
Evolving Robust Asynchronous Cellular
Automata for the Density Task

Marco Tomassini
Mattias Venzi

Computer Science Institute,
University of Lausanne,
1015 Lausanne, Switzerland

In this paper the evolution of three kinds of asynchronous cellular au-
tomata are studied for the density task. Results are compared with those
obtained for synchronous automata and the influence of various asyn-
chronous update policies on the computational strategy is described. How
synchronous and asynchronous cellular automata behave is investigated
when the update policy is gradually changed, showing that asynchronous
cellular automata are more adaptable. The behavior of synchronous and
asynchronous evolved automata are studied under the presence of random
noise of two kinds and it is shown that asynchronous cellular automata
implicitly offer superior fault tolerance.

1. Introduction

Cellular automata (CA) [1] are discrete dynamical systems that have
been studied theoretically for years due to their architectural simplicity
and the wide spectrum of behaviors they present. They have also been
used as discrete simulations of physical, chemical, social, and biologi-
cal systems that are difficult or impossible to model using differential
equations or other standard mathematical methods. In this work we
concentrate on the commonly assumed hypothesis of simultaneous up-
dating of the CA cells, that is, their synchronicity. This update mode is
interesting because of its conceptual simplicity and because it is easier
to deal with in mathematical terms, which explains why most formal
studies of CA have been done for it (e.g., [2, 3] among many others).
However, perfect synchronicity is only an abstraction: if CA are to
model physical or biological situations or are to be considered physi-
cally embodied computing machines then the synchronicity assumption
is untenable. In fact, in any spatially extended system signals cannot
travel faster than light. Hence, for given dimensions it is impossible for
a signal emitted by a global clock to reach any two computing elements
at exactly the same time, which poses the problem of latching the signal
in order for the units to work in synchronous mode. In biological and
sociological environments agents act at different, and possibly uncor-

Complex Systems, 13 (2002) 185–204; ! 2002 Complex Systems Publications, Inc.



186 M. Tomassini and M. Venzi

related, times which seems to preclude a faithful globally synchronous
simulation in most cases of interest [4].

In this study we relax the synchronicity constraint and work with
various kinds of asynchronous CA on a well-known computational
problem: density classification. There have been few works on asyn-
chronous CA compared with the synchronous or parallel ones. These
studies have tended to show that asynchronous updates often give rise
to completely different time evolutions for the CA. For instance, cyclic
attractors are no longer possible and generally there is a loss of the
rich structures commonly found in synchronous CA. The following ref-
erences, which include random boolean networks (a generalization of
CA) and social simulations, can be consulted [4, 5, 6, 7].

Since asynchronous, rather than synchronous evolution seems to be
the norm in nature, one can conclude that asynchronous automata de-
serve to be studied more fully than has been the case until now. One
possible advantage of asynchronous systems is that they appear to be
more tolerant to faulty behaviors of various kinds than synchronous
ones. Taking into account the increasing miniaturization and the fu-
ture availability of nano and molecular computational systems with an
enormous number of parts, this is a potentially important point that we
explore in some detail.

The paper is organized as follows. Section 2 summarizes definitions
and facts about standard CA and their asynchronous counterparts. Sec-
tion 3 deals with the artificial evolution of asynchronous CA for the
density task and compares their behavior and solution strategies with
those of known synchronous CA. Section 4 presents the results of study-
ing the behavior of synchronous CA when the environment becomes
gradually asynchronous and, respectively, of asynchronous CA that be-
come progressively more synchronous. Section 5 examines the degree of
tolerance of synchronous and asynchronous CA for the density task to
noisy updating of two kinds. Finally, section 6 presents our conclusions
and hints to further work and open questions.

2. Synchronous and asynchronous cellular automata

CA are dynamical systems in which space and time are discrete. A stan-
dard CA consists of an array of cells, each of which can be in one of a
finite number of possible states, updated synchronously in discrete time
steps, according to a local, identical interaction rule. Here we will only
consider boolean automata for which the cellular state s " #0, 1$. The
state of a cell at the next time step is determined by the current states of
a surrounding neighborhood of cells. The regular cellular array (grid)
is d-dimensional, where d % 1, 2, 3 is used in practice. In this paper
we shall concentrate on d % 1, that is, one-dimensional grids. The
identical rule contained in each cell is essentially a finite state machine,

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 187

Rule table:
neighborhood: 111 110 101 100 011 010 001 000
output bit: 1 1 1 0 1 0 0 0

Grid:

t % 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1

t % 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1

Figure 1. Illustration of a one-dimensional, two-state CA. The connectivity ra-
dius is r % 1, meaning that each cell has two neighbors, one to its immediate left
and one to its immediate right. Grid size is N % 15. The rule table for updating
the grid is shown on top. The grid configuration over one time step is shown at
the bottom. The grid is viewed as a circle, with the leftmost and rightmost cells
each acting as the other’s neighbor.

usually specified in the form of a rule table (also known as the transition
function), with an entry for every possible neighborhood configuration
of states. The cellular neighborhood of a cell consists of itself and the
surrounding (adjacent) cells. For one-dimensional CA, a cell is con-
nected to r local neighbors (cells) on either side where r is referred to
as the radius (thus, each cell has 2r & 1 neighbors). When considering
a finite-sized grid, spatially periodic boundary conditions are frequently
applied, resulting in a circular grid for the one-dimensional case (see
Figure 1 for an illustration). Nonuniform (also known as inhomoge-
neous) CA are the same as uniform ones, the only difference being that
the cellular rules need not be identical for all cells. In this paper we will
deal with uniform CA exclusively.

A common method of examining the behavior of one-dimensional
CA is to display a two-dimensional space-time diagram, where the hor-
izontal axis depicts the configuration at a certain time t and the vertical
axis depicts successive time steps (e.g., Figure 2 shown later). The term
configuration refers to an assignment of ones and zeros at a given time
step (i.e., a horizontal line in the diagram). In the figures state 0 is in
black, while state 1 is in white.

As stated in the introduction, asynchronous CA are physically more
reasonable than parallel ones. However, there are many ways for se-
quentially updating the cells of a given CA (for an excellent discussion
of this point, see the paper by Schönfisch and de Roos [8], from which
most of the considerations in this section are inspired). The most gen-
eral and unbiased way is independent random ordering of updates in
time, which corresponds to a Poisson stochastic process. We use a close
approximation to it which consists of randomly choosing the cell to be
updated next, with replacement. This corresponds to a binomial distri-

Complex Systems, 13 (2002) 185–204



188 M. Tomassini and M. Venzi

bution for the update probability and, of course, the limiting case for
large n is the Poisson distribution (where n is the number of cells in the
grid).

For comparison purposes we also employ two other update methods:
fixed random sweep and random new sweep (we employ the same terms
as in [8]). In the fixed random sweep update, each cell to be updated
is chosen with uniform probability without replacement; this will pro-
duce a certain update sequence (cj

1, ck
2, . . . , cm

n ), where cp
t means that cell

number p is updated at time t and (j, k, . . . , m) is a permutation of the n
cells. The same sequence of cell updates is then used for the following
update cycles. The random new sweep method is the same except that
each new sweep through the array is done by picking a different random
permutation of the cells. In all cases we call a time step the process of
updating n times, which corresponds to updating all n cells in the grid
for the methods without replacement (fixed random sweep and random
new sweep) and possibly less than n cells in the binomial method, since
some cells might be updated more than once.

It should be noted that because our chosen asynchronous updating
is nondeterministic, the same CA may reach a different configuration
after n time steps on the same initial distribution of states, which is of
course not the case for synchronous CA. This is because the trajectory in
configuration space that is followed depends on the evaluation order of
the cells for asynchronous CA, while there is a single possible sequence
of configurations for a synchronous CA for a given initial configuration
of states.

3. Evolving asynchronous cellular automata for the density task

In this section we define the density task and describe how asynchronous
CA for performing this task can be evolved using genetic algorithms
(GAs). We also deal with the features of the evolutionary process
and compare the evolved CA strategies with those observed in the syn-
chronous case.

3.1 The density task

The density task is a prototypical computational task for CA that has
been much studied due to its simplicity and richness of behavior. For
one-dimensional finite CA of size n (with n odd for convenience) it
is defined as follows: The CA must relax to a fixed-point pattern of
all 1s if the initial configuration of states contains more 1s than 0s and,
conversely, it must relax to a fixed-point pattern of all 0s otherwise, after
a number of time steps of the order of the grid size. This computation is
trivial for a computer having a central control. Indeed, just scanning the
array and adding up the number of, say, 1 bits will provide the answer

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 189

in O(n) time. However, the density task is nontrivial for a small radius
one-dimensional CA since such a CA can only transfer information at
finite speed relying on local information exclusively, while density is a
global property of the configuration of states [9]. It has been shown
that the density task cannot be solved perfectly by a uniform, two-state
CA with finite radius [10], although a slightly modified version of the
task can be shown to enjoy perfect solution by such an automaton [11].
At any rate, the lack of a perfect solution does not prevent one from
searching for imperfect solutions of as good a quality as possible. In
general, given a desired global behavior for a CA (e.g., the density task
capability), it is extremely difficult to infer the local CA rule that will
give rise to the emergence of the computation sought. This is because of
the possible nonlinearities and large-scale collective effects that cannot
in general be predicted from the sole local CA updating rule, even if it is
deterministic. Since exhaustive evaluation of all possible rules is out of
the question except for elementary (d % 1, r % 1) automata, one possible
solution of the problem consists in using evolutionary algorithms, as
first proposed by Packard in [12] and further developed by Mitchell
et al. in [9, 13] for uniform and synchronous CA and by Sipper for
nonuniform ones in [14]. The evolution of nonuniform, asynchronous
CA for the density task has been studied in [15].

3.2 Artificial evolution of cellular automata

A popular kind of evolutionary algorithm is a genetic algorithm (GA)
[16, 17]. A GA maintains a population of Μ encoded tentative so-
lutions to a problem that are competitively manipulated by applying
some variation operators to find a satisfactory solution. A GA (see the
following pseudo-code) proceeds in an iterative manner by generating
new populations of individuals from the old ones. Every individual in
the population is the encoded (binary, real, etc.) version of a tentative
solution. An evaluation function associates a fitness value to every indi-
vidual indicating its suitability to the problem. The canonical algorithm
applies stochastic operators such as selection, crossover, and mutation
on an initially random population in order to compute a whole gener-
ation of new individuals. The termination condition is usually set to
reach a preprogrammed number of iterations of the algorithm, or to find
an individual with a given error if the optimum, or an approximation
to it, is known beforehand.

generation % 0
Seed Population and evaluate individuals
while not termination condition do

generation % generation & 1
Evaluation
Selection

Complex Systems, 13 (2002) 185–204



190 M. Tomassini and M. Venzi

Crossover
Mutation

end while

We use a GA similar to the one described in [9] for synchronous CA,
with the aim of evolving asynchronous CA for the density task. Each in-
dividual in the population represents a candidate rule and is represented
simply by the output bits of the rule table in lexicographic order of the
neighborhood (see section 2). Here r % 3 has been used, which gives
a chromosome length of 22r&1 % 128 and a search space of size 2128,
which is far too large to be searched exhaustively. The population size is
100 individuals, each represented by a 128-bit string, initially randomly
generated from a uniform density distribution over the interval [0, 1].
The fitness of a rule in the population has been calculated by randomly
choosing 100 out of the 2n possible initial configurations (ICs) with
uniform density; that is, any configuration has the same probability of
being selected, and then iterating the rule on each IC for M % 2n time
steps, where n % 149 is the grid size. The rule’s fitness is the fraction
of ICs for which the rule produced the correct fixed point, given the
known IC density. At each generation a different set of ICs is generated
for each rule. After ranking the rules in the current population accord-
ing to their fitness, the 20% top rules are copied in the next population
without change. The remaining 80 rules are generated by crossover and
mutation. Crossover is single-point and is performed between two indi-
viduals randomly chosen from the top 20 rules with replacement and is
followed by single-bit mutation of the two offspring. The best 80 rules
after the application of the genetic operators enter the new population.

The performance of the best rules found at the end of the evolution
is evaluated on a larger sample of ICs and it is defined as the fraction
of correct classifications over 104 randomly chosen ICs. Moreover, the
ICs are sampled according to a binomial distribution (i.e., each bit is
independently drawn with probability 1/2 of being 0). Clearly, this
distribution is strongly peaked around Ρ0 % 1/2 and thus it makes a
much more difficult case for the CA (Ρ0 is defined to be the density of
0s in the IC).

3.3 Evolutionary dynamics and results: Synchronous cellular automata

Mitchell and coworkers performed a number of studies on the emer-
gence of synchronous CA strategies for the density task during evo-
lution [9, 13]. Their results are significant since they represent one
of the few instances where the dynamics of emergent computation in
complex, spatially extended systems can be understood. In summary,
these findings can be subdivided into those pertaining to the evolution-
ary history and those that are part of the “final” evolved automata.
For the former, they essentially observed that, in successful evolution

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 191

experiments, the fitness of the best rules increases in time according to
rapid jumps, giving rise to what they call “epochs” in the evolution-
ary process. Each epoch corresponds roughly to a new, increasingly
sophisticated solution strategy. Concerning the final CA produced by
evolution, it was noted that, in most runs, the GA found unsophisti-
cated strategies that consisted in expanding sufficiently large blocks of
adjacent 1s or 0s. This “block-expanding” strategy is unsophisticated
in that it mainly uses local information to reach a conclusion. As a
consequence, only those IC that have low or high density are classified
correctly since they are more likely to have extended blocks of 1s or
0s. In fact, these CA have a performance of around 0.6. However,
some of the runs gave solutions that presented novel, more sophisti-
cated features that yielded better performance (around 0.77) on a wide
distribution of ICs. These new strategies rely on traveling signals that
transfer spatial and temporal information about the density in local re-
gions through the lattice. An example of such a strategy is given in
Figure 2, where the behavior of the so-called GKL rule is depicted [9].
The GKL rule is hand-coded but its behavior is similar to that of the
best solutions found by evolution. In spite of the relative success of
the GA, there exist hand-coded CA that have better performance, such
as the GKL rule. On the other hand, Andre et al. in [18] have been
able to artificially evolve a CA that is as good as the best manually-
designed CA by using genetic programming. Although they used a
great deal more computational resources than Mitchell and coworkers,

(a) (b)

Figure 2. Space-time diagram for the GKL rule. The density of zeros Ρ0 is 0.476
in (a) and Ρ0 % 0.536 in (b). State 0 is depicted in black; 1 in white.

Complex Systems, 13 (2002) 185–204



192 M. Tomassini and M. Venzi

this nevertheless shows that artificial evolution is a viable solution for
this problem.

Crutchfield and coworkers have developed sophisticated methodolo-
gies for studying the transfer of long-range signals and the emergence
of computation in evolved CA. This framework is known as “compu-
tational mechanics” and it describes the intrinsic CA computation in
terms of regular domains, particles, and particle interactions. Details
can be found in [19, 20].

3.4 Evolutionary dynamics and results: Asynchronous cellular automata

For the evolution of asynchronous CA we have used GA parameters as
described in section 3.2. Due to the high computational cost, we have
performed 15 runs, each lasting for 100 generations, for each of the
asynchronous update policies. This is not enough to reach very good
results, but it is sufficient for studying the emergence of well-defined
computational strategies, which has been our main objective here. As
expected, the evolved asynchronous CA find it more difficult to solve
the density task due to their stochastic nature. In fact, a given CA could
classify the same IC in a different way depending on the update sequence,
and indeed, although synchronous CA are delocalized systems, because
of the presence of a global clock, a kind of central control is still present,
which is not the case for asynchronous CA. Nevertheless, for all the
asynchronous update methods, CA with fair capabilities were evolved.
In Table 1 we list the best rules found by the GA for the three update
modes. We note that the performance of the solutions are lower than
the corresponding figures for synchronous CA.

The behavior of the CA evolved with all three asynchronous updating
modes were very similar both from the point of view of performance,
as well as from the point of view of the solution strategies that evolved.
Since independent random ordering, that is, uniform update, is in some
sense the more natural, for reasons of space we will mainly describe
it here, although most of what we say also applies to the other two
methods.

During most evolutionary runs in all asynchronous methods we ob-
served the presence of periods in the evolution in which the fitness of the

Update Mode Rule Performance
Uniform 00024501006115AF5FFFBFFDE9EFF95F 67.2
Fixed Random 114004060202414150577E771F55FFFF 67.7
Random New 00520140006013264B7DFCDF4F6DC7DF 65.5

Table 1. Performance of the best evolved asynchronous rules calculated over 104

binomially distributed ICs. Rule numbers are in hexadecimal.

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 193

Figure 3. Epochs of innovation in the evolution of uniform choice asynchronous
CA for the density task.

best rules increase in rapid jumps (see Figure 3). These “epochs” were
observed in the synchronous case too (see section 3.3) and correspond
to distinct computational innovations, that is, to major changes in the
strategies that the CA uses for solving the task.

In epoch 1 the evolution discovers local naive strategies that only
work on “extreme” densities (i.e., low or high) but most often not on
both at the same time, as one can see in Figure 4.

In the following epoch 2, rules specialize on low or high densities
as well and use unsophisticated strategies, but now they give correct
results on both low and high densities. This can be seen, for instance,
in Figure 5.

In epoch 3, with fitness values comprised between 0.80 and 0.90, one
sees the emergence of block-expanding strategies, as in the synchronous
case, but more disordered here. Moreover, narrow vertical strips make
their appearance (see Figure 6). These strips are the main mechanism by
which fully evolved successful CA are able to classify many intermediate
cases and approximately solve the density problem.

The following, and last, epoch 4 sees the refinement of the verti-
cal strips strategy with fitness above 0.9 and steadily increasing. The
propagating patterns become less noisy and the strategy is little af-
fected by the intrinsic stochasticity of the update rule. Figure 7 illus-
trates the best solution found by evolution at the end of epoch 4. The
“zebra-like” moving patterns, which represent the most efficient strate-
gies for evolved asynchronous automata, are different from those found
in the synchronous case. In fact, the asynchronous updating modes have
the effect of destroying or delaying the propagation of the long-range
transversal signals that carry information in the synchronous case (see
Figure 2). Thus, the CA expands 1) and 0) blocks, which collide and

Complex Systems, 13 (2002) 185–204



194 M. Tomassini and M. Venzi

(a) (b)

Figure 4. Space-time diagrams for an epoch 1 rule. (a) Ρ0 % 0.107, (b) Ρ0 % 0.912.
Clearly, the classification in (b) is incorrect.

(a) (b)

Figure 5. Space-time diagrams for an epoch 2 rule. (a) Ρ0 % 0.194, (b) Ρ0 % 0.879.
The rule only classifies low or high densities.

annhilate. As a result, small blocks propagate in time, which gives the
characteristic zebra-like patterns. These strips are stable and propagate
further to the right or to the left.

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 195

(a) (b)

Figure 6. Space-time diagrams for an epoch 3 rule. (a) Ρ0 % 0.489, (b) Ρ0 % 0.510.
Block-expanding and vertical strips make their appearance.

(a) (b)

Figure 7. Space-time diagrams for the best asynchronous rule found. The density
Ρ0 % 0.55 in both (a) and (b) and the initial state configuration is the same. The
different time evolution is due to the nondeterminism of the updating policy.

4. Merging the synchronous and asynchronous worlds

We have seen that evolved synchronous CA for the density task have a
rather better performance than asynchronous ones, as it was expected if
one takes into account their deterministic nature. Now, although paral-

Complex Systems, 13 (2002) 185–204



196 M. Tomassini and M. Venzi

Figure 8. Percent of correct classifications as a function of the number of blocks
in the grid for two choices of ICs for the GKL rule. Dashed line: binomial
distribution; thick line: uniform distribution over density in [0, 1].

lel update is infeasible, one could obtain a more realistic approximation
by subdividing the whole grid into blocks of c * n cells each that are up-
dated synchronously within the block, while the blocks themselves are
updated asynchronously. Thus, if the number of blocks varies from 1 to
n the system will go from complete synchrony to complete asynchrony
(n % 180 here). Let us start with synchronous CA rules becoming pro-
gressively asynchronous (random new sweep is used for whole block
updating). Both the best evolved rule as well as the GKL rule gave
very poor results. They are extremely sensitive to perturbations since
even a small amount of noise destroys the strict synchronization car-
ried by the propagating transversal signals (see section 3.3). This can
be seen in Figure 8, where the performance of the GKL rule is shown
against the number of blocks for two distributions of ICs. Performance
remains acceptable for ICs chosen uniformly between 0 and 1 but it
totally degrades for a binomial distribution, which is the more difficult
and interesting case.

Figure 9 depicts the space-time diagram of the GKL rule with two and
10 asynchronous blocks respectively. One sees clearly that, with two
blocks already, signals are prevented from traveling and do not combine
at block boundaries, as would be the case if all the cells were updated
in parallel (see Figure 2 for comparison), which explains why the CA is
incapable of performing the task.

Starting now from the other end of the spectrum, we consider the
best asynchronous CA rule going progressively more synchronous (i.e.,
from right to left in Figure 10). In this case we see that performances
are progressively lower but the loss is gradual, and only for the extreme
cases of a few large blocks does performance approach 0.5.

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 197

(a) (b)

Figure 9. Asynchronous behavior of the GKL rule with two (a) and 10 (b) blocks
respectively.

Figure 10. Percent of correct classifications as a function of the number of blocks
in the grid for two choices of ICs for the best asynchronous rule. Dashed line:
binomial distribution; thick line: uniform distribution over density in [0, 1].

Figure 11 depicts the case of 90 and 60 blocks and shows that the
strategy of solution is not perturbed in these cases.

We can thus conclude that, although synchronous and asynchronous
rules have been evolved, respectively, in synchronous and asynchronous
environments, asynchronous rules adapt better to changes; in other
words, they are more robust.

Complex Systems, 13 (2002) 185–204



198 M. Tomassini and M. Venzi

(a) (b)

Figure 11. Synchronous behavior of the best asynchronous rule with (a) 90 and
(b) 60 blocks respectively. The density Ρ0 % 0.444 in both (a) and (b).

5. The effect of noise

There are at least two possible sources of indeterminism in CA: one is
random asynchronous updating, as explained in the previous sections,
the second is faulty functioning of the rules, or of the cells, or both.
In this section we explore in some detail the behavior of evolved CA
in the face of noise of the second type. These kinds of considerations
will be important in the future, when it is likely that self-organizing
computational systems composed of an enormous number of parts will
be used. Fault tolerance was an important issue in the beginning of
the computer era because of the high unreliability of the then used
computing elements. Future components will be more reliable but,
because there will be very large numbers of them, even if the individual
probability of failure is low, the overall probability of having a fault
at any given time will be high. Thus, it will be important to design
systems that are partially or totally tolerant to such faults. Of course,
the comparatively small and simple systems studied here are only toys
with respect to real future computing machines. Nonetheless, their
study is certainly a worthy first step. It should be noted that we will
not try to correct or compensate for the errors, which is an important
but very complicated issue. Rather, we will focus on the self-recovering
capabilities of the systems under study.

We will study two kinds of perturbations and the way in which they
affect the density task, the first is probabilistic updating and the second
is intermittent faults. They are defined as follows.

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 199

Probabilistic updating. A CA rule may yield the incorrect output bit with
probability pf , and thus the probability of correct functioning will be
(1 + pf ). Futhermore, we assume that errors are uncorrelated.

Intermittent faults. At time t a given cell has a certain probability of being
inactive; that is, of keeping its current state. Cells may fail independently
of each other.

For probabilistic updating, usually two initially identical copies of
the system are maintained. One evolves undisturbed with pf % 0, while
the second is submitted to a nonzero probability of fault. One can then
measure such things as Hamming distances between unperturbed and
faulty configurations, which give information on the spreading of dam-
age (e.g., [21] and references therein, where the case of synchronous,
nonuniform CA is examined). Rather than presenting Hamming dis-
tances, which are a global measure and thus do not yield much insight
into the local processes that cause performance loss, we prefer to show
the results of typical evolutions. Figure 12 depicts the typical behav-
ior of the best evolved synchronous rule under noise, this rule is called
EvCA here [9]. We see that only for extremely low (pf % 0.00001)
values of the fault probability does the CA correctly classify density.
For higher values, either the classification is incorrect (c) or the CA is
so perturbed that it cannot accomplish the task any longer (d). Clearly,
the propagation of transversal signals is more and more hindered as the
automaton becomes more noisy.

Figure 13 shows the same evolution for the best evolved asynchronous
CA using the uniform choice update policy. Visual inspection already
indicates that the CA is much less perturbed by random noise in the
rules. Even relatively high levels of faults do not prevent the CA from
recovering and finding the correct classification in many cases. This is
clearly due to the fact that asynchronous CA were evolved in a noisy en-
vironment (the randomness associated with the sequential update order)
and thus, to some extent, this allows them to cope better with errors.

Although the previous examples are single cases, they are typical
of what happens. Figure 14 shows a histogram of the ratio of the
success rate of the best evolved synchronous CA (EvCA [9]) and of two
evolved asynchronous CA as a function of the fault probability, with
respect to the unperturbed versions. Each CA has been tested on 1000
ICs. The ranking is relative, since we only kept the successful runs of
the unperturbed automata to calculate the ratio. One sees clearly that,
already for pf % 1.0,10+4, the synchronous CA starts to degrade, while
both asynchronous versions keep good performance, especially the one
with uniform choice, up to pf values of the order of 10+3.

In the case of intermittent fault we have tested 1000 ICs for each of
a number of probability values of cell inactivity. We have used three
CA rules: the best evolved synchronous CA (EvCA [9]), the GKL rule,

Complex Systems, 13 (2002) 185–204



200 M. Tomassini and M. Venzi

(a) (b)

(c) (d)

Figure 12. Typical behavior of EvCA [9] under probabilistic updating. The
density Ρ0 is 0.416 and the probabilities of fault pf in (a), (b), (c), and (d) are,
respectively, 0, 0.0001, 0.001, and 0.01.

and the best evolved uniform choice asynchronous automaton. The
results are reported in Figure 15. We observe that for low values of the
fault probability the three rules are almost equivalent in that they keep
a very good level of performance. However, as soon as the probability
exceeds 0.01, the two synchronous rules collapse, especially GKL, while
the asynchronous rule does not seem to suffer much from the increasing
level of noise and keeps a good performance level in the whole range,
except for high probability values (note the logarithmic scale on the
horizontal axis).

Once again, the results of this section confirm that asynchronous CA
degrade much more gracefully than synchronous ones in noisy environ-
ments and thus they intrinsically offer more resilience and robustness.

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 201

(a) (b)

(c) (d)

Figure 13. Typical behavior of an asynchronous CA under probabilistic updating.
The density Ρ0 is 0.416 and the probabilities of fault pf in (a), (b), (c), and (d)
are, respectively, 0, 0.0001, 0.001, and 0.01.

It would be interesting to evolve CA with some noise added, to see
whether their fault-tolerant capabilities are enhanced.

6. Conclusions

In this work we have shown that physically more realistic asynchronous
cellular automata (CA) of various kinds can be effectively evolved for the
density task using genetic algorithms (GAs), although their performance
is lower than that obtained by evolved synchronous CA. We have also
shown that the computational strategies discovered by the GA in the
asynchronous case are different from those of synchronous CA due to
the presence of a stochastic component in the update. This very reason

Complex Systems, 13 (2002) 185–204



202 M. Tomassini and M. Venzi

Figure 14. Histogram representing the percentage of success of three noisy au-
tomata with respect to the unperturbed versions. Only the perfect runs have
been retained for the unperturbed automata. The probability of fault is on the
horizontal axis. Async 1 (grey bar) is the new random sweep automaton, while
Async 2 (black bar) corresponds to the uniform choice CA. EvCA (white bar) is
the best evolved synchronous CA.

Figure 15. Number of correct classifications as a function of inactivity prob-
ability. The curves refer to the GKL rule and to two asynchronous CA (see
text).

Complex Systems, 13 (2002) 185–204



Evolving Robust Asynchronous CA for the Density Task 203

makes them more resistant to changes in the environment and thus
potentially more interesting as computational devices in the presence
of noise. Other important aspects that we are studying, but are not
included here, are the scalability properties of evolved CA and further
investigations into their fault-tolerance aspects.

Acknowledgment

We acknowledge the Fonds National Suisse pour la recherche scien-
tifique for financial support under the grant 21-58893.99.

References

[1] T. Toffoli and N. Margolus, Cellular Automata Machines (The MIT Press,
Cambridge, MA, 1987).

[2] H. Gutowitz, editor, Cellular Automata: Theory and Experiment (The
MIT Press, Cambridge, MA, 1991).

[3] S. Wolfram, Cellular Automata and Complexity (Addison-Wesley, Read-
ing, MA, 1994).

[4] B. A. Huberman and N. S. Glance, “Evolutionary Games and Computer
Simulations,” Proceedings of the National Academy of Sciences USA, 90
(1993) 7716–7718.

[5] H. Bersini and V. Detour, “Asynchrony Induces Stability in Cellular Au-
tomata Based Models,” in Artificial Life IV, edited by R. A. Brooks and
P. Maes (The MIT Press, Cambridge, MA, 1996).

[6] I. Harvey and T. Bossomaier, “Time Out of Joint: Attractors in Asyn-
chronous Random Boolean Networks,” in Proceedings of the Fourth Eu-
ropean Conference on Artificial Life, edited by P. Husbands and I. Harvey
(The MIT Press, Cambridge, MA, 1997).

[7] T. E. Ingerson and R. L. Buvel, “Structure in Asynchronous Cellular Au-
tomata,” Physica D, 10 (1984) 59–68.

[8] B. Schönfisch and A. de Roos, “Synchronous and Asynchronous Updating
in Cellular Automata,” BioSystems, 51 (1999) 123–143.

[9] M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting the Edge of
Chaos: Evolving Cellular Automata to Perform Computations,” Complex
Systems, 7 (1993) 89–130.

[10] M. Land and R. K. Belew, “No Perfect Two-state Cellular Automata for
Density Classification Exists,” Physical Review Letters, 74(25) (1995)
5148–5150.

[11] M. S. Capcarrere, M. Sipper, and M. Tomassini, “Two-state, r % 1 Cellu-
lar Automaton that Classifies Density,” Physical Review Letters, 77(24)
(1996) 4969–4971.

Complex Systems, 13 (2002) 185–204



204 M. Tomassini and M. Venzi

[12] N. H. Packard, “Adaptation Toward the Edge of Chaos,” in Dynamic
Patterns in Complex Systems, edited by J. A. S. Kelso, A. J. Mandell, and
M. F. Shlesinger (World Scientific, Singapore, 1988).

[13] M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving Cellular Au-
tomata to Perform Computations: Mechanisms and Impediments,” Phys-
ica D, 75 (1994) 361–391.

[14] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Pro-
gramming Approach (Springer-Verlag, Heidelberg, 1997).

[15] M. Sipper, M. Tomassini, and M. S. Capcarrere, “Evolving Asynchronous
and Scalable Non-uniform Cellular Automata,” in Proceedings of Interna-
tional Conference on Artificial Neural Networks and Genetic Algorithms
(ICANNGA97), edited by G. D. Smith, N. C. Steele, and R. F. Albrecht
(Springer-Verlag, Vienna, 1997).

[16] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams, third edition (Springer-Verlag, Heidelberg, 1996).

[17] M. Mitchell, An Introduction to Genetic Algorithms (The MIT Press,
Cambridge, MA, 1996).

[18] D. Andre, F. H. Bennett III, and J. R. Koza, “Discovery by Genetic Pro-
gramming of a Cellular Automata Rule that is Better than any Known
Rule for the Majority Classification Problem,” in Genetic Programming
1996: Proceedings of the First Annual Conference, edited by J. R. Koza,
D. E. Goldberg, D. B. Fogel, and R. L. Riolo (The MIT Press, Cambridge,
MA, 1996).

[19] J. E. Hanson and J. P. Crutchfield, “Computational Mechanics of Cellular
Automata: An Example,” Technical Report 95-10-95 (Santa Fe Institute
Working Paper, 1995).

[20] W. Hordijk, J. P. Crutchfield, and M. Mitchell, “Mechanisms of Emergent
Computation in Cellular Automata,” in Parallel Problem Solving from
Nature: PPSN V, volume 1498 of Lecture Notes in Computer Science,
edited by A. Eiben, T. Bäck, M. Schoenauer, and H.-P. Schwefel (Springer-
Verlag, Heidelberg, 1998).

[21] M. Sipper, M. Tomassini, and O. Beuret, “Studying Probabilistic Faults
in Evolved Non-uniform Cellular Automata,” International Journal of
Modern Physics C, 7(6) (1996) 923–939.

Complex Systems, 13 (2002) 185–204


