of 0.23456 at
all cells except one where this value was perturbed by 0.0001. In the
middle we have the CCA initialized with a value near the orbit of the
one-dimensional system (as in the other examples), and at the bottom
there is the graph of Λ1g(Μ). We can clearly see the effect of the initial
condition: for the CCA not near the value of the one-dimensional system
the system does not converge to the orbit of the one-dimensional system
for parameter values between approximately 2.4285 and 2.4295 while
the CCA initialized to a value near the orbit of the one-dimensional
system is stable and converges to that orbit.
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Figure 3. Finalstate diagrams for CCA with 23 cells (top) and corresponding one-
dimensional map (middle), and y ) Μ and y ) Λ1g(Μ) (bottom) for parameter
values of 2.0 to 3.0.

3. Conclusions

Starting with a system of continuous cellular automata (CCA) we can
state a stability condition for the finalstate of this system. We derive
from the rule defining the CCA a one-dimensional map used to define a
one-dimensional dynamical system. The rule that defines the CCA must
statisfy a symmetry condition, and the one-dimensional map derived
from this rule must allow only one attractive orbit. Based on the number
of cells in a system of CCA a stability condition can be determined. For
those parameter values that satisfy this condition the system of CCA
is shown to have a stable orbit whose values are determined by the
orbit of the one-dimensional system. And finally, this stable solution
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Figure 4. Finalstate diagrams for CCA with 12 cells (top) and corresponding one-
dimensional map (middle), and y ) 1 and y ) Λ1g(Μ) (bottom) for parameter
values of 2.42 to 2.43.

is guaranteed only for those initial states that are sufficiently close to
the orbit of the one-dimensional system as demonstrated in one of the
examples.
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