
Dynamic Neighborhood Structures in Parallel
Evolution Strategies

Klaus Weinert!

Jörn Mehnen!

Department of Machining Technology,
University of Dortmund,
44221 Dortmund, Germany

Günter Rudolph!

Department of Computer Science,
University of Dortmund,
44221 Dortmund, Germany

Parallelizing is a straightforward approach to reduce the total computa-
tion time of evolutionary algorithms. Finding an appropriate commu-
nication network within spatially structured populations for improving
convergence speed and convergence probability is a difficult task. A new
method that uses a dynamic communication scheme in an evolution strat-
egy will be compared with conventional static and dynamic approaches.
The communication structure is based on a so-called diffusion model ap-
proach. The links between adjacent individuals are dynamically chosen
according to deterministic or probabilistic rules. Due to self-organization
effects, efficient and stable communication structures are established that
perform robustly and quickly on a multimodal test function.

1. Introduction

Evolutionary algorithms (EA) are numerical optimization algorithms
that are inspired by the principle of biological evolution. A population
of individuals represents possible solutions of an optimization problem.
This set of solutions is continuously varied by genetic operators such
as recombination, mutation, and selection. An iterative application of
these operators leads to an adaptation of the individuals in an environ-
ment that is unknown a priori. The proper adjustment of the process
parameters and the tuning of the interplay of the operators are essential
for a successful deployment of EA.

The biological principle of evolution is inherently parallel. In na-
ture, genetic interaction and selection of the fittest individuals happen

!Electronic mail addresses: "weinert,mehnen#@isf.mb.uni-dortmund.de.
!Electronic mail address: rudolph@LS11.cs.uni-dortmund.de.

Complex Systems, 13 (2002) 227–243; $ 2002 Complex Systems Publications, Inc.



228 K. Weinert, J. Mehnen, and G. Rudolph

asynchronously. Something similar to specialization of individuals can
be observed if spatial or temporal separation becomes part of the evo-
lutionary model. In nature, separation and interaction of individuals
are permanent self-organizing processes that allow perpetuation of a
high genetic variety in order to keep the species from becoming ex-
tinct. According to these observations, the analyses of EA with parallel
evolution and dynamically interacting populations are the focus of the
experiments described here.

2. Parallel evolutionary algorithms

The term “evolutionary algorithm” (EA) is a superordinate concept
of genetic algorithms (GA), evolutionary programming (EP), genetic
programming (GP), and evolution strategies (ES). EA are a class of
direct and randomly driven optimization algorithms that belongs to a
more universal set of methods subsumed under the label computational
intelligence (CI) [1], which also comprises the fields of fuzzy logic and
neural networks. These techniques are subsymbolic (numeric) and excel
by their adaptability, fault tolerance, and high processing speeds when
applied to complex problems. CI methods are often inherently parallel.
Here, parallelization not only helps to increase performance of these
strategies, the usage of structure and the distributed processing of data
also introduces a new quality to these systems. In this article the focus
will be on parallel EA.

2.1 Static population structures

Parallel EA with static population structures can be grouped as fol-
lows [2].

Panmictic model. The population is not explicitly structured. Every
individual can interact genetically with each other.

Multipopulation models.

% Migration model. A population consists of separated subpopula-
tions. Each subpopulation has a panmictic structure. A limited
number of individuals can migrate between the subpopulations on
predetermined paths. The data is moved and not copied between
the populations.

% Pollination model. This model is similar to the migration model
but the data is copied and not moved.

Neighborhood models.

% Metric neighborhood model. The individuals of one common pop-
ulation are structured according to their spatial relations. Interac-
tions between individuals happen only between elements that are
neighbors, that is, they have the same distance relation.
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% Relational neighborhood model. This model is similar to the metric
neighborhood model, except that neighboring individuals share a
more general relation than just a spatial distance.

Multipopulation models. In this context the terms “island model” and
“stepping stone model” are often used. Island models are multipopu-
lation models where data can migrate between any subpopulation [3].
Stepping stone models follow a more restricted communication scheme,
that is, the subpopulations are arranged on a ring [2], or on a torus or
grid [4].

Theoretic investigations show that island models may behave pan-
mictic when the migration rate reaches a certain level. This threshold
does not depend on the population size, but does depend on the number
of islands and the migration rate between the islands. It can be shown
that the speed of convergence and the convergence probability can be
increased when very small migration rates are used (e.g., one migrant
per generation). On multimodal problems, such as Rastrigin’s function
f (x) & !30

i&1(x2
i % 50 cos(2Πxi)), multipopulation models show a higher

convergence probability than panmictic strategies. Other multipopu-
lation strategies, such as Cohoon’s approach of punctuated equilibria
[5] or Rechenberg’s nested evolution strategies [6, 7], also show that
structured populations have advantages when compared to panmictic
approaches.

Neighborhood models. Neighborhood models are sometimes also called
“diffusion models.” Due to the grid structure typically used, data
spreads slowly through the population. Genes that have a good fit-
ness are transfered from neighbor to neighbor and, thus, “infect” the
population by a diffusion process.

Gorges-Schleuter in [8, 9] and Sprave in [10] introduced algorithms
that were also implemented on parallel computer hardware. They show
that a diffusion model applied to complex problems, such as the travel-
ing salesman problem, can have a higher convergence probability than
panmictic EA. Diffusion models are not only interesting because they
are robust, they also show complex dynamics and can be scaled easily
on parallel computers by assigning subgrid structures of different sizes
to each processor.

2.2 Dynamic population structures

Halpern in [3] introduced an EA with a dynamic population struc-
ture. It is based on a structurally dynamic cellular automaton. Here,
one individual is assigned to one corresponding cell of the cellular au-
tomaton. Starting with N cells, the initial connections of the cells are
random and isolated individuals are not allowed. During the initializa-
tion phase, each individual is assigned a vector with randomly chosen
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real-valued numbers. During the optimization process, the connectivity
of the cells is changed according to deterministic rules that depend on
the fitness of the individuals. A predefined percentage of connections
to cells with comparatively bad fitness values are deleted. At the same
time, a list of next-nearest neighbors is created and a certain percentage
of new connections to the best individuals in that list are established. A
next-nearest neighborhood relation characterizes two individuals that
are interconnected with each other over a common neighbor. During
the evolutionary phase, each individual mates by intermediate recombi-
nation with a randomly chosen partner within its local neighborhood.
During this step N/2 new elements are generated that undergo, with a
certain predefined probability, mutation by adding or subtracting small
random increments. The set of N/2 offspring replaces the N/2 least fit
elements of the general population. The surviving offspring are placed
randomly on the grid sites to replace the least fit individuals. The algo-
rithm is iterated as long as a termination criterion does not hold.

The approach of Halpern has many similarities with an ES running
on a diffusion model. Great differences can be seen in the way mutation,
recombination, and population replacement after selection is used. Like
in GA, an explicit step size adaptation is not used. The mutation rate
is kept at a predefined fixed level and the step sizes are limited to small
intervals.

3. An alternative evolution strategy with dynamic neighborhood
structures

The paragon for the alternative parallel optimization algorithm dis-
cussed in this section is the ES [6, 11]. The algorithm has the following
structure.

- t (& 0
- define initial population P0

- define initial neighborhood structure L0

- calculate matrix of next-nearest neighbors M0

while termination condition not valid do
t (& t ) 1
for * individuals Ii + I do

- specify new neighborhood relations for each Ii by
application of the neighborhood rule (new Lt

i)
- specify new next-nearest neighbors of Ii (new Mt

i)
for * Λ offspring do

- select a mating partner for recombination Ir from
the neighborhood of Ii

- recombine Λ offspring from the parents Ii and Ir
- mutate the Λ offspring (object variables and step sizes)
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- evaluate Λ offspring by application of f
- select the best individual from the Λ offspring

to replace individual Ii of population Pt)1

During the initalization phase a beginning population P0 and an
adjacency matrix L0 are used. L0

i characterizes the local neighborhood
of individual i & 1, . . . , N. Typically the neighbors are chosen from a set
of randomly selected individuals. The size of the set fluctuates around
a predetermined average value. Hence, isolated individuals or isolated
subgraphs are allowed. The matrix Mt of next-nearest neighbors at
iteration t - 0 can always be calculated from the current adjacency
matrix Lt.

The main loop of the optimization algorithm consists of two parts. In
the first phase the neighborhood structure (Lt) is altered depending on
the user-defined rules for the neighborhood dynamics. Any connections
between neighbors may be deleted or established during that step. In
the second phase the genetic operators of an ES, namely recombination
and mutation, are applied to each individual Λ times in order to generate
a local offspring population. The mating partners are chosen from the
local neighborhood Ir of the indivudals. The best offspring solution
is selected to replace the original individual Ii. Both phases of the
algorithm are repeated as long as the termination criterion does not
hold. Two different neighborhood dynamics have been used in the
algorithm.

Halpern’s deterministic neighborhood rule. The deterministic rules used to
adapt the neighborhood structures follow the scheme of Halpern in [3].
The formation of the neighborhood depends directly on the fitness of
the neighbors. Two types of rules are used.

Decoupling rule. Each individual has a list of its neighbors that is sorted
by fitness values. The connections to a certain percentage of least fit
neighbors are detached. This number is determined by a parameter Χ.

Coupling rule. Simultaneous with the generation of the list of neighbors
used in the decoupling rule, a list of next-nearest neighbors is generated.
According to this list, a percentage Ω of new connections to the best
next-nearest neighbors are established.

The fitness of each individual influences the structural development of
its neighborhood: connections to individuals with a high fitness are
preferred, hence, the number of their neighbors increases over time. In-
dividuals that are least fit become more and more isolated. The rules
allow that elements may become completely disconnected. The struc-
ture of the rules implies that once an individual is isolated this state is
permanent. However, isolated individuals still share their contribution
in the optimization process, because in our algorithm they still realize a
(1, Λ)-ES search [11].
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Probabilistic neighborhood structure adaptation rule. According to the phi-
losophy of CI, a system should adapt itself automatically to a problem.
The coupling and decoupling rules introduced here take care of the fact
that an individual should always have a certain number of neighbors.
Furthermore, according to the evolutionary step size adaptation scheme,
genetic interactions between individuals that proved to be good should
have an effect on the succeeding generations. Otherwise the interaction
should be changed. Due to the discrete character of the connections the
following rules have been introduced.

Decoupling rule. A connection to a neighbor is detached, if recombina-
tion with that neighbor yields an offspring that has a lower fitness than
the fitness of the best offspring individual generated at that site during
the current generation.

Coupling rule. If the number of connections of an individual falls below
a certain threshold Φ, Ν new connections to randomly chosen individuals
of the population are established.

Although isolated individuals cannot occur, isolated subpopulations
are still possible. These isolated structures are not permanent (with high
probability), because connections to any member of the population can
be established during the coupling phase.

Communication scheme. The cellular population structure allows the
storage of the data in a decentralized manner. The genetic code, fitness,
and neighborhood structure are assigned to each individual. Communi-
cation happens directly between the individuals according to their local
neighborhood scheme. A central master unit that controls the exchange
of the data does not exist. Hence, the power of parallel communication
can be used extensively. Although this scheme allows implementing
an asynchronous EA, a synchronized generation scheme has been used.
Earlier analyses have shown [12, 13] that asynchronous communication
schemes imply complex dynamics in the evolutionary process that is not
easy to control and a comparison with standard ES can become quite
difficult.

Technically, the individuals are gathered on single processor nodes.
This allows scaling the number of individuals per processor according
to the complexity of the problem and the performance of the computer.
Changes in the communication structure during one generation cycle
are transferred via broadcast functions that are especially designed for
efficient communication.

Technical details. The software has been implemented on a parallel
computer, SGI Origin 2000 with 16 R10000 processors, using a shared
memory concept. The use of MPI (Message Passing Toolkit) [14] offers
the opportunity of running the code on clusters of workstations under
LINUX or Solaris OS. The program has been implemented in C++.
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4. Experiments

In order to characterize the effect of different parallelization schemes,
four evolutionary approaches have been tested.

Standard ES (static, panmictic).

Parallel ES with total interconnectivity (static, panmictic).

Parallel ES using Halpern’s communication scheme (dynamic, nonpan-
mictic).

Parallel ES using the adaptive communication scheme (dynamic, nonpan-
mictic).

The standard ES, which was exhaustively tested by Sprave in [10],
was used as a reference strategy. A direct comparison of the parallel
approaches with a standard ES is not possible, because the genetic oper-
ators of the parallel and the standard strategy differ. However, in order
to get an impression of the behavior of the parallel strategies, the results
of the standard ES are cited. In order to compare a standard ES with its
parallel counterpart, a virtually panmictic population has been modeled
by a parallel ES using total interconnectivity between all individuals.

All strategies have been applied to a 30-dimensional sphere model

f (x) &
30"
i&1

x2
i (1)

and to the 10-dimensional Rastrigin’s function

f (x) & 100 )
10"
i&1

(x2
i % 10 2 cos(2 2 Π 2 xi)) . (2)

The sphere model is a simple test function for which the behavior of a
standard ES is well known. Rastrigin’s function is a highly multimodal
function that represents a big challenge for many optimization strategies.
The global minimum of both functions is zero. A discussion of the
application of a standard ES to these functions can be found in [11].

The settings of the parameters used for the strategies were motivated
by recommendations of Kursawe in [15] where optimal parameters for
a standard ES are empirically found and applied to the problems above
based on extensive numerical experiments (see Table 1).

Since our previous numerical study had shown only small fluctuations
in the results, we dared to base the series of experiments presented here
on five independent repetitions per experiment.

5. Results

Analyses of the static ES variants. Figure 1 illustrates the behavior of a
standard (100, 500)-ES [11] and a parallel ES with a total interconnec-
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Parameter Settings
number of generations 200
number of individuals 100
number of offspring per individual 5 (sphere model)

2 (Rastrigin)
problem dimension 30 (sphere model)

10 (Rastrigin)
number of step sizes 1 (sphere model)

n (Rastrigin)
initial object variables [-2.0, ..., 2.0] (sphere model)

[-5.0, ..., 5.0] (Rastrigin)
initial sigma values 0.01
recombination type (object
variables)

intermediate

recombination type (step sizes) discrete
Τ0 0.1826 (sphere model)

0.2236 (Rastrigin)
Τi not used (sphere model)

0.3976 (Rastrigin)
initial neighborhood structure random
initial average number of neighbors of an
individual

5

Table 1. Parameters for the structurally dynamic ES.
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Figure 1. Comparison of a standard ES and an ES with a total interconnection
scheme (applied to the sphere model).
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tion communication scheme. Both strategies are panmictic and do not
use a dynamic neighborhood structure. The difference lies in the genetic
operators. The parallel algorithm produces five offspring elements per
individual within each local environment and replaces the solution of the
specific site by the best solution found in the local offspring population.

Both strategies show the typical linear (logarithmically scaled) con-
vergence behavior of an ES when applied to a sphere model. The step
sizes follow the progression of the fitness. In this case a correct auto-
matic step size adaptation is indicated.

The convergence velocity of the parallel ES is a little bit smaller than
the velocity of the standard ES. This is due to the local selection scheme
of the parallel algorithm. However, qualitatively both strategies behave
quite similar. One can state that the basic neighborhood structure used
for the parallel algorithms does not influence the basic behavior of the
optimization process.

Analyses of the dynamic ES variants. The dynamics of the EA on self-
organizing dynamic lattices [3] can be controlled by specific model pa-
rameters. The deterministic rules of Halpern are influenced by the cou-
pling parameter Χ and the decoupling parameter Ω. The probabilistic
strategy is controlled by the threshold values Φ and Ν. In the following
experiments the behavior of the strategies is discussed.

5.1 Dynamic evolution strategy using Halpern’s neighborhood rules

Figure 2 illustrates the typical progression of the number of neighbors
during the evolutionary optimization process for Χ & 0.4 and Ω & 0.4.
Depending on the definition of Χ and Ω and the population size Ν, the
number of direct neighbors 4 and next-nearest neighbors 5 stabilizes
after an initial oscillation phase to the manually estimated values 4 &
Χ 2 Μ/(Χ ) Ω) and 5 & Ω 2 Μ/(Χ ) Ω), respectively.

Due to the effect of isolation, the total number of neighbors and
next-nearest neighbors decreases over time. This effect becomes more
prominent the larger Χ is relative to Ν. Once an individual is isolated, it
cannot establish new connections to other individuals. Hence, the total
number of contacts within the population decreases over time.

Figure 3 shows the typical convergence behavior of the dynamic ES
using Halpern’s rules when applied to Rastrigin’s function. Although
the fitness function is quite complex, the optimization process shows no
phases of stagnation. The convergence speed of this parallel EA when
applied to the sphere model is, of course, much higher. Nevertheless, the
algorithm shows nearly linear convergence on both fitness functions.

The application of the dynamic ES with Halpern’s neighborhood rules
to Rastrigin’s function shows the highest convergence velocity with the
parameter settings Χ & 0.4 and Ω & 0.4. A high coupling value Ω speeds
up the initial stabilization process of the connectivity of the population.
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Figure 2. Number of direct neighbors and next-nearest neighbors (Halpern’s
rules, Rastrigin’s function).
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Figure 3. Fitness and step sizes of the dynamic ES with Halpern’s neighborhood
rules (applied to Rastrigin’s function).

A stable average connectivity rate is an important precondition for a
stable progression of the optimization process.

An analysis of the neighborhood structure showed that isolated sub-
populations having more than one individual did not appear. This was
true for both fitness functions.

5.2 Dynamic evolution strategy using probabilistic neighborhood rules

The following experiments illustrate the dynamics of the connectivity
of the population and the convergence behavior of the dynamic ES with
probabilistic neighborhood rules.
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Figure 4. Number of direct neighbors and next-nearest neighbors.

Figure 4 shows the dynamics of the connectivity in the population
of the dynamic ES when applied to Rastrigin’s function. Here, the
parameter settings Φ & 20 and Ν & 20 are used. In the beginning, like in
Halpern’s scheme, an initial stabilizing phase appears. After this period,
a constant and nondecreasing number of connections in the population
is established. This is due to the theshold value Φ that prevents the
phenomenon of isolation. The average number of neighbors of an
individual can be estimated by 7 & (2Φ ) Ν)/2.

The analyses of different parameter settings yielded that Φ & 20 and
Ν & 20 are good choices. Smaller values reduced the convergence veloc-
ity of the algorithm, because the necessary genetic diversity that depends
on the number of neighbors cannot be established. High parameter
settings yielded neighborhood structures that more and more resemble
completely interconnected populations that cannot use synergetic effects
due to temporal genetic separation.

Figure 5 shows the progress of the number of neighbors of one ran-
domly selected individual during the optimization process. The typical
degeneration and re-establishing phases of the connectivities can be seen.
On the average, the number of connections in the population is nearly
constant (see Figure 4).

The convergence behavior of the dynamic ES with probabilistic neigh-
borhood rules applied to Rastrigin’s function is shown in Figure 6. The
continuous reduction of the step size indicates that the step sizes are
adapted in the typical way of an ES. The continuous decrease in the
fitness values is a hint for a robust optimization process.

Comparison of the ES variants. In order to compare the convergence
velocity of the ES variants, a standard (100, 500)-ES, a parallel ES using
a total interconnection communication scheme, and the two dynamic
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Figure 5. Number of direct neighbors using a probabilistic scheme.
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Figure 6. Fitness and step sizes of the dynamic ES with probabilistic neighbor-
hood rules.

and parallel ES with either Halpern’s or probabilistic neighborhood
adaptation rules were used. The parameter settings of the previously
discussed experiments were applied.

The parallel ES with Halpern’s neighborhood rule shows the best con-
vergence velocity when applied to Rastrigin’s function (see Figure 7). An
additional advantage of the algorithm lies in its processing speed because
the fitness functions can be evaluated in parallel. A disadvantage of
Halpern’s rules is its tendency to generate isolated individuals that pre-
vent the exploitation of the full synergetic effect of parallelsim. It should
be noted that the algorithm discussed here only uses Halpern’s neighbor-
hood rules, while the genetic operators are taken from the standard ES.
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Figure 7. Comparison of the parallel ES variants.

The dynamic ES with the probabilistic neighborhood adaption rules
showed a convergence velocity that is similar to the algorithm with
totally interconnected populations.

An interesting improvement of the convergence probability for Ras-
trigin’s function can be reached when the ES with probabilistic com-
munication is modified in such a way that temporarily isolated sub-
populations (clusters) can appear. Therefore, the parameter settings
Φ & 1 and Ν & 1 are used. The extremely low number of connections
yields subpopulations that are isolated for certain time periods. The
probabilistic connection scheme allows interconnecting any individual
with any other. Hence, a sort of “dynamic” stepping stone model with
changing subpopulation structures is generated. An additional damp-
ing factor, that “freezes” the communication structure for a period of Γ
generations, reduces the “turbulences” induced by communication and,
hence, increases the possibility of evolving good local solutions, that can
be exchanged with the neighbors. This improves the genetic diversity
and therefore the convergence probability but it also hampers the con-
vergence velocity. Especially for difficult multimodal functions a robust
optimization may be more necessary than a fast but “greedy” strategy.
The behavior of the parallel dynamic multipopulation strategy with a
probabilistic communication scheme is shown in Figure 8.

Speed up. The main goal in parallelizing an algorithm is to improve its
performance. For EA, this means to speed up the optimization process
by parallel execution of the genetic operators and/or the fitness func-
tion. Synergetic effects gained by parallelizing often allow an additional
improvement of the robustness and the convergence probability of the
optimization process.
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Figure 8. Dynamic multipopulation ES with probabilistic communication.

The parallel ES has been implemented on a parallel computer archi-
tecture with 16 processors. Therefore, the speed up of the dynamic
parallel ES variants can be measured quantitatively.

The execution time of a parallel program is the length of the time
interval from the start of the first process to the end of the last process
[16]. The relative speed up s(p) is the quotient of the time t1 needed by
one processor to execute the parallel program to time tp needed by p
processors, that is, s(p) & t1/tp. The relative efficiency e(p) is the quotient
of the relative speed up s(p) and the number of processors p. This
quotient e(p) & s(p)/p expresses the effective gain of the parallelization.
In order to keep the experimental conditions constant, each experiment
was run with 1, 2, 4, 8, and 16 processors using constant population
sizes (i.e., 208 individuals were used for one processor or 104 individuals
each for two processors, and so forth).

Figure 9 shows that an increasing number of nodes yields a sub-
linear relative speed up. The relative efficiency decreases because the
amount of communication becomes larger as more processors are used.
Comparing the speed up and the effectiveness allows the conclusion
that there exists a certain number of processors that marks a limit of
efficiency (not reached here) gained by using additional processors.

6. Conclusions and outlook

In this article two parallel implementations of evolution strategies (ES)
using dynamic communication structures have been discussed. Both
approaches use the standard genetic operators from conventional ES.
This allows utilizing the benefit of an automatic step size adaptation
via mutation and recombination. The basic population structure is
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Figure 9. Relative speed up and relative efficiency.

a diffusion model. Motivated by the ideas of Halpern in [3], self-
organized dynamic lattices are used. Following either deterministic
or probabilistic rules, each individual is able to connect or disconnect
within its environment. Both rules use subpopulations of neighbors
around each individual to produce offspring. The best individuals of
the offspring population are selected to replace the parent individual.
Connection and disconnection depend on the fitness of the neighbors or
the fitness gain of the connection after reproduction, respectively. The
deterministic rules tend to reduce the connections over time while the
probabilistic rules re-establish new connections and prevent isolation.

Compared with a reference model of a parallel ES with totally inter-
connected individuals, the parallel ES with deterministic communication
rules has a much higher convergence velocity. This may be due to the
fact that in the deterministic model connections to individuals with low
fitness values are deleted and, hence, the probability of meeting better
individuals for recombination is higher than in the panmictic case. The
probabilistic re-establishing of the connections leads to a stable number
of neighbors but disregards the fitness of new neighbors. This yields a
convergence velocity that is similar to the reference model.

Using a parallel ES with probabilistic communication rules that do
not destroy links between individuals for some generations and that al-
low temporarily isolated subpopulations, yielded a slow strategy with a
surpassing convergence probability, when compared to the other strate-
gies.

The application of a parallel computer with 16 processors allowed
a significant speed up of the ES. The experimentally measured increase
of speed up per processor follows a curve with positive but slowly
decreasing derivatives. The amount of communication between the
processors limits the gain from parallelization. The synergetic effects in
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parallel ES play a more important role. This is expressed by an increase
in the convergence probability and a little higher convergence velocity
for the parallel optimization algorithms when applied to multimodal
problems.

The experience from the experiments discussed here will be used for
practical applications in the field of evolutionary surface reconstruction
[13]. First tests already show very promising results.
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