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A cellular automata model that describes as limit cases the spread of con-
tagious diseases modeled by systems of ordinary or partial differential
equations is developed. Realistic assumptions in the motion of human
populations are considered. A parameter describing the range of that
motion is defined. For small (large) values of this parameter, the behavior
described by partial (ordinary) differential equation models are repro-
duced. Emphasis is also placed on the study of those scenarios which the
differential equations fail to describe. In the study of these cases some
interesting results, including evidence of period doubling behavior, are
reported.

1. Introduction

One of the first tasks that faces a theoretician wanting to interpret the
time evolution of a complex system is the construction of a model.
In real systems, many features are likely to be relevant, but not all
of them, however, are included in the model. In spite of this lack,
such a simplified description can often be very helpful in developing
the necessary intuition for understanding the behavior of real complex
systems.

Most models in population dynamics, spread of diseases, rumors,
and news are formulated in terms of differential equations, both partial
and ordinary. The difference between the types of equations used is
strongly related with the assumptions made about the way members of
a population move in the spatial region they belong to. If the model
assumes a homogeneous mixing of the different classes of individuals
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(infected, susceptible, removed, etc.) then, systems of ordinary differen-
tial equations are used. If a short-range character of motion is assumed,
that is, if the mean length of the motion of members of a population is
small with respect to the size of the spatial ensemble where they live,
then the spread of some diseases behave as diffusion processes and par-
tial differential equations are used in their modeling. In both cases the
assumption of random motion is made for the individuals. This last
hypothesis is irreplaceable in the deduction of the equations.

Two objections could be made about these assumptions. First, the
diffusive or perfect mixing hypothesis is not quite always fulfilled. In
many cities the length of the average daily motion of habitants is too
large to produce diffusive behavior and at the same time too small to
guarantee perfect mixing. Second, the motion of individuals of some
species (human among them) is not random as assumed in the hypothesis
of the above mentioned models. At least for human populations it is far
from true. A lot of people go to school or to work and later go back
home daily, therefore periodic motion seems more praiseworthy than
random. Many other species (such as foxes and other mammalians)
also have motion routines. Finally, we want to stress that little has been
said about those transmission processes that do not fit very well into
the mentioned differential models. We mainly address that topic in this
work.

The aim of this paper is to develop a cellular automata model, gen-
eral enough to describe those limit situations well-modeled by systems
of ordinary or partial differential equations and also those that the dif-
ferential models fail to describe, taking into account the peculiarities
of motion in human settlements and the main characteristics of contact
processes. We also report some interesting properties of the infectives
time series in different regimes of the parameters. The model is de-
scribed in section 2. It depends on two parameters: the mean length
of motion path of individuals, Λ; and a measure of the strength of the
contagion process, p. Tuning the parameter Λ we obtain diffusive or
perfect mixed behaviors and also describe those scenarios hard to char-
acterize with differential equations. After a validation of the behavior
of our model in these limit cases (section 3), we focus our attention on
those intermediate scenarios where differential models cannot be used
(section 4). In this regime we obtain the central results of our work,
studying some properties of the spread of epidemics related with the
time series of infectives. Section 5 follows with conclusions.

2. The model

Cellular automata provide simple models for a variety of complex sys-
tems containing a large number of identical elements with local interac-
tions. A cellular automaton consists of a lattice with a discrete variable
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at each site, evolving at discrete time steps. At a given time, the value
of the variable at one site is determined by the values of the variables
at the neighboring sites. The neighborhood could include the site it-
self. The evolution rule is synchronous, that is, all sites are updated
simultaneously. Cellular automata are therefore, discrete (in space and
time) dynamical systems. For a review of their main properties see, for
example, [6, 10, 12].

Site exchange cellular automata are automata networks whose rules
consist of two subrules. The first, applied synchronously, is a local rule
inspired by Conway’s “Game of Life” and describes the local behavior
of the transmission processes (contagion process, spread of news and ru-
mors). We call these types of rules contagion rules although their validity
is far beyond the scope of infective processes. For example, some pro-
cesses of the diffusion of rumors can be described using these rules. The
second, which has been sequentially applied, describes the motion of a
fraction of individuals and are called transport rules. These models have
been extensively studied [1–5] in recent years. In order to enhance the
difference between those works and ours we briefly describe them below.

Let Z be the set of the integer numbers and # $ Z2 be a lattice. The
set # represents the spatial environment where the population lives. At
a time step t a site of # is either empty or occupied (representing an
individual in some subclass of the population). The way the transport
subrules have been used [1–5] is as follows: Each time step, an occupied
site is selected at random and swapped with another site (empty or
occupied) also selected at random. This operation is repeated mc(t)N
times, where N is the total number of sites, c(t) is the density of nonzero
sites at time t, and m is a parameter called the degree of mixing. It
is important to note the stochastic character of the processes. We also
want to stress their unrealistic character. These rules fail to explain
why in a human population, with rigid motion schedules dictated by
daily routine, the spread of epidemics behave under certain conditions
as perfect mixed or perfect diffusive.

In order to fill this gap we devise another type of transport subrule.
Let # $ Z2, whose vertices are occupied by members of the population.
Let % & '0, 1, . . . , p(# be the set of elements of the form (a(i,j))(i,j))# where
a ) '0, 1, . . . , p( represents to which subclass they belong, and (i, j) is
a position in the lattice. For example, in an epidemic process these
subclasses could be empty, susceptible, infective, or removed. The set
% contains all the possible configurations over the lattice #. Hence we
call it the configuration space.

Let Τ + % , % be a function which satisfies the following conditions.

(a) Let (Τ(a(i,j)))(i,j))# be the image of the element (a(i,j))(i,j))# under the ap-
plication of Τ. Then if a(i0,j0) - 0, one of the following two conditions
hold.
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(a1) Τ(a(i0,j0)) & 0.

(a2) Τ(a(i0,j0)) & a(i0,j0).

(b) For every x1, x2 ) #, with x1 - x2 such that ax1
, ax2

- 0, then Τ(ax1
) -

Τ(ax2
).

The above statements deserve an explanation. Condition (a) means that
every nonempty element of the lattice can only be moved to an empty
site (a1) or remain in the original position (a2). It means that we are
considering the possibility that some members of the population do not
change their position with time. This is a very natural assumption. In
fact, a fraction of all members in a human settlement (old men and
women, housekeepers, etc.) do not change their spatial position with
time.

Condition (b) means that two occupied sites cannot go to the same
empty site. These are reasonable statements. We observe in nature that
elements of a population, by means of motion, could be placed close
together but never one over the other.

We call the function Τ a transport rule. We emphasize the syn-
chronous character of this type of rule. In Figure 1 we show a schematic
representation of a transport rule.

Let X ) % be an element of %. We denote by O(X) the subset
of # with nonempty positions, that is, O(X) & 'x ) #, ax - 0(, and
by N(X) the number of elements of O(X). We define the number

Λ &
1

N(X) !
x)O(X)

Ρ(x, Τ(x)) (1)

where Ρ(x, Τ(x)) is the euclidean distance between the nonempty position
x and its destination by means of Τ. We call Λ the mean length of motion
path of individuals. Note that once a transport rule Τ is selected, the
value of Λ is calculated straightforwardly. Further, different transporta-
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2

4 5
Τ/1 Τ
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2

Figure 1. A schematic transport rule. Notice that some sites remain unchanged.
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Figure 2. A schematic contagion rule.

tion rules should have the same Λ. We only use transport rules with
uniform probability distribution functions for distances, that is,

Λ 0
dmin 1 dmax

2

where dmin, dmax are the minimum and maximum distances allowed,
respectively. Obviously dmin & 0. Transportation rules having different
probability distribution functions for distances are also important and
interesting. In fact, in human settlements people are averse to move far
away from their home (sometimes it is impossible to avoid) to develop
their social routines. However, in this work we only focus on the above-
mentioned transportation rules.

Let us now define the kind of local rules which describe the transmis-
sion process (e.g., contagion, spread of rumors, etc.). Although we use
concepts related with epidemic processes, the validity of the definitions
explored below are far beyond this narrow framework.

Let us take % & '0, 1, 2(#, where 0 means empty, 1 susceptible, and 2
infective. Nonempty susceptible sites become infective by contact, that
is, a susceptible may become infective with a probability p if and only
if it is in the neighborhood of an infective. More precisely, during one
time step, the probability that a susceptible having n infected neighbors
become infected is 1 / (1 / p)n. This hypothesis neglects latent peri-
ods, that is, an infected susceptible becomes immediately infective. In
Figure 2 we show a situation as described.

Let Εp + % , % be the function (which depends on probability p)
representing the above mentioned transmission process. We call the
contagion process the time trajectory of an element X ) % by the appli-
cation of Π & Τ/1 ! Εp ! Τ ! Εp:

'Πn(n)N & 'Πn(X)(n)N. (2)
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We also consider along this line a more general situation, in which
the disease has a finite duration, that is, a susceptible, which becomes
infective at time t, again becomes susceptible at time t 1 d. Then,
we could define a function Εd

p + % , % representing this transmission
process. Hence, a function Πd & Τ/1 ! Εd

p ! Τ ! Ε
d
p could be defined and also

a contagion process similar to that described in equation (2). Note also
that limd,4 Εd

p / Εp.
Although this set up seems completely deterministic, it has a stochas-

tic component. The function Εp1 could assign in each realization differ-
ent elements Εp(X) ) % to every element X ) %. Hence, equation (2)
should be understood as the set of realizations of the contagion pro-
cess. The configuration X is the initial conditions of the process and
encloses all the information at time t & 0. Models in ordinary or partial
differential equations also use some information encoded in X in the
form of initial and/or boundary conditions. Note that the application
of Π represents the daily exposure of the elements of the population.
They could be infected or not at their original sites (Εp), later they move
(Τ) to their destination, being exposed or transmitting the disease there
(Εp), and later go back to their original positions (Τ/1). We oversimplify
the process by assuming that the only situations where contagion takes
place are at their original position or destination, that is, homes, schools,
jobs, or any other social activities for human populations. In this case,
exposure to epidemics during transportation (e.g., subway, bus, etc.) is
neglected here. Similar assumptions can be made in animal diseases.
Consider, for instance, rabies epidemic among the foxes. Rabies is a
viral infection of the central nervous system. It is transmitted by contact
and is invariably fatal. As stated in [7] foxes acquire the disease mainly
during hunting hours or at their dens.

3. Limit cases

If our model correctly embodies the main features of the motion process
in a population and the contact process of epidemics, it should describe
as particular cases the limit situations modeled by systems of partial
and ordinary differential equations. In this section we show how, for
different values of the parameter Λ defined in equation (1), we could
obtain the extreme behaviors of perfect mixing and perfect diffusion.
All the simulations referenced in this section were done with a lattice
# of size L & 150, in other words, 150 5 150 sites with half of them
nonempty. The initial distribution of the nonempty sites is always like
black squares on a chess board. Therefore, we have a population of
11250 members. The transmission process Εp(Εd

p) will be as described in

1For the remainder of section 2, the assertions made about Εp are also valid for Εdp.
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section 2: there will be only susceptibles and infectives. We always start
the simulation with only one infective placed at the center of the lattice
in order to avoid side effects. For all the simulations, the transportation
rule does not change.

3.1 Large values of Λ

If the parameter Λ is large enough, then a perfect mixed behavior could
be observed. Figure 3 shows the pattern of infectives for several differ-
ent values of t. The length of an average path is Λ & 75. Because the
lattice size is 150, the value of Λ is extremely high and perfect mixed
behavior is easily observed. A classical differential equation model for
this scenario is:

67778777
9

dI(t)
dt

& ΑI(t)(11250 / I(t))

I(0) & 1
(3)

where I(t) represents the number of infectives at instant t and Α is a
constant related with the morbidity of the disease. The higher the Α
value, the higher the growth rate of I(t). We have observed a strong
relationship between the constant Α and the probability p of the trans-
mission process Εp. In Figure 4 is shown a graph with the averaged
values of infectives obtained with 10 simulations with the same prob-
ability (p & 0.31) and the theoretical curve obtained from the Cauchy
problem (equation (3)) with the corresponding values of Α (in this case
Α & 0.678). In Figure 5 is shown a graph of Α versus p. Each point
of the curve is also obtained from 10 simulations with the same value
of p. The time interval was [0, 250]. In each simulation the values
of infectives I0, I1, . . . , I250, were introduced in a linear regression using
equation (3) to obtain the value of Α. The process was repeated 10 times
and the average is plotted.

3.2 Small values of Λ

With small values of Λ the cellular automata model behaves as perfect
diffusive. In Figure 6 the pattern of infectives is shown for several
different values of t. Notice the formation of a wave front, which grows
until it covers the entire lattice. This is in agreement with other results.
In [7] a diffusion term was added into the rate equation of infectives in
the model proposed by Kermack and McKendrick (see [8] for details)
in order to take into account the dispersion of rabid foxes. The new
system of equations admitted traveling wave front solutions. Note that
if only susceptibles and infectives exist, then an elementary differential
equation model for this scenario is:

;u(x, y, t)
;t

& D<2u(x, y, t) 1 Αu(x, y, t)(1 / u(x, y, t)) (4)
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(a) (b)

(c)

Figure 3. Deployment of contagion process for Λ & 75 for several values of t:
(a) corresponds to t & 10, (b) to t & 30, and (c) to t & 50.

where u(x, y, t), represents the density of infectives in position (x, y) at
instant t. The constant D is the diffusion coefficient and the constant
Α is related with the morbidity of the disease. The influence of Λ in the
behavior of D is in accordance with our perception of what a diffusion
process is. As Λ increases, the spread of infectives produces spatial
patterns that are hard to describe as a diffusion process. This fact is
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Figure 4. Averaged values of infectives from 10 simulations with the same value
of probability (p & 0.678) and the analytical solutions of the Cauchy problem
(equation (3)) with the corresponding values of Α (in this case Α & 0.31).

Figure 5. Rate of increase of infectives Α versus the probability of contagion
rule p.

reflected in the behavior of D with respect to Λ. In Figure 7 is shown a
graph of D versus Λ. The scale in the horizontal axis represents fractions
of L/2. For example, 0.4 represents Λ & 30. Each point of the curve is
obtained with 10 simulations using the same value of Λ. The procedure
to construct those points is as follows. In order to find an approximation
of u(x, y, t), the lattice # was divided into 15 5 15 squares of 10 5 10
sites. On each square the number of “infected” sites were counted and
divided by 100. This is an approximation of u(xi, yi, t) in the square
centered at the point (xi, yi) at time t ) [0, 250]. All these values of
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(a) (b)

(c)

Figure 6. Deployment of contagion process for Λ & 15 for several values of t:
(a) corresponds to t & 10, (b) to t & 30, and (c) to t & 50.

u are introduced in a nonlinear weighted regression using equation (4)
to obtain D and Α. We use a weighted procedure in order to enhance
the contribution of those squares with higher density. This process was
repeated 10 times and the average values were plotted. Notice that as Λ
grows the size of the error bars get larger. This fact is a consequence of
the diffusive regimen breaking. For values of Λ > 30, the process is no
longer diffusion.
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Figure 7. Diffusion coefficient D versus Λ.

3.3 The influence of duration of disease

We consider now the above limit cases with the additional assumption
that the disease has duration d. The influence of this assumption on the
behavior of infection processes with values of Λ in the “intermediate”
zone, that is to say, too large to produce a diffusive regime and too
small to produce perfect mixing behavior, will be discussed in detail
in section 4. Let us consider a transmission process Εd

p as defined in
section 2. In both limit cases the behavior of infectives curve I(t) is as
follows: For certain values of T in the interval [0, T] the function I(t) is
strictly increasing. For t > T the function I(t) remains almost constant
at the height H. Note that this plateau means an equilibrium between
the production of new infectives and the arrival of old infectives until the
end of the disease. This equilibrium should be understood in a nonstrict
sense, because the number of infectives fluctuates around some value as
we show below. The amplitude of fluctuations strongly depends on Λ
and takes its smallest values for Λ in the limit cases. For the values of
Λ in the intermediate zone the amplitude of fluctuations is large. Some
interesting properties of this behavior are studied in section 4.

We study the influence of Λ and p on the values of T and H. In
Figure 8 is shown the infectives time series for different values of Λ and
some fixed value of p. Notice that as Λ increases, the value of T first
decreases and later increases. The turning point of T corresponds to
some value of Λ in the intermediate zone. Figure 9 shows the behavior
of T versus Λ for different values of p. The upper curve corresponds
to p & 0.1, the intermediate curve corresponds to p & 0.3, and the
lower to p & 0.7. Each point of the curves represents the average of
10 simulations. Hence the increase of p produces in the above de-
scribed behavior the uniform descent of the curves. These results are a
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Figure 8. Different infectives time series: Λ & 7 (circle); Λ & 24 (square); Λ & 41
(line); and Λ & 60 (dot). The value of p is fixed at p & 0.1.
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Figure 9. The behavior of T versus Λ for different values of p. The upper curve
corresponds to p & 0.1, the intermediate curve corresponds to p & 0.3, and the
lower to p & 0.7.

Complex Systems, 13 (2001) 143–159



Cellular Automata Models for the Spread of Diseases in Human Settlements 155

0 100 200 300 400 500 600
0

1000

2000

3000

4000

5000

6000

time

Nu
m

be
r o

f i
nf

ec
tiv

es

Figure 10. The infectives time series for different values of p and Λ & 7. From the
lowest to the highest curve: p & 0.05, p & 0.09, p & 0.3, p & 0.4, and p & 0.7.

consequence of the percolation of the network of infectives and are in
agreement with recent results about percolation in networks (see [13]).
Notice that all curves reach their minimum at “intermediate” values of
Λ in agreement with the results shown in Figure 8.

Figure 10 shows the time series of infectives for different values of p
and for some fixed value of Λ. Notice that as p increases the values of
H also increase.

The results of sections 3.1 and 3.2 show that our cellular automata
model could capture the main features of extreme cases described by
differential equations, reported in the literature. In the following section
we study the properties of the “intermediate” zone for the values of Λ.

4. The behavior for intermediate values of Λ

In this section we report our findings on the behavior of the site ex-
change cellular automata model for values of Λ that are too large to
yield diffusive behavior and too small to produce perfect mixing. That
is what we called the “intermediate zone” in the previous section. Note
that for these values of parameter Λ the differential equation models fail
to describe the behavior of the process.

Let us consider a transmission process Εd
p as defined in section 2.

Figure 11 shows the time series of infectives for d & 5, p & 0.4, and
Λ & 45. Notice that there is no plateau H as that described in section 3.3.
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Figure 11. Times series of infectives for Λ & 45 and d & 5.

We report a scaling property for this time series. Let us denote by
st & =It11/It = the absolute value of the difference between two consecutive
elements of the time series. Let N(s) be the cumulative number of s, that
is, how many times the value s appears in the 'st( series. We observe
that

N(x) >
1
S∆

. (5)

This means that a small difference between two consecutive values in
the time series of infectives has a higher probability of appearing than
a larger one. We also found a strong correlation between ∆ and p.
Figure 12 shows the graph of N(s) versus s for a “realization” of the
automata model, not for averaged values. In all cases studied the fitness
of N(s) to a power function was good. In the inbox plot of Figure 12
are shown the averaged (over 10 simulations) values of ∆ versus the
corresponding values of p. We confer a great practical value to the last
result. It could allow the estimation of probability p in real epidemic
processes having an accurate record of daily reported cases for several
apparitions of the disease.

We also studied periodic properties of the infectives time series. Our
main tool was frequency domain analysis. Fourier spectra (see [11])
are widely used in time series analysis, because the visual representa-
tion in the frequency domain can more easily reveal patterns which are
harder to discern in the primary data, for example, intricate periodical
behavior. We use here a Fourier transform of infectives time series to
detect periodical features of that function. From now on, we call power
spectra of infectives time series to the product of a Fourier transform of
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Figure 12. N(s) versus s. Notice the power law behavior. In the inbox the
exponent of the power law fit with respect to p is plotted.

that function by its complex conjugate:

Ŝ(k) & Θ
"""""""""

L!
t&1

I(t)e/i2Π(k/L)t
"""""""""
2

(6)

where Θ is a constant related with the sample frequency and L is the
number of data available for I(t).

We studied the changes in the periodic behavior of I(t) with respect
to the order parameter Μ & pd/Λ. We calculate the power spectrum
of several infectives time series with Μ ) [0.06, 0.6]. The results are
presented in Figure 13, where behavior resembling a period-doubling
scenario can be seen. It is well known that period doubling behavior
is a possible route to chaotic behavior. Evidence of this feature in real
contagion processes have been reported in the literature.

5. Conclusions

We have developed a cellular automata model for the spread of epi-
demics, rumors, and news in a population of moving individuals. Our
model depends on a parameter Λ, which represents the mean length of
motion of individuals in a population. We reproduced, with a suitable
tuning of this parameter, the limit cases of perfect mixing and perfect
diffusion often described by systems of ordinary and partial differential
equations, respectively. We also studied those cases which the differen-
tial equation models fail to describe. Our results prove that an important
magnitude in the characterization of dynamics of epidemics in human
populations is the length of the average motion of individuals in the
population. In the cases where no immunization occurs, another impor-
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(a) (b)

(c)

Figure 13. Power spectrum of infectives time series for different values of Μ:
(a) corresponds to Λ & 0.0699, (b) to Λ & 0.3257, and (c) to Λ & 0.5896. Notice
the evidence of period doubling as Λ increases.

tant quantity is the duration of the disease. With intermediate values of
Λ and a suitable tuning of p and d we reported some evidence of period
doubling behavior and other interesting properties.
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