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The activity of a team of autonomous mobile agents formed by identi-
cal “robot-like-ant” individuals capable of performing a random walk
through an environment that are able to recognize and move different
“objects” is modeled. The emergent desired behavior is a distributed
sorting and clustering based only on local information and a memory reg-
ister that records the past objects encountered. An optimum weighting
function for the memory registers is theoretically derived. The optimum
time-dependent weighting function allows sorting and clustering of the
randomly distributed objects in the shortest time. By maximizing the
average speed of a texture feature (the contrast) we check the central
assumption, the intermediate steady-states hypothesis, of our theoretical
result. It is proved that the algorithm optimization based on maximum
speed variation of the contrast feature gives relationships similar to the
theoretically derived annealing law.

1. Introduction

Self-organization was originally introduced in the context of physics
and chemistry to describe how microscopic processes give rise to macro-
scopic structures in out-of-equilibrium systems [1]. Recently, this con-
cept was extended to ethnology to provide a concise description of a
wide range of collective phenomena in animals, especially in social in-
sects. This description does not rely on individual complexity to account
for complex spatio-temporal features, which emerge at the colony level,
but rather assumes that interactions among simple individuals can pro-
duce highly structured collective behaviors. The rules specifying the in-
teractions among the constituent units of the system are executed based
on purely local information, without reference to the global pattern,
which is an emergent property of the system.
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Self-organization can, at least partially, describe the collective activi-
ties of social insects, including the formation of trail networks and for-
aging patterns in many ant species [2–5], rhythmical patterns of activity
in ants (Leptothorax) [6, 7], thermoregulation in clusters of bees [8], the
piling of dead bodies by ants (Pheidole) [9], larval sorting by ants (Lep-
tothorax) [9], or the dynamics of colony development in wasps (Polistes)
[10]. Self-organization has also been applied to modeling social organi-
zation, including hierarchical differentiation [11–13], division of labor
[13, 14], and age (or temporal) polyethism [15].

At a time when the world is growing so complex that no single human
being can understand it; when information, and not the lack of it,
threatens our lives; when users can no longer master bloated software,
swarm intelligence offers an alternative way of designing computing
systems. In swarms, autonomy, emergence, and distributed functioning
replace control, preprogramming, and centralization.

There has been an upsurge of interest in swarm-based robotics in re-
cent years [16] as it provides an interesting alternative to more classical
approaches in robotics. Some tasks may be inherently too complex or
impossible for a single robot to perform. A swarm of simple robots
may also be more flexible without needing to reprogram the robots,
and more reliable and fault-tolerant because one or several robots may
fail without affecting task completion. Furthermore, theories of self-
organization teach us that randomness or fluctuations in individual be-
havior, far from being harmful, may in fact greatly enhance the ability
of the system to explore new behaviors and new solutions. In addi-
tion, self-organization and decentralization, together with the idea that
interactions among agents need not be direct but can rather take place
through the environment, point to the possibility of significantly reduc-
ing communications between robots. Also, central control is usually not
well suited for dealing with a large number of agents, not only because
of the need for robot-to-controller-and-back communications, but also
because failure of the controller implies failure of the whole system.

For modeling and simulation of swarm intelligence inspired by in-
sect societies many different approaches are possible. On one side the
complete group can be seen as one system and the variation of its param-
eter can be modeled on the macro level. This paradigm yields several
disadvantages. The most important are that no variations in the be-
havior of the individual can be considered and that differences in the
spatial structure of the entities’ environment cannot influence their be-
havior [17]. Other forms of modeling societies generate the collective
behavior from “bottom up.” Different mathematical micro-simulation
approaches result in large equation systems, for example, modeling via
decision matrices or stochastic processes, thus individual or spatial vari-
ations can hardly be incorporated, see [16] or [18]. On the other hand
modeling societies based on cellular automata (CA) or multi-agent sys-
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tems enables the researcher to specify the local behavior of the individual
spatial unit or entity. Simulating the actions of the individuals directly
reproduces the behavior of the complete system. As our research focus
is on the behavior and interaction of individual entities and not on a
special spatial pattern (like, for example, in [19]), we decided to use
multi-agent simulation.

The mission of the robots is to search and collect “food-items” in a
foraging area and sort them into disjoint piles. In this paper a theoretical
expression for the time-dependent memory radius r for the functional
self-organization process [20–24] is derived. The basis of the optimiza-
tion is the assumption of intermediate steady states of the aggregation
process. The global contrast feature monitors the degree of aggregation.

This article is organized as follows. Section 2 puts stochastic func-
tional self-organization in context by describing the environment and
the local rules governing the dynamics of the mobile agents. Section 3
is dedicated, in its first part, to the theoretical derivation of the time-
dependent memory radius in order to attain a final sorting stage in the
shortest possible time. The second part of section 3 implements the
control strategy based on the global feature (contrast). The computa-
tion of the iteration time steps for a specific value of optimal memory
radius confirms the theoretical relationship derived in the first part of
section 3. Section 4 is dedicated to discussing the main results and indi-
cating directions for further research. We also highlight some different
approaches to artificial intelligence based on a centralized controller. A
mathematical appendix provides theoretical insight on the limit values
of the global measure (contrast feature).

2. The mechanism of stochastic functional self-organization

There is an increasing interest in CA models of physical phenomena due
to the simplicity of computational tasks and the great flexibility of the
models [25–28].

Our model is based on the following assumptions.

1. The environment is a two-dimensional toroidal lattice with Nx #Ny sites.
The periodic lattice (torus) was considered in order to eliminate the finite
size effects.

2. The lattice sites are occupied by objects denoted with the letters a, b, c,
and so on. A free site is said to be occupied by a Φ-type object.

3. Throughout the environment some entities (robot or robot-like-ant (RLA))
perform a random walk like motion. At any moment, a robot carries an
object. A robot carrying a Φ-type object is a free robot. The robots move
randomly through the lattice, only one robot being allowed at one site.

4. When a robot moves to a given site it must decide if there are conditions
to put down the object being carried and to pick up the existing one.
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The swapping condition writes

fΑ & fΒ, (1)

where fΑ is the weighted frequency of the carried Α-type object and fΒ
is the weighted frequency of the encountered Β-type object. Every RLA
records in its memory a binary string with the following structure:

sΑ,Τ ) uΑ,1uΑ,2 . . .uΑ,Τ, (2)

where

uΑ,i * ! 1 if an Α-type object was encountered at step i,
0 otherwise. (3)

Based on equations (2) and (3) the following conservation rules take
place "Τ

i*1 uΑ,i * nΑ, for any Α * 1, T, where nΑ is the total number of
Α-type objects encountered and "T

Α*1 uΑ,i * 1, for any i * 1, Τ, where T
is the total number of distinct object types.

There are few distinct approaches regarding the weighting function.
One important class was proposed by Deneubourg in [9] and consists
of a memory register of fixed length with equal weight. As time passes
the older (less significant) record is deleted, all the other records are
shifted one location, and the new record is entered on the first (most
significant) place. Another important class of weighting functions was
proposed in [20–23] and uses a first order recurrence to define the
actual state of the CA. The main advantage of such a weighting function
is its computational efficiency and long (temporal) correlation. The
computational efficiency means that to compute the actual state of the
CA we only need two real variables: the previous state of the CA and
the state associated with the newly encountered object type. For higher
order recurrence the number of state variables increases but is still small
compared to the shift register like memory. Long (temporal) correlation
means that the actual state of the recursively defined weighted function
depends on the history of the system states and not on an arbitrarily
truncated record. As was proved in [20, 21, 24] there is an intrinsic limit
of the temporal correlation imposed by machine accuracy. However,
the temporal length of correlation for the model we proposed is a few
orders of magnitude bigger than for the fixed number of shift register
like memory.

In our approach of mobile agents self-organization, every object type
is characterized at any instant Τ by a weighted frequency:

fΑ(Τ) *

Τ"
i*1

w(i)uΑ,i

Τ"
i*1

w(i)
, (4)
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where w(i) is an appropriate weighting function. The weighting func-
tion is

w(i) *
1

ri+1 , (5)

which indicates that if r , 1, then the contribution of the step Τ (with
Τ , 1) to the present decision is quite insignificant and we have a short-
type memory. This choice simulates the long term or remnant memory
effect. The limit case r * 1 corresponds to an infinite length memory
with equally weighted records or equivalent temporal positions. When
r < 1 then it exacerbates the contribution of the Τ steps with Τ , 1
and diminishes the contribution of the most recent ones [22, 23]. This
type of memory function that enhances the effect of past history was
suggested as a possible mechanism for microscopic models of metastasis
[21, 22, 24]. In our simulations r > 1. From equations (4) and (5) one
obtains

fΑ(K) * rK+1 r + 1
rK + 1

K#
i*1

uΑ,i

ri+1 , (6)

which represents the weighted measure of Α-type objects after K steps
through the lattice. As can be seen from the above formula, two suc-
cessive weighted measures fΑ(K) and fΑ(K-1) are related through a first
order recurrence. In our particular choice of the weighting function (see
equation (5)), a shift in the record with one step to allow a new entry
is given by dividing the old value of the weighted measure through the
memory radius r and adding the new entry.

Extensive numerical simulations indicate that the memory radius r
should depend on the cluster dimension (i.e., aggregation stage) in order
to optimize the computational effort [20, 21]. Therefore, to obtain an
optimum computational time a simulated annealing in respect to the
memory radius must be carried out. Conclusions based on many simu-
lations showed that clustering processes occur for any r > 1 and that the
speed with which the system reaches a sorted steady state depends sensi-
bly on r (see Figure 1). This situation is similar with one encountered in
annealing processes where a proper temperature decreasing law must be
chosen in order to anneal a piece of steel in the shortest time without any
internal stress accumulation. In our model, a very fast annealing (de-
creasing the memory radius) drives the system into an equilibrium state
consisting of many small clusters (nonequilibrium state). The system
cannot continue to sort the objects by itself without a random input or
a proper, time dependent, memory radius. Our main goal in this study is
to derive a theoretical expression for the time-dependent memory radius
r. An appropriate numerical test is performed to check the findings in
order to minimize the computational time required to achieve a global
sorting steady state.
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(a) (b)

(c) (d)

Figure 1. The statistical average of the aggregation time strongly depends on the
memory radius r. Starting with an arbitrary initial configuration (a) and with
30 RLA, Na * 100, Nb * 100, in a 50 # 50 two-dimensional toroidal lattice,
clusters appear for r * 1.1 after 2.5 # 105 steps (b), r * 1.3 after 6.5 # 105 steps
(c), and r * 1.5 after 106 steps (d). Extensive numerical simulations suggested
the idea that an appropriate time-dependent memory radius can optimize the
algorithm.

3. The results

3.1 Analytic relationship between memory radius and aggregation stage
based on intermediate steady states hypothesis

Let us add a new index n, the discrete (computational) time step, to the
swapping condition of equation (1). Let us analyze the case when after
n time steps the swapping condition is not fulfilled but it turns out to be
true at step n - 1, namely:

f n
Α < f n

Β (7a)

f n-1
Α > f n-1

Β . (7b)

To emphasize the main idea, only two object types were considered on
the lattice. Using equation (3) we may write un

Β,i * 1 + un
Α,i, and

f n
Β *

Τ#
i*0

un
Β,i

ri *
Τ#

i*0

1
ri + f n

Α . (8)
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Substituting equation (8) into equation (7a) results in

f n
Α <

1
2

Τ#
i*0

1
ri .

The only way to fulfill the swapping condition after n-1 time steps is to
add the bit “1” to the most recent entry in the binary string (equation (2))
of the Α-type object. Using equation (6), the swapping condition writes

f n
Α > r

./////
0

1
2

Τ#
i*0

1
ri + 1

122222
3

,

where the following recurrent relationship was used:

f n-1
Α * 1 -

1
r

f n
Α .

Summarizing, in the limit of large memory Τ 4 5 the swapping condi-
tions of equation (7) write

r(2 + r)
2(r + 1)

< f n
Α <

r
2(r + 1)

. (9)

One can imagine that the aggregation process takes place progressively.
Namely, in a first stage, starting with a random distribution of the
objects, the RLAs form only two-object clusters, then they form only
three-object clusters, and so forth. This intermediate steady states as-
sumption helps us to establish a quantitative relationship between the
memory radius r and the aggregation stage. Thus, a two-object cluster
appears, at the time step n, if the binary string of the Α-type object writes
100 . . . , and, therefore, the swapping condition that ensures two-object
clusters aggregation, see equation (9), gives r 6 (21/2, 2). In the same
way, the most probable binary string in a fully sorted environment with
clusters composed only of two objects is 1100 . . . and, therefore, the
swapping condition of equation (7) reduces to r 6 (r1/3, r1/2). Generally,
it is straightforward that transition from a p-object clusters steady state
to (p - 1)-object clusters requires r 6 (21/(p-1), 21/p).

The question is: How long will it take, in conventional iteration
steps, to realize a complete two-object clusters steady state and then a
three-object one and so on? To answer this question, let us denote by
NΑ the number of Α-type objects in the lattice and with

$
N the linear

dimension of the square lattice we considered. A uniform distribution
of the objects in the lattice implies a mean distance Λ between the same
object types given by the conservation condition

NΑ *
.////
0
1 -

$
N
Λ

12222
3

2

,
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which implies

Λ *

$
N
2

1 -
%

4NΑ + 3

NΑ + 1
.

During the aggregation process the mean-free distance between the ob-
jects increases due to the decreasing number of clusters. We propose,
as a conventional iteration time step needed to switch between p and
p-1-objects steady clusters, a quantity proportional with the sum of the
corresponding mean-free distance between the clusters. For example,

Λ142 *

$
N
2

NΑ#
i*NΑ /2

1$
4i + 1 + 1

,

where the superscript 1 4 2 designates the initial and, respectively, final
aggregation steady states. The proportionality constant depends on
the successive identical steps required to visit the same cluster in order
to transport them to their nearest neighbors. Therefore, taking into
account this successive (minimal) number of repetitive visits, the above
relation can be generalized as

Λk4k-1 * (2k - 1)
$

N
2

NΑ
k#

i*NΑ /(k-1)

1$
4i + 1 + 1

. (10)

Figure 2 shows the relationship between the necessary simulation
time steps and the intermediate steady states for different concentra-
tions of the objects. This plot suggests that, with a constant value of the
memory radius r small clusters with dimension less than 10 appear very
quickly. After that, there is a saturation process that takes place due to
uncorrelated activities of the RLAs and the sorting process slows down.
The number of iteration steps to reach a given intermediate steady state
seems to be proportional to the concentration of the objects. On the
other hand, we observed that for every steady state (cluster dimension p)
there is an optimum value of the memory radius r. Therefore, by elim-
inating the steady state cluster dimension between the memory radius
and time steps, some insight can be obtained concerning the relation-
ship between the memory radius and time step (see Figure 3). The plot
suggests that, for a fixed concentration, there is a domain of allowed
memory radius values r that result in a global sorting. However, inside
the shadowed area there are infinitely different time (step)-dependent
memory radius relationships. Our goal is to identify the path that leads
to the global steady state in the shortest time.

Replacing the sum from equation (10) by
NΑ/k#

i*NΑ /(k-1)

1$
4i

,
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Figure 2. The plot of required iteration steps against the cluster dimension for
a fixed concentration of objects into the lattice reveals a linear relationship
between the computation time and the concentration. The environment was a
rectangular 100 # 100 lattice containing only two object types and one RLA,
memory radius r * 1.1.
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Figure 3. The plot of permitted values for the memory radius r against the
number of computer iterations for three different objects’ concentrations is
shown. The shaded graphs reflect the possible values of the memory radius
for a fixed concentration. As the simulations progress the possible domain
for the memory radius becomes thinner. The overlap of the permitted values
for different concentrations indicates that a RLA will continue to perform a
nonoptimized coherent task with a given, possibly wrong, memory radius. This
fact shows that the algorithm is stable against local perturbations of the objects’
concentration sensed by individual RLA. The concentrations were 5% (I), 10%
(II), and 15% (III).
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which is valid for NΑ , 1, on the basis of the Euler formula

b#
i*a

f (i) 8

b&
a

f (x)dx -
1
2
'f (a) - f (b)( - 1

12
'f 9(b) + f 9(a)( -!,

we have

Λk4k-1 8 (2k - 1)

$
N
2

NΑ/k#
i*NΑ /(k-1)

1$
4i

8 2N(2k - 1)

$
k - 1 +

$
k$

k(k - 1)
.

After simplifications we write

k 8
2N
Λ

.

On the other hand, to build clusters with k objects (in the k-objects
steady state sorting stage) the memory radius r must lie in the range
(21/(k-1), 21/k). Therefore, the last two relations give

r : exp
Λ ln 2
2N

. (11)

The next step is to design a numerical experiment in order to check our
theoretical prediction.

3.2 Numerical results and the annealing rule

Computation with the functional self-organization algorithm described
(see [20–23] for details) requires a well-defined measure of the aggrega-
tion stage. Our choice is a texture analysis using features which consider
that texture-context information is contained in the overall spatial rela-
tionship between its gray tones [29–31]. Let p(i, j) denote the normalized
matrix of relative frequencies with which two cells, separated by dis-
tance d, occur on the image, one with gray tone i and the other with
gray tone j. The matrix of gray-tone spatial-dependence frequencies
depends on angular relationships between the neighboring cells. In the
following we refer only to the horizontal gray-tone spatial-dependence
matrix but arbitrarily oriented matrices can be obtained the same way.
We found that the only relevant feature, in this particular numerical
experiment, is the contrast, which represents a measure of the amount
of local variations present in the image

contrast *
Ng+1#
n*0

n2
.//////
0
#

;i+j;*n

p(i, j)
1222222
3
, (12)

where Ng is the number of gray levels present in the image under inves-
tigation.
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Figure 4. Different snapshots are uniformly sampled with 500 time steps and
shown on the top panel. The behavior of the contrast feature against the
iteration time step is plotted (lower panel). Here the environment is a rectangular
100#100 lattice, with 10% black object concentration, 40 RLAs, and a constant
memory radius r * 1.1. As the system approaches its final steady state, the
contrast feature saturates. The minimum and maximum values were analytically
evaluated and, therefore, can be used to measure the distance between the
current aggregation stage and the steady state.

Numerical simulations demonstrate that the defined feature is sensi-
tive to an aggregation stage and offer a quantitative meaning for this
fuzzy concept (see Figure 4). Based on the defined global measure, we
performed extensive numerical simulations to find the optimal time-
dependence of the memory radius r in order to validate the theoretically
derived relationship equation (11) and its background hypothesis—the
intermediate steady states assumption. We found that at the very be-
ginning of the numerical simulations there is a quasi-linear relationship
between the slope of the feature and the time step (see Figure 5). Ana-
lyzing Figure 5, we conclude that it is advantageous, in order to reduce
the computational effort, to start the numerical simulations with a high
value for the memory radius. A high value of the memory radius means
a very abrupt decrease of the feature and a rapid slowing-down of the
algorithm. If numerical simulation continues along this path, the sys-
tem needs a long computation time to reach its final steady state. On
the other hand, an initial low memory radius determines a slow change
in the features but the end of the linear region is closer to its final
steady state. Our optimization procedure tries to combine the high
speed of the feature decrease for initial high memory radius, with the
lowest quasi-steady state at the end of the linear region for a low initial
memory radius.

To determine the limits of the linear domain, which means that for
a particular value of the memory radius the algorithm enters the slow-
ing down regime, we performed numerical simulations until the linear
correlation coefficient is maximum. At that point the final stage of ag-
gregation was reached, for a particular value of the memory radius r.
We recorded the slope of the contrast feature for that specific memory
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Figure 5. The three-dimensional plot of the contrast feature against the time step
and memory radius r is shown. With a constant memory radius, a linear depen-
dence of the feature on the time step can be observed at the very beginning of the
numerical simulations. Decreases of the memory radius determine a decrease
of the slope of the feature. On the other hand, the surfaces are highly fractured
and, therefore, an appropriate time-dependent memory radius relationship must
be chosen in order to avoid trapping the simulation in a local minimum.

radius value and the simulations were started over for another value of
r. Figure 6 summarizes the computationally derived optimal relation-
ship between the slope of the contrast feature and the memory radius in
order to ensure a minimum computational time. Once the relationship
between the microscopic control parameter (memory radius r) and the
macroscopic measure of aggregation stage (the contrast feature) was
established we get a practical instrument with which to optimize the
aggregation process.

The computational procedure is as follows. We monitored the slope
of the contrast feature and changed the memory radius according to a
computationally derived relationship (see Figure 6). The plot of the op-
timally controlled memory radius against the iteration step (see Figure 7)
shows that the interpolation curve (continuous line) agrees with our the-
oretically derived time-dependent memory radius (see equation (11)).

4. Discussion and conclusions

Previous studies suggested that a realistic approach to the problem of
local decision in the aggregation process performed by a team of mobile
agents is the first order recurrent memory function [20–23]. The present
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Figure 6. A plot of the steady slope of the contrast feature against the memory
radius r. The environment is a rectangular 100 # 100 lattice, with 10% black
object concentration and 40 RLAs. The chosen slope of the features maximizes
the linear correlation coefficient and, therefore, is an indication that the steady
state was reached.

Figure 7. The plot of the memory radius r against the time step n when the sorting
steady state was reached. The best fit is an exponentially decaying function with
the indicated parameters.
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study analyzes the dynamical aspects of the memory feature, particu-
larly, its correlation length or memory radius. Based on the intermediate
steady state hypothesis we derived a theoretical time-dependent mem-
ory radius that leads to a minimum aggregation time. The intuitive
idea behind our approach is that each two-, three-, four-, etcetera ob-
ject clusters are metastable and the inherent stochastic behavior of the
robot-like-ants (RLAs) is the mechanism that drives the systems from
intermediate (metastable) steady states to a final (stable) steady state.
Once we found a time-dependent memory radius, which we thought to
be the optimum, the next step was to check our finding using numerical
simulation.

We used the contrast feature as a quantitative measure to character-
ize the global dynamics of the cluster aggregation. The choice of this
specific feature is particularly important in the case of optimization of
the algorithm. This feature allows comparison between different speeds
of aggregation. The speed of saturation of the contrast feature strongly
depends on the control parameter (memory radius). Therefore, it was
used as an optimization criterion for the computational implementation.
Based on this computational optimization criterion we were able to de-
rive a relationship between the memory radius r and the iteration step.
The agreement between the theoretically derived relationship and the
numerically derived relationship based on maximization of the contrast
feature speed is satisfactory.

It is questionable whether the contrast feature is a relevant measure of
the clustering process. We found that other texture features available in
the field of image processing (angular second-momentum, correlation,
etc.) might present relevant dependencies on the control parameter
(memory radius). However, our preliminary results indicate that for the
very simple behavior we studied (sorting and clustering) using the speed
of variation of the other features as an optimization criterion does not
change the annealing law.

The self-organization approach is widespread because the same in-
dividual level behaviors may be used to generate different collective
responses in different environments. For example, a combination of
computer simulations and field experiments show in [3] that the differ-
ent exploratory patterns of army ants species could result from different
spatial distributions of their prey and not necessarily from differences in
individual behaviors. These simulations do not imply that individuals
of all species of army ants have exactly the same behavior, but suggest
that behavioral rules may be qualitatively similar in all species, possi-
bly because of common ancestors: evolution may then have modulated
these rules quantitatively (by changing response thresholds or specific
chemicals). It appears therefore that self-organization may have been
favored by evolution since it facilitates the emergence of efficient collec-
tive patterns and does not require complex individuals. However, the
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question of how self-organization and evolution interact is still largely
open, not only in insect societies but also in ecology, ethnology, and
biology in general [32].

On the other hand, using a swarm of robots inspired by social insect
behavior has some drawbacks. For example, stagnation is one: because
of the lack of a global knowledge, a group of robots may find itself in
a deadlock, where it cannot make any progress. Another problem is to
determine how these so-called “simple” robots should be programmed
to perform user-designed tasks. The pathways to solutions are usually
not predefined but emergent, and solving a problem amounts to finding
a trajectory for the system and its environment so that the states of
both the system and the environment constitute the solution to the
problem. Although appealing, this formulation does not lend itself to
easy programming. Until now, we implicitly assumed that all robots
were identical units. The situation becomes more complicated when
the robots have different characteristics, respond to different stimuli,
or respond differently to the same stimuli, and so forth. If the body
of theory that roboticists can use for homogeneous groups of robots
is limited, there is virtually no theoretical guideline for the emergent
design and control of heterogeneous swarms.

Appendix
The goal of this appendix is to derive the maximum and minimum val-
ues for global measure of the aggregation—the contrast. To simplify
the evaluations, only the case of a two-dimensional lattice environment
is discussed. We assumed that three object types denoted by a, b, and
respectively, Φ (empty site) are present. Let Nint(i) be the lattice site num-
ber inside the i-type object cluster and Next(i) the bordering lattice site
number for the same cluster (see Figure 8). Considering only the near-
est neighbor interaction, a rough estimation of the spatial-dependence
matrix entries is

p(i, i) *
1
N
'2Nint(i) - 'Next(i)(x( , (A.1)

where N is a normalization factor and (Next(i))x is the number of bor-
dering lattice sites of the i type cluster in the horizontal direction. For
symmetric clusters this number is

'Next(i)(x 8 'Next(i)(y *
1
2

Next(i).

To carry out algebraic manipulations we adopted a numerical equiva-
lence for the object types (a, b, Φ) 4 (1, 2, 3). Moreover, we assumed
that the a type object clusters and the b type object clusters do not
overlap. Under such assumptions

p(1, 2) * p(2, 1) * 0,
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Figure 8. Symmetric cluster of a type objects (black pixels) in the two-
dimensional rectangular lattice. This was found numerically to be the most
probable steady state of sorting.

p(1, 3) * p(3, 1) *
1
N
'Next(1)(x

p(2, 3) * p(3, 2) *
1
N
'Next(2)(x . (A.2)

Using equations (A.1) and (A.2), the matrix of a symmetric pattern (see
Figure 8) writes

(P) *

1
N

.//////////
0

2N(1) + 3
2Next(1) 0 1

2 Next(1)

0 2N(2) + 3
2 Next(2) 1

2 Next(2)
1
2 Next(1) 1

2Next(2) 2N(3) + 3
2Next(3)

12222222222
3

, (A.3)

where

N * 2(N(1) - N(2) - N(3)) +
1
2

(Next(1) - Next(2)) +
3
2

Next(3). (A.4)

The conservation rule writes

Next(3) * Next(1) - Next(2)
N(1) - N(2) - N(3) * NxNy (A.5)

where Nx (Ny) is the total number of horizontal (vertical) lattice sites.
Using equations (A.4) and (A.5) results in

N * 2 )NxNy + 'Next(1) - Next(2)(* .
Complex Systems, 13 (2002) 205–225
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Let us denote the concentration of the i type objects by

ci *
N(i)

NxNy
.

If the cluster dimension N(i) is big enough then a rough estimation for
the number of bordering sites is Next(i) 8 Α

$
N(i), where Α 6 (0, 1) is a

constant. Substituting this into equation (A.3), one obtains

N 8 2NxNy +1 + Α
$

N(1) -
$

N(2)
NxNy

,
* 2NxNy

<==========>
1 + Α

./////
0

-
c1

NxNy
-

-
c2

NxNy

122222
3

?@@@@@@@@@@A
. (A.6)

Substituting equation (A.6) into (A.3), and using the notation y *
Α/
%

NxNy, matrix (P) becomes:

(P) *

1
1 + y '$c1 -

$
c2(

.//////////
0

c1 + 3
4y
$

c1 0 y
2
$

c1

0 c2 + 3
4y
$

c2
y
2
$

c2
y
2
$

c1
y
2
$

c2 c3 + 3
4 y
$

c3

12222222222
3

, (A.7)

where the conservation law c1 - c2 - c3 * 1 was used. Based on equa-
tions (12) and (A.8) one finds

contrast *
2#

n*0

n2
.//////
0

3#
i,jB;i+j;*0

p(i, j)
1222222
3
*

y '2$c1 -
$

c2(
1 + y '$c1 -

$
c2( .

A major, realistic, simplification is y C 1, which means that the lattice
is either big enough or is periodic in order to avoid the edge effects.
Another major simplification is c1 * c2 * c, meaning that the two object
types have equal concentration. Under these assumptions, the contrast
feature can be written

contrast 8 5y
$

c .1 - 2y
$

c/ *> lim
y40

contrast * 0.

The last two simplified values for the contrast feature were obtained for
the final stage of the aggregation process.

To complete the analytical description of the aggregation process by
global features the above features must be evaluated for the initial (noisy)
configuration. To this purpose, let us denote by N(i, j) the number of
i + j nearest neighbor sites. According to our previous assumptions

N(1, 1) * N(2, 2) * 0,
N(1, 2) - N(1, 3) * 2N(1),
N(2, 1) - N(2, 3) * 2N(2),

N(3, 1) - N(3, 2) - N(3, 3) * 2N(3). (A.8)
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From a geometric point of view it is straightforward that N(3, 1) -
N(3, 2) :

$
N(3). Due to high symmetry in the noisy configuration we

can assume that:

N(1, 2) * N(2, 1) * N12,
N(1, 3) * N(3, 1) * N13,
N(2, 3) * N(3, 2) * N23. (A.9)

Using equations (A.8) and (A.9) results in

N12 * N(1) - N(2) +
Β
2

%
N(3),

N13 * N(1) + N(2) -
Β
2

%
N(3),

N23 * +N(1) - N(2) -
Β
2

%
N(3),

N33 * 2N(3) + Β
%

N(3),

where Β 6 (0, 1) is a constant. Therefore, by considering N * 2NxNy,
the corresponding matrix of the noisy pattern is

(P) *

1
N

.//////////////
0

0 c1 - c2 + Β
2

% c3
NxNy

c1 + c2 - Β
2

% c3
NxNy

c1 - c2 + Β
2

% c3
NxNy

0 +c1 - c2 - Β
2

% c3
NxNy

c1 + c2 + Β
2

% c3
NxNy

+c1 - c2 - Β
2

% c3
NxNy

2c3 + Β
% c3

NxNy

122222222222222
3

.

If the lattice environment is large enough or periodic the matrix (P)
becomes

(P) *
1
N

.//////
0

0 c1 - c2 c1 + c2
c1 - c2 0 +c1 - c2
c1 + c2 +c1 - c2 2c3

1222222
3

.

In the limit case considered above (Β
%

c3/NxNy 4 0) the contrast fea-
tures are

contrast 8 2c.
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