
Memetic Algorithms for the Traveling
Salesman Problem

Peter Merz!

Department of Computer Science,
University of Tübingen,
Sand 1, D–72076 Tübingen, Germany

Bernd Freisleben!

Department of Mathematics and Computer Science,
University of Marburg,
Hans-Meerwein-Straße,
D–35032 Marburg, Germany

Memetic algorithms (MAs) have been shown to be very effective in finding
near-optimum solutions to hard combinatorial optimization problems.
In this paper, the fitness landscapes of several instances of the travel-
ing salesman problem (TSP) are investigated to illustrate why MAs are
well-suited for finding near-optimum tours for the TSP. It is shown that
recombination-based MAs can exploit the correlation structure of the
landscape. A comparison of several recombination operators—including
a new generic recombination operator—reveals that when using the
sophisticated Lin–Kernighan local search, the performance difference of
the MAs is small. However, the most important property of effective
recombination operators is shown to be respectfulness.

In experiments it is shown that our MAs with generic recombination
are among the best evolutionary algorithms for the TSP. In particular,
optimum solutions could be found up to a problem size of 3795, and
for larger instances up to 85,900 cities, near-optimum solutions could be
found in a reasonable amount of time.

1. Introduction

The traveling salesman problem (TSP) is one of the best-known com-
binatorial optimization problems. It can be stated as follows: Given
n cities and the geographical distance between all pairs of these cities,
the task is to find the shortest closed tour in which each city is visited

!Electronic mail address: peter.merz@ieee.org.
!Electronic mail address: freisleb@informatik.uni-marburg.de.

Complex Systems, 13 (2001) 297–345; " 2001 Complex Systems Publications, Inc.

298 P. Merz and B. Freisleben

exactly once. More formally, the tour length

l(Π) $
n%1!
i$1

dΠ(i),Π(i&1) & dΠ(n),Π(1) (1)

has to be minimized, where dij is the distance between city i and city j
and Π a permutation of "1, 2, . . . , n#. Thus, an instance I $ "D# is defined
by a distance matrix D $ (d)ij, and a solution (TSP tour) is a vector Π
with j $ Π(i) denoting city j to visit at step i.

In recent years, the exact solution of large TSP instances has made
enormous progress due to the improvement of branch and cut algo-
rithms. Furthermore, the TSP has been widely used as a problem for
testing new heuristic algorithms and general purpose optimization tech-
niques. As a result, highly effective heuristics have been proposed that
are capable of solving TSPs with thousands of cities.

In this paper, memetic algorithms (MAs) [79] for the TSP are in-
troduced which have been shown to belong to the best heuristics cur-
rently available for the TSP. These algorithms are similar to evolution-
ary algorithms, but have more in common with cultural than biological
evolution. The MAs considered in this paper are hybrid evolutionary
algorithms incorporating local search.

Firstly, a landscape analysis is performed to identify properties of TSP
instances which can be exploited by MAs. It will be shown that although
all TSP instances share certain characteristics, there are some landscapes
that differ significantly from others, leading to a different performance
of heuristic approaches. However, the analysis reveals that respectful
recombination is capable of exploiting the distribution of local minima
in the TSP landscape.

Secondly, a new generic greedy recombination operator is proposed
and used to identify important properties of recombination operators
in MAs for the TSP. Various recombination operators are compared in
experiments and it is shown that many operators show similar perfor-
mance, when a sophisticated local search heuristic is employed. On
the other hand, it is shown—as expected due to the results of the land-
scape analysis—that recombination needs to be respectful to be highly
effective.

Finally, it is demonstrated that the successor of the already published
MA [35, 71, 72] is capable of finding optimum solutions for problems up
to 3795 cities in a small amount of time and is thus superior to any other
evolutionary algorithm for the TSP known to the authors. In additional
experiments it is shown that with this new approach problems of up to
85,900 cities can be tackled.

The paper is organized as follows. In section 2, simple construction
heuristics and improvement heuristics for the TSP are described. In
section 3, a fitness landscape analysis is performed for the TSP and

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 299

several types of TSP instances are discussed. Section 4 presents a MA for
solving combinatorial optimization problems in general terms, and the
evolutionary operators and MA components specially designed to solve
the TSP. The results of the MA with different evolutionary operators
for selected instances is provided and a comparison of the MA with the
iterated Lin–Kernighan approach is conducted on large instances of up
to 85,900 cities. Section 5 concludes the paper and outlines areas for
future research.

2. Heuristics for the traveling salesman problem

For decades, the TSP has served as an initial proving ground for new
ideas to solve combinatorial optimization problems. Besides the fast
development in solving TSP instances to optimality, enormous progress
has been made in the field of heuristics.

Most of the earliest algorithms belong to the class of construction
heuristics. Examples of this class are nearest neighbor heuristics and in-
sertion heuristics, for which a detailed description and comparison can
be found in [53, 97]. Another intuitive approach is the greedy heuristic,
also known as the multi-fragment heuristic [5, 53]. Furthermore, there
are more elaborate tour construction heuristics, such as the Christofides
algorithm [16] which is based on spanning trees, or the savings heuristic
(also known as the Clarke and Wright algorithm) originally developed
for the vehicle routing problem [17]. However, these heuristics perform
poorly in comparison to local search heuristics which belong to the class
of improvement heuristics. But, instead of applying a local search to
randomly generated solutions, a local search can be applied to solutions
generated by a (randomized) tour construction heuristic. Surprisingly,
the best performing construction heuristic is not the best suited for com-
bining with local search, as shown by several researchers independently
[7, 53, 97]. For example, in [53] it is shown that although the savings
heuristics performs better than the greedy and nearest neighbor heuris-
tics, in combination with 2-opt or 3-opt local search it performs the
worst (even worse than the local search applied to random solutions).
In fact, the best suited construction heuristic is the greedy heuristic, as
shown in [7, 53]. It appears that the starting tour for a local optimiza-
tion must contain a number of exploitable defects, that is, some rather
long edges, and if a tour is too good it may not have these.

Since greedy and local search heuristics are among the most efficient
algorithms for the TSP with short running times and thus the most
interesting for incorporation into MA, these two types of algorithms
are described in the following paragraphs in more detail. Many other
heuristics have been proposed for the TSP, including simulated anneal-
ing [50, 111], tabu search [28], ant colonies [22, 36, 106], artificial
neural networks [23, 76, 92], search space smoothing [43], perturba-

Complex Systems, 13 (2001) 297–345

300 P. Merz and B. Freisleben

tion [18], and evolutionary algorithms [30, 32, 49, 85, 108, 110, 112,
114].

2.1 The greedy heuristic

Although the nearest neighbor heuristic can be regarded as a greedy
heuristic, the term is usually used for the following variant of the greedy
algorithm.

This heuristic can be viewed as considering the edges of the graph
in increasing order of length, and adding any edge that will not make
it impossible to complete a tour. Thus, the algorithm builds up a TSP
tour for N cities (a cycle of length N in a graph) by adding one edge at a
time, starting with the shortest edge, and repeatedly adding the shortest
remaining available edge. In the algorithm, an edge is referred to as
available if it is not yet in the tour and if adding it would not create a
degree-3 vertex or a cycle of length less than N.

While in the nearest neighbor heuristic partial tours maintain a single
TSP fragment, the greedy heuristic employs a set of fragments. There-
fore, the greedy heuristic is also known under the name multi-fragment
heuristic [7].

The implementation sketched above requires O(N2 log N) time. How-
ever, using appropriate data structures, the running time of the algorithm
can be reduced considerably. As shown in [7], using K-d trees to calcu-
late nearest neighbors [6], and using a priority queue to store available
candidate edges, the expected running time is reduced to O(N log N) for
uniform data (euclidean TSP with points uniformly distributed in the
unit square).

2.2 Local search

Local search algorithms for the TSP are based on simple tour modi-
fications. A local search algorithm is specified in terms of a class of
operations called moves that can be used to transform one tour to an-
other. We can view local search as a neighborhood search process where
each tour has an associated neighborhood of tours, that is, those that
can be reached by a single move. The search algorithm repeatedly moves
to a better neighbor until no better neighbors exist. Moves proposed
for the TSP can be divided into node exchange operators, node insertion
operators, and edge exchange operators.

Viewing a TSP tour as a sequence of cities which defines the order in
which to visit the cities, the node exchange operator simply exchanges
two nodes in the sequence.

Node re-insertion operators work by deleting a node from a tour and
inserting it at another position in the tour. Variations of this scheme
exist in which two nodes are re-inserted (edge insertion) [97] or up to
three nodes are re-inserted (Or-opt) [90].

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 301

0

1

2

3

4

5

6

7
8

9

!
0

1

2

3

4

5

6

7
8

9

Figure 1. Neighborhood search by exchange of two edges (2-opt).

2.2.1 2-opt and 3-opt local search

Among simple local search algorithms, the most famous are 2-opt and
3-opt [65] which are examples of edge exchange algorithms. The 2-
opt algorithm was first proposed by Croes in [19], although the basic
move had already been suggested by Flood in [29]. This move deletes
two edges, thus breaking the tour into two paths, then reconnects those
paths in the other possible way as shown in Figure 1. In the exam-
ple, the edges (0, 2) and (5, 6) are exchanged with the edges (0, 5) and
(2, 6).

Analogously, in 3-opt, up to three edges are exchanged. With 3-
opt, the neighborhood size increases from O(N2) to O(N3) compared
to the other local searches. In practice, however, the running time for
searching the neighborhood can be reduced for euclidean instances so
that 3-opt is applicable even to large instances. For example, nearest
neighbor lists are used to restrict the number of candidate edges for the
replacement of edges in an exchange [53, 97]. Furthermore, the concept
of “don’t look bits” proposed by Bentley in [5] reduces the search time
for an improving move considerably. Compared to other neighborhood
search algorithms, the first improving move is accepted in this scheme
rather than the best.

It has been shown that edge exchange local search is much more
effective than node re-insertion or node exchange [97]. Generally, the
higher the k of a k-opt local search, the better the resulting tours. How-
ever, since the neighborhood size grows exponentially with k, only small
k turn out to be practical. Lin and Kernighan have shown that a sub-
set of the k-opt neighborhood can be searched very efficiently with a
considerable decrease in tour length compared to 2- or 3-opt.

2.2.2 The Lin–Kernighan algorithm

For over a decade and a half, from 1973 to about 1989, the world
champion heuristic for the TSP was generally recognized to be the local
search algorithm of Lin and Kernighan (LK) [66]. This algorithm is both

Complex Systems, 13 (2001) 297–345

302 P. Merz and B. Freisleben

u1

u2

u3

u1

u2

u3
u4

u5

u1

u2

u3
u4

u5
u6

u7

Figure 2. An edge exchange in the LK heuristic.

a generalization of 3-opt and an outgrowth of ideas the same authors
had previously applied to the graph partitioning problem [59].

The basic idea of the LK algorithm is to build up complex moves by
combining simple submoves to exchange a variable number of edges.
The submoves usually employed are 2-opt and 3-opt moves although
variants exist where node re-insertion and 2-opt has been used [97]. To
illustrate the behavior of the heuristic, an example of an edge exchange
is shown in Figure 2. (In the figure, a TSP tour is displayed as a circle and
the length of the edges do not resemble their length in the TSP graph.)
Briefly, the LK heuristic can be described as follows. In each step, we
have a situation where the tour is broken up at one node forming a
1-tree (a spanning tree with an extra edge) as shown on the left of the
figure. This 1-tree can be easily transformed into a feasible TSP tour
by breaking up one edge of the degree-3 vertex and connecting the two
degree-1 vertices. Consider now the example in which an improving
k-exchange is searched beginning with node u1. First, the edge (u1, u2)
is replaced by a shorter edge (u2, u3). Now, the algorithm considers
closing up a tour by connecting the predecessor of u3 called u4 with
u1 and thus replacing edge (u3, u4) with edge (u4, u1). In this case, we
made a 2-change since we replaced the edges (u1, u2) and (u4, u3) with
(u2, u3) and (u4, u1). Alternatively, we can replace the edge (u3, u4) with
(u4, u5) resulting in a new 1-tree. Once again, we may close up a tour by
connecting u6 with u1 or continue searching by connecting u6 to another
node u7 as shown in the right of the figure. Thus, the heuristic performs
sequential changes of edges until no further exchanges are possible or
favorable to find the best k-change in an iteration. The number of
exchanges that are tried is bound by the gain criterion which is fulfilled
if the gain of replacing k edges with new edges without closing up the
tour is above zero. The change made in an iteration is the one with the
highest gain when closing up the tour. If the search for an improving k-
change fails, several levels of backtracking are considered. For example,
alternatives for (u2, u3) at the first level and alternatives for (u4, u5) at
the second level are considered. A more detailed description of the LK

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 303

algorithm would go beyond the scope of this paper and can be found in
the original paper by Lin and Kernighan [66].

A major drawback of the LK heuristic besides the high effort needed
for its implementation is its rather long running time. Therefore, sev-
eral improvements to the original algorithm have been made, such as
candidate lists based on nearest neighbors and don’t look bits [53]. Fur-
thermore, efficient data structures have been proposed to perform the
submoves since they consume most of the running time of the algorithm,
especially for large TSP instances (N > 1000) [33, 68].

2.3 Evolutionary algorithms

Inspired by the power of natural evolution, several researchers indepen-
dently studied evolutionary algorithms (EAs) keeping in mind the idea
that engineering problems could be solved by simulating natural evo-
lution processes. Several EAs; for example, evolution strategies (ES),
evolutionary programming (EP), and genetic algorithms (GAs), have
been proposed since the early 1960s in which a population of candidate
solutions is evolved subject to replication, variation, and selection.

In the past few years there has been an enormous amount of research
in evolutionary computation with increasing interaction among the re-
searchers of the various methods. The boundaries between GAs, EP,
and ES have been broken down to some extent, and EAs have been
developed that combine the advantages of the approaches. The field for
applications of EAs has been drastically extended, including the evolu-
tion of computer programs known under the name genetic programming
[61, 62], or the implementation of machine learning in classifier systems
[12, 47]. Other extensions to the basic concepts have been made such as
co-evolution [46, 91] or the hybridization of traditional problem-specific
methods with EAs [21, 75].

2.3.1 Outline of evolutionary algorithms

Without referring to a particular algorithm, a general template of an
EA is shown in Figure 3. All mentioned variants of EAs (GAs, EP,
and ES) are special cases of this scheme. First, an initial population
is created randomly, usually with no fitness or structural bias. Then,
in the main loop, a temporary population is selected from the current
population utilizing a selection strategy. Afterwards, the evolutionary
operators mutation and/or recombination are applied to some or all
members (individuals) of the temporary population. Usually, the main
loop is repeated until a termination criterion is fulfilled (a time limit
is reached or the number of generations evolved exceeds a predefined
limit). The newly created individuals are evaluated by calculating their
fitness. Before a new generation is processed, the new population is
selected from the old and the temporary population. Now, the algorithm
can continue by building a new temporary population. Besides the way

Complex Systems, 13 (2001) 297–345

304 P. Merz and B. Freisleben

procedure EA;

begin
t := 0;
initializePopulation(P(0));
evaluate(P(0));
repeat

P' := selectForVariation(P(t));
recombine(P');
mutate(P');
evaluate(P');
P(t & 1) := selectForSurvival(P(t), P');
t := t & 1;

until terminate = true;
end;

Figure 3. The EA pseudo code.

the methods encode the candidate solutions of the problem to solve,
they differ in the order and rate in which the variation operators are
applied and in the type of selection strategy they use.

2.3.2 Evolutionary algorithms for the traveling salesman problem

Various attempts have been made to apply EAs to the TSP. For exam-
ple, evolutionary programming has been applied to the TSP by Fogel
using node re-insertion as the mutation operator [31] and random 2-opt
moves (random exchanges of two edges) [30]. Evolution strategies have
been applied to the TSP by Herdy in [45] and Rudolph in [100]. While
Herdy conducted experiments with node exchange, node re-insertion,
and the edge exchange operator (two and three edges), Rudolph chose
a real vector representation for the TSP and applied the ES on con-
tinuous variables. The majority of publications, however, deal with
representations and/or recombination operators for GAs for the TSP.

Besides the most commonly used path representation [20, 37, 38, 89]
in which a tour is coded as a vector of discrete variables of length N that
provides the order in which to visit the cities and is thus a permutation Π
of the set (1, . . . N), other representations have been proposed such as the
adjacency representation [41], the adjacency matrix representation [49],
the precedence matrix representation [32], the ordinal representation
[41], and the edge list representation in combination with the path
representation [114].

There is an enormous number of recombination operators for the TSP,
most of which have the disadvantage that they do not scale well or they
are only effective in combination with additional heuristic operators.
The reason will be illustrated by an example.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 305

The partially-mapped crossover (PMX) was introduced by Goldberg
and Lingle in [37]. It performs a sequence of swapping operations to
create offspring. Firstly, a mapping section is chosen at random. In the
example below, the mapping section is marked by “*”:

Partially-mapped crossover
Parent A 0 9 6 * 5 3 7 8 * 1 4 2
Parent B 0 5 3 * 7 4 1 8 * 2 6 9
Offspring A' 0 9 6 * 7 4 1 8 * 5 3 2
Offspring B' 0 1 4 * 5 3 7 8 * 2 6 9

Secondly, in parent A, cities 5 and 7 are swapped, then 3 and 4, and
at last cities 5 and 1. Now, the mapping section is equal to the mapping
section of parent B. Thirdly, parent B has to be transformed analogously
by a sequence of swaps, these are: 5 and 7, 3 and 4, 6 and 5, and 1
and 7. The resulting offspring are shown above. Both offspring A' and
B' contain three and two edges not shared by the parents, respectively.
For example, offspring A' is a feasible solution but does not consist
entirely of genetic material from its parents: the edges (6, 7), (5, 8), and
(2, 3) are not contained in either of the parents. Figure 4 displays the
tours of parent A, parent B, and offspring A'. The tour lengths are
1707.96, 1834.27, and 2251.00, for parent A, parent B, and child A',
respectively. Here, the crossover has disruptive effects: although only
three edges are included that are not contained in the parents, the tour
length is considerably longer than the lengths of the parent tours. Note
that the edges of the parents in the example above can be recombined
to the solution of length 1507.94.

The introduction of foreign edges into the child is referred to as
implicit mutation and has a high impact on the effectiveness of recom-
bination operators. If the number of foreign edges gets too high, the GA
degrades to pure random search. But even a small number of foreign
edges can prevent a GA from finding (near) optimum solutions, since
these edges can be arbitrarily long and thus may have a large impact on

0

1

2

3

4

5

6

7
8

9

"
0

1

2

3

4

5

6

7
8

9

!
0

1

2

3

4

5

6

7
8

9

Figure 4. Crossover of TSP tours using PMX.

Complex Systems, 13 (2001) 297–345

306 P. Merz and B. Freisleben

the objective value. In other words, the objective values of parents and
offspring may not be highly correlated.

The phenomenon of implicit mutation during recombination can be
observed by almost all recombination operators for the TSP. In [114],
Whitley et al. argue that it is essential to focus attention on edges rather
than preserving the positions of nodes. They developed the edge re-
combination operator which is aimed at preserving as many edges from
the parents as possible while keeping the recombination process simple.
Several variants of the edge recombination operator have been proposed
[24, 69, 105], none of which guarantees that no implicit mutation oc-
curs.

Grefenstette concludes from his studies [42]:

Finally, it’s widely recognized that GAs are not well suited to per-
forming finely tuned local search... Once the high performance
regions of the search space are identified by the GA, it may be
useful to invoke a local search routine to optimize the members of
the final population.

As a consequence, many researchers incorporated greedy choices into
their recombination operators and/or used a local improvement tech-
nique to achieve better results [42, 51, 64, 107]. The use of local search
after the application of a recombination operator can compensate for
the disruptive effects of implicit mutations. In some cases, implicit mu-
tations have a positive effect on the performance of the local search,
and in some situations they do not. Thus, it is important that implicit
mutations can be controlled in some way. Besides the number of foreign
edges introduced during recombination, another aspect appears to be
important: which edges are inherited from parents and which are not.
More formally, recombination operators can be classified according to
Radcliffe and Surry [93, 94] as follows.

Respectful
The alleles that are identical in both parents are preserved in the offspring,
that is, all edges found in both parent tours (common edges) are found in
the offspring tour.

Assorting
The offspring contain only alleles from either one of the parents, that is,
all edges in the child tour are found in at least one of the parent tours,
thus no implicit mutation occurs.

While respectful recombination can be easily achieved by a recombi-
nation operator for the TSP, assorting recombination is hardly accom-
plished. Note that for binary representations a respectful recombination
is also assorting.

Beginning with Brady in [13], many researchers have made conse-
quent use of local search in their EAs for the TSP. These hybrid EAs

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 307

are called memetic algorithms (MAs) [79, 84]. They differ from other
hybrid evolutionary approaches in that all individuals in the popula-
tion are local optima, since after each mutation or recombination, a
local search is applied. In the following, some of these approaches are
briefly described. They have been shown to be among the best heuristic
techniques for the TSP developed so far.

2.3.3 Memetic algorithms for the traveling salesman problem

One of the earliest evolutionary approaches for the TSP using local
search is the EA in [13]. In this approach, the solutions produced by
crossover are optimized with a local search called quenching since it
can be regarded as a zero temperature simulated annealing. In this
MA, TSP tours are encoded using the path representation. A subpath
in one parent is sought that has a corresponding subpath in the other
parent containing the same cities. If the subpath is shorter than the
corresponding subpath, this subpath in the other parent is replaced:

Brady’s crossover
Parent A 4 2 0 * 8 9 5 3 7 * 6 1
Parent B 2 * 9 8 3 7 5 * 0 1 6 4
Offspring A' 4 2 0 * 9 8 3 7 5 * 6 1

In the above example, the sum d89 & d95 & d53 & d37 is greater than
the sum d98 & d83 & d37 & d75, hence the subpath 9,8,3,7,5 from B is
copied over to A (see A') overwriting path 8,9,5,3,7. The path in parent
B remains unchanged. Brady reports in [13] that for a 64-city problem
it was best to search for subpaths of length between 8 and 32. A
disadvantage of this approach is that it is quite expensive to search for
possible crossover points.

With this scheme, only up to two foreign edges are copied to the
parents. In the above example, the edges are (0,9) and (5,6).

Brady’s algorithm can be regarded as the first MA proposed for the
TSP.

The asynchronous parallel genetic optimization strategy (ASPARA-
GOS) [38, 39] has been the best evolutionary strategy for the TSP for
years. In this approach, offspring are generated using maximum preser-
vative crossover (MPX). Mutation is applied afterwards followed by a
2-repair, a variant of 2-opt local search focusing on newly introduced
edges.

The MPX proposed in [39, 85] has similarities with the traditional
two-point crossover. To construct an offspring tour, a subpath between
two randomly chosen crossover points is copied from the first parent to
the offspring. The partial tour is extended by copying edges from the
second parent afterwards. If the subpath cannot be extended in this way
to retain a feasible solution, the edges from the first parent are checked.

Complex Systems, 13 (2001) 297–345

308 P. Merz and B. Freisleben

If there is no such edge from the first parent that can be used to extend
the tour, a previously unvisited city is added from the second parent
which comes next after the end point in the string. The table below
shows an example.

MPX crossover
Parent A 4 2 0 8 9 5 3 7 6 1
Parent B 2 9 8 3 7 5 0 1 6 4
Offspring C 0 8 9 5 7 3 1 6 4 2

In the example, the bold subpath from parent A is copied to the
offspring. The offspring is extended by appending cities 7 and 3 so that
the edges (5, 7) and (7, 3) contained in parent B are copied over. Edge
(3, 8) cannot be inserted since city 8 is already contained in offspring
C. Looking at parent A, we see that both edges (3, 5) and (3, 7) cannot
be used to extend the tour further. Hence, the city next to city 3 in
parent B is identified: city 1. After adding city 1 to the partial offspring,
the algorithm proceeds by inserting the remaining edges from parent B:
edges (1, 6), (6, 4), and (4, 2). The edge from the last to the first node is
also contained in tour A, so we got only one foreign edge in offspring C.

Initially, a slightly different crossover had been used in ASPARAGOS
[38] that is identical to the order crossover operator [20] except that
a subpath of the second parent is inverted before crossing over. In the
literature, this operator has been called the Schleuter crossover [24, 69]
to avoid confusion with the MPX described above.

As shown in [24, 69], the edge recombination operators are superior
to MPX in a GA without local search, and have a smaller failure rate
(number of introduced foreign edges) than MPX. But when local search
is added to the algorithm, the picture changes and MPX becomes su-
perior to the edge recombination operators. As with tour construction
heuristics in combination with local search, in the case of evolutionary
variation operators the best stand alone operator does not necessarily
perform the best in combination with local improvement [24, 69]. A ma-
jor difference between ASPARAGOS and other EAs is that the algorithm
is asynchronous and parallel. In contrast to traditional GAs, there is no
discrete generation model, that is, there are no well distinguished (time-
stepped) generations. Instead, selection for variation (mating selection)
and selection for survival (replacement) are performed asynchronously.
Furthermore, the population is spatially structured and consists of over-
lapping demes (local subpopulations). Mating (recombination) happens
only between individuals within a deme (neighborhood). Therefore, no
central control is needed and only local interactions occur. Thus, the
algorithm is robust, is well suited for small populations, and can be
executed on parallel hardware. The term PGA [86] is often used for
such a model with population structures.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 309

Fine-grained PGAs for the TSP have also been studied in [52], and a
variant of ASPARAGOS has been proposed in [14] called the insular ge-
netic algorithm. A modified version of ASPARAGOS has been proposed
in [40] called ASPARAGOS96 with a hierarchical population structure
and slightly modified MPX and mutation.

The strategic edge crossover (SEX) introduced in [80] by Moscato and
Norman is similar to the edge recombination operator [114] in that an
edge list is utilized to find tour segments consisting only of parent edges.
These tour segments are closed up to a subtour eventually introducing
foreign edges and finally, the subtours are combined into a single tour by
Karp’s patching heuristic [55]. Later, Holstein and Moscato developed
in [48] another recombination operator, which first copies all common
edges to the offspring and is therefore respectful. Secondly, from the
parent tours, edges are chosen in order of increasing length ensuring
that the TSP constraints are obeyed. Finally, the resulting tour segments
are connected with a nearest neighbor heuristic.

The name genetic local search (GLS) was first used by Ulder et al. in
[109] to describe an EA with recombination and consequently applied
local search. Within this scheme, all individuals of the population rep-
resent local optima with respect to the chosen local search. In [109],
the population model of a GA has been used instead of a model with
a structured population and asynchronous application of the variation
operators. The recombination operator used was MPX, and opposed
to 2-repair, 2-opt and the LK local search were incorporated.

In [15], Bui and Moon also propose a GLS algorithm with LK as the
local search procedure. They developed a k-point crossover operator
with an additional repair mechanism to produce feasible offspring.

The approach described in the present paper as published in [34,
35, 71] is also a GLS and uses LK local search and a new recombi-
nation operator called the distance preserving crossover (DPX). This
algorithm has won the first international contest on evolutionary opti-
mization (ICEO) at the IEEE International Conference on Evolutionary
Optimization [8, 34].

In [112] Walters developed a two-point crossover for a nearest neigh-
bor representation and a repair mechanism called directed edge repair
(DER) to achieve feasibility of the solutions. He uses 3-opt local search
to improve the solutions further. Brood selection is incorporated to
select the best of the children produced by crossover.

In [56] Katayama and Narihisa proposed an EA with LK and small
populations (just two individuals) and a heuristic recombination scheme.
Their approach is similar to the iterated LK heuristic but additional di-
versification is achieved by the recombination of the current solution and
the best solution found. The results presented for large TSP instances
are quite impressive.

Complex Systems, 13 (2001) 297–345

310 P. Merz and B. Freisleben

2.3.4 Other highly effective evolutionary algorithms for the traveling
salesman problem

There are some other highly effective EAs for the TSP which do not
belong to the class of MAs but are worth mentioning.

In [87] Nagata and Kobayashi devised an EA that uses the edge as-
sembly crossover to produce offspring. In this recombination operator,
children are constructed by first creating an edge set from the edges con-
tained in the parents (E-set) and then producing intermediate children
for which the subtour constraint is generally not fulfilled. In order to
obtain feasible offspring, subtours are merged in a greedy fashion based
on the minimum spanning tree defined by the disjoint subtours.

In [108] Tao and Michalewicz proposed an EA which is very easy
to implement. The operator used in the algorithm is called inver-over
since it can be regarded as a mixture of inversion and crossover. The
operator is similar to the LK heuristic since a variable number of edges
are exchanged. Thus, it is more a local search utilizing a population of
solutions than an EA utilizing local search.

In [77, 78] Möbius et al. proposed a physically inspired method for
the TSP called thermal cycling with iterative partial transcription (IPT).
To a population of solutions called “archive,” a heating phase (similar to
simulated annealing with nonzero temperature) and a quenching phase
(local search) is repeatedly applied. After quenching, IPT is used to
further improve the solutions in the archive. IPT can be regarded as a
form of recombination in which some of the alleles of one parent are
copied to the other, explicitly maximizing the fitness of the resulting
individual.

Several other approaches have been published for solving the TSP.
However, only a few of them are suited for solving large TSP instances
(+1000 cities) like the ones discussed here. It is meaningless to test an
approach on just small TSP instances, since (a) there are exact methods
for solving small instances to optimality in a few seconds, (b) simple
local search algorithms are much faster than most EAs and produce
comparable or better results, and (c) the behavior of an algorithm on
small instances cannot be used to predict its behavior on large instances.

3. Fitness landscape analysis

The concept of a “fitness landscape” [115], introduced to illustrate the
dynamics of biological evolutionary optimization, has been proven to be
very powerful in evolutionary theory. The concept has furthermore been
shown to be useful for understanding the behavior of combinatorial op-
timization heuristics and can help in predicting their performance. For
example, in [60] Kirkpatrick and Toulouse analyzed the search space
of the TSP to explain the performance of simulated annealing. In their
work on NK-landscapes, Kauffman and Levin recognized the impor-

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 311

tance of correlated landscapes for population based approaches [58].
Taking these studies into account, Moscato stressed the importance of
the correlation of local optima for MAs [79]. Also based on a fitness
lanscape analysis, Boese developed a heuristic for the TSP aimed at
exploiting the properties of local optima [10, 11].

Viewing the search space (i.e., the set of all candidate solutions) as a
landscape, a heuristic algorithm can be thought of as navigating through
it in order to find the highest peak of the landscape. The height of a
point in the search space reflects the fitness of the solution associated
with that point.

More formally, a fitness landscape (S, f , d) of a problem instance for
a given combinatorial optimization problem consists of a set of points
(solutions) S, a fitness function f , S - ! which assigns a real-valued
fitness to each of the points in S, and a distance measure d which
defines the spatial structure of the landscape. The fitness landscape
can thus be interpreted as a graph GL $ (V, E) with vertex set V $ S
and edge set E $ ((s, s') . S / S * d(s, s') $ dmin), with dmin denoting
the minimum distance between two points in the search space. The
diameter (diam GL) of the landscape is another important property: it
is defined as the maximum distance between the points in the search
space.

For binary-coded problems (S $ (0, 1)n), the graph GL is a hypercube
of dimension n, and the distance measure is the Hamming distance
between bit strings. The minimum distance dmin is 1 (one bit with a
different value), and the maximum distance is n $ diam GL.

3.1 Properties of fitness landscapes

Several properties of fitness landscapes are known to have some in-
fluence on the performance of heuristic optimization algorithms. In
this paper, we concentrate on the number of local optima (peaks) in
the landscape, the distribution of the peaks in the search space, and
the landscape ruggedness, that is, the correlation between neighboring
points in the search space.

Statistical methods have been proposed to measure landscape rugged-
ness and to analyze the distribution of the peaks, but the number of local
optima cannot be determined in general. However, landscape rugged-
ness is tightly coupled to the number of local optima within the search
space.

A fitness landscape is said to be rugged if the landscape consists of
many peaks and if there is low correlation between neighboring points.
The autocorrelation functions proposed by Weinberger in [113] measure
the ruggedness of a fitness landscape.

Weinberger suggested performing random walks to investigate the
correlation structure of a landscape. The random walk correlation

Complex Systems, 13 (2001) 297–345

312 P. Merz and B. Freisleben

function [102, 103, 113]

r(s) $
1

Σ2(f) (m % s)

m%s!
t$1

(f (xt) % f̄)(f (xt&s) % f̄) (2)

of a time series (f (xt)) defines the correlation of two points s steps away
along a random walk of length m through the fitness landscape (Σ2(f)
denotes the variance of the fitness values).

Based on this correlation function, the correlation length " [103] of
the landscape is defined as

" $ % 1
ln(*r(1)*)

(3)

for r(1) 1 0. The correlation length directly reflects the ruggedness of a
landscape. The lower the value for ", the more rugged the landscape.

If the landscape is statistically isotropic, that is, the time series (f (xt))
forms a stationary random process, then a single random walk is suffi-
cient to obtain r(s). If a time series is isotropic, gaussian, and markovian,
then the corresponding landscape is called an AR(1) landscape and the
random walk correlation function is of the form r(s) $ r(1)s $ e%s/" with
" being the correlation length of the landscape. For example, AR(1)
landscapes are found in the NK-model and the TSP [113].

A ruggedness measure similar to the correlation length " has been
proposed in [1] called the autocorrelation coefficient Λ which has ap-
proximately the same value.

Kauffman has shown for NK-landscapes that the number of local op-
tima increases with the ruggedness of a landscape. Thus, the higher the
correlation length, the smaller the number of local optima. Krakhofer
and Stadler have shown in [63] that for random graph bipartitioning
problems there is one local optimum on the average in a ball of radius
R("), where R(s) denotes the average distance of two points s steps away
on a random walk.

A further important measure is the fitness distance correlation (FDC)
coefficient, proposed in [54] as a measure for problem difficulty of GAs.
The FDC coefficient " is defined as

"(f , dopt) $
Cov(f , dopt)
Σ(f) Σ(dopt)

, (4)

and determines how closely fitness and distance to the nearest optimum
in the search space denoted by dopt are related. (Cov(x, y) denotes the
covariance of x and y and Σ(x) denotes the standard deviation of x.) If
fitness increases when the distance to the optimum becomes smaller, then
search is expected to be easy for selection-based algorithms, since there
is a “path” to the optimum through solutions with increasing fitness. A
value of " $ %1.0 (" $ 1.0) for a maximization (minimization) problem

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 313

indicates that fitness and distance to the optimum are perfectly related
and that search promises to be easy. A value of " $ 1.0 (" $ %1.0) means
that with increasing fitness the distance to the optimum increases, too.
To gain insight in the global structure of the landscape, a fitness distance
analysis (FDA) can be performed for locally optimum solutions of a
given problem instance, since the correlation of local optima has a large
influence on population-based search, as is is the case for MAs [79].

Thus, it can be determined whether there is a structure in the distri-
bution of locally optimum solutions which can be exploited by a meta-
heuristic based on local search. The local optima may be contained in
a small fraction of the search space or there may be a correlation be-
tween the fitness of the local optima with their distance to an optimum
solution.

Fitness distance plots are well suited to visualize the results obtained
from FDA. Several researchers have used FDA to analyze fitness land-
scapes, including Kauffman [57] for NK-landscapes, Boese [10] for the
TSP, Reeves for a flow-shop scheduling problem [95], and Merz and
Freisleben for the graph bipartitioning problem [74].

Additionally, when performing FDA, it is useful to calculate other
properties such as the number of distinct local optima found, and the
average distance between the local optima.

3.2 The fitness landscape of the traveling salesman problem

Several researchers have studied the fitness landscape of the TSP to find
more effective search techniques. Even a theoretical analysis exists that
coincides with conclusions drawn from experiments.

3.2.1 Distances between traveling salesman tours

Besides landscape analysis, distance functions for solution vectors of
optimization problems are important in a number of EA techniques,
such as mechanisms for preventing premature convergence [25] or the
identification of multiple solutions to a given problem [98]. Further-
more, they can be used to observe the dynamic behavior of the EA (or
CCVA [26]) and to guide the search of the EA [34].

A suitable distance measure for TSP tours appears to be a function
that counts the number of edges different in both tours: Since the fitness
of a TSP tour is determined by the sum of the weights of the edges the
tour consists of, the distance between two tours t1 and t2 can be defined
as the number of edges in which one tour differs from the other. Hence

d(t1, t2) $ *(e . E * e . t1 $ e # t2)*. (5)

This distance measure has been used by several researchers, including
[11, 35, 67, 86]. Recently, it has been shown that this distance function
satisfies all four metric axioms [99].

Complex Systems, 13 (2001) 297–345

314 P. Merz and B. Freisleben

Alternatively, a distance measure could be defined by counting the
number of applications of a neighborhood search move to obtain one
solution from the other. In the case of the 2-opt move, the corresponding
distance metric d2-opt is bound by d 3 d2-opt 3 2d [67].

With this distance measure, the neighborhoods based on edge ex-
change can be defined as

#k-opt(t) $ (t
' . T , d(t, t') 3 k), (6)

with T denoting the set of all tours of a given TSP instance. Note that
the node exchange neighborhood is a small subset of the 4-opt neighbor-
hood, and the node (re)insertion neighborhood is a subset of the 3-opt
neighborhood since 4 edges and 3 edges are exchanged, respectively.

3.2.2 Autocorrelation analysis for the traveling salesman problem

In [104] Stadler and Schnabl performed a landscape analysis of random
TSP landscapes considering different neighborhoods: the 2-opt and
the node exchange neighborhood. Their results can be summarized as
follows.

For the symmetric TSP, both landscapes (based on 2-opt and node
exchange) are AR(1) landscapes. The random walk correlation function
for random landscapes is of the form

r(s) 4 exp(%s/") $ exp(%b/n 5 s), (7)

with n denoting the number of nodes/cities of the problem instance and b
denoting the number of edges exchanged between neighboring solutions.
Thus, for the 2-opt landscape, the normalized correlation length Ξ $ "/n
is 1/2, for the node re-insertion landscape Ξ is 1/3, and for the node
exchange landscape Ξ is 1/4. This result coincides with experimentally
obtained results that 2-opt local search is much more effective than local
search based on node exchange or node re-insertion [97]. Equation (7)
implies that a landscape with a strict 3-opt neighborhood is more rugged
than a landscape with a 2-opt neighborhood. One may conclude that a
2-opt local search performs better than a 3-opt local search. However,
the opposite is true, since the 3-opt neighborhood is much greater than
the 2-opt neighborhood and the 3-opt neighborhood as defined above
contains the 2-opt neighborhood. Therefore, a 3-opt local search cannot
perform worse than a 2-opt local search in terms of solution quality.
Obviously, only neighborhoods with the same size should be compared
in terms of the correlation length.

In the case of an asymmetric TSP, the above equation holds, too,
with the exception that there is no 2-opt move if the distance matrix
is asymmetric. Reversing a subpath in an asymmetric TSP tour leads
generally to a k-change depending on the length of the subpath. Stadler
and Schnabl have shown in [104] that such reversals yield a random

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 315

walk correlation function of the form

r(s) 4
1
2
∆0,s &

1
2

exp(%4s/n), (8)

where ∆ denotes the Dirac function. ∆0,s is defined as

∆0,s $
899:99
;

1 if s $ 0,
0 otherwise

(9)

in the discrete case.
As the results for the symmetric and the asymmetric TSP show, land-

scape ruggedness in terms of the random walk correlation function does
not depend on the TSP instance itself and can therefore not be used to
compare the “hardness” of TSP instances.

3.2.3 Fitness distance correlation analysis for the traveling salesman problem

The correlation of fitness of local optima and distance to the optimum
solution has already been studied by Boese in [9, 10] in order to derive
a suitable search strategy for the TSP. However, he concentrated in his
studies [10] on a single TSP instance contained in TSPLIB [96], a publicly
accessible library of TSP instances.

To obtain more general information, additional instances have been
analyzed for which the results are presented in the following. The
instances are selected to cover different problem sizes as well as prob-
lem characteristics. The first three instances denoted mpeano7, mn-
peano7, and David5 are fractal instances based on L-systems (such as
the Koch curve) with known optimum tours described in [81, 82, 88].
The number in the name denotes the order of the fractal.

The other nine instances are chosen from TSPLIB. The first instance
denoted ts225 is known to be hard to solve exactly by branch and
cut algorithms [2] although it has a small number of cities. Instance
pcb442 is a printed circuit board production instance with a regular
location of the nodes. The instances att532, pr1002, and pr2392 are
instances derived from real city locations. rat783 is an instance with a
random distribution of the cities in a rectangular area. dsj1000 denotes
an instance with clustered cities. And finally, the instances fl1400 and
fl1577 are printed circuit board drilling problems. The latter of the
two has been the smallest unsolved problem in TSPLIB for a long time.
Recently, it could be solved to optimality, however. In Figure 5, some
characteristic instances are displayed.

To obtain insight into the structure of the fitness landscapes of these
instances, experiments have been conducted in which the (cor-)relation
of fitness and distance to the optimum of locally optimum solutions has
been investigated. For instances with more than one known optimum
solution, the distances to the nearest optimum was considered. For
example, the number of optima found in experiments for the instances

Complex Systems, 13 (2001) 297–345

316 P. Merz and B. Freisleben

pcb442 mpeano7 dsj1000

att532 fl1577

Figure 5. Optimum tours of five TSP instances.

ts225, rat783, and fl1400, is 147, 17, and 7, respectively. For the first
two instances, the average distance between the optima is 25.8 and 9.5,
respectively. The optima found for instance fl1400 have an average
distance of 336.6. It is assumed that all fl instances have a high number
of global optima. Since just one global optimum was known to the
authors at the beginning of the experiments, no other global optima
have been considered in the analysis.

In a first series of experiments, the local optima were produced by
a fast 3-opt local search applied to randomly generated solutions. The
results are presented in Table 1. In the first column, the name of the
instance is displayed, and in the second column the problem size n is
given. In columns three through seven, the minimum distance of the
local optima to a global optimum (min dopt), the average distance of the
local optima to the global optimum (dopt), the average distance between
the local optima (dloc), the number of distinct local optima (N3%opt) out
of 2500, and the fitness distance correlation coefficient (") are provided,
respectively. Additionally, the normalized average distance, that is, the
average distance of the local optima to the global optimum divided by

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 317

Instance n mindopt dopt dloc N3-opt !

mnpeano7 724 20 85.32 (0.12) 138.53 2500 0.50
mpeano7 852 0 1.93 (0.01) 3.83 840 0.40
David5 1458 0 29.98 (0.02) 57.55 2498 0.56
ts225 225 19 33.90 (0.15) 35.07 2496 0.18
pcb442 442 63 105.95 (0.24) 109.74 2500 0.48
att532 532 36 106.48 (0.20) 123.17 2500 0.57
rat783 783 83 151.82 (0.19) 184.77 2500 0.68
dsj1000 1000 122 207.93 (0.21) 239.87 2500 0.36
pr1002 1002 123 203.00 (0.20) 242.16 2500 0.57
fl1400 1400 504 574.85 (0.41) 561.26 2500 0.07
fl1577 1577 152 239.90 (0.15) 260.10 2500 0.27
pr2392 2392 283 430.04 (0.18) 496.62 2500 0.63

Table 1. Results of the fitness distance analysis for 3-opt solutions of the TSP.

the maximum distance in the search space n is shown in column four
in parentheses. In cases of more than one known global optimum, the
distance to optimum means the distance to the nearest optimum.

In cases of the fractal instances mpeano7 and David5, the optimum
could be found with fast 3-opt. The average distance to the optimum is
very small compared to the maximum distance in the search space, and
the locally optimum solutions are close together. mpeano7 appears
to have a small number of local optima since in the analysis only 840
distinct local optima could be found. For the problems contained in
TSPLIB, the normalized average distance to the optimum is about 0.2,
with one exception: for fl1400 the value is about 0.4. Thus, all TSPLIB
instances have local optima with a significantly higher distance to the
optimum than the fractal instances. For all instances, the average dis-
tances between the local optima are similar to the average distance to
the optimum. The correlation coefficient is high for the instances based
on real city instances, and clusters seem to affect correlation negatively.
For the random instance rat783, the correlation coefficient is highest,
and it is lowest for the drilling problems and ts225.

For the same set of instances, a second series of experiments has
been conducted. In these experiments, the local optima were generated
with the LK heuristic rather than with 3-opt. The results are displayed
in Table 2. The local optima generated by the LK heuristic show the
same properties as those obtained by 3-opt. The correlation coefficients
are slightly higher for almost all TSPLIB instances, and in cases of the
fractal instances they are close to 1. Fitness distance plots for some of
the instances are provided in Figure 6. The distance to the optimum is
plotted against the fitness (cost) difference between the locally optimum

Complex Systems, 13 (2001) 297–345

318 P. Merz and B. Freisleben

Instance n mindopt dopt dloc NLK !

mnpeano7 724 0 20.94 (0.03) 39.09 118 0.99
mpeano7 852 0 13.56 (0.02) 25.99 87 0.99
David5 1458 0 3.82 (0.01) 7.55 137 0.94
ts225 225 20 33.60 (0.15) 34.98 2497 0.21
pcb442 442 61 105.92 (0.24) 109.82 2500 0.50
att532 532 47 106.29 (0.20) 122.71 2500 0.54
rat783 783 75 151.38 (0.19) 184.51 2500 0.70
dsj1000 1000 105 208.19 (0.21) 240.01 2500 0.36
pr1002 1002 108 202.15 (0.20) 241.77 2500 0.60
fl1400 1400 511 575.23 (0.41) 560.71 2500 0.06
fl1577 1577 151 238.95 (0.15) 259.55 2500 0.34
pr2392 2392 310 429.35 (0.18) 496.47 2500 0.64

Table 2. Results of the fitness distance analysis for LK solutions of the TSP.

solutions and the fitness of the global optimum (<f $ c(Πloc) % c(Πopt)).
The instance mpeano7 shows perfect correlation between the fitness
difference and the distance to the optimum. The local optima form a
straight line originating from the optimum. The plot for ts225 looks
quite different: for some fitness values, there are several local optima
while for most fitness values there is not even a single one, leading to
large gaps in fitness of the local optima. Problems att532, rat783, and
pr2392 exhibit a “cloud” of local optima in their scatter plots. The
means of the points are oriented along a straight line. The clustered
instance dsj1000 is similar but there is no orientation towards the op-
timum. This phenomenon becomes more apparent in the problems
fl1400 and fl1577. The means of the points are distributed parallel to
the <f -axis.

The analysis has shown that local optima in the TSP are found in
a small region of the search space: on the average, more than 3/4 of
the edges are common to all local optima with one exception, fl1400.
Furthermore, fitness and distance to the optimum are correlated for most
instances, and the average distance between the local optima is similar
to the distance to the optimum. Thus, the global optimum appears to be
more or less central among the local optima. Boese calls the structure
of the TSP landscape the big valley structure, since local optima are
closer together if they are closer to the optimum, and the smaller the
tour length (cost), the closer they are to the optimum. However, the
analysis has also shown that not all instances exhibit this structure as,
for example, ts225. Furthermore, the analysis indicates that problems
from application domains such as the drilling problems are harder to
solve than randomly generated instances with uniform distribution. The

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 319

0
100
200
300
400
500
600
700
800

0 100 200 300 400 500 600 700 800

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

mpeano7.tsp

0
1000
2000
3000
4000
5000
6000
7000

0 50 100 150 200

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

ts225.tsp

0
100
200
300
400
500
600
700
800
900

0 100 200 300 400 500

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

att532.tsp

0

50

100

150

200

250

300

0 100 200 300 400 500 600 700

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

rat783.tsp

0

200000

400000

600000

800000

1e+06

1.2e+06

0 200 400 600 800 1000

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

dsj1000.tsp

0
2000
4000
6000
8000

10000
12000
14000

0 500 1000 1500 2000

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

pr2392.tsp

0

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

fl1400.tsp

0
500

1000
1500
2000
2500
3000
3500
4000
4500

0 200 400 600 800 1000 1200 1400

Fi
tn

es
s

di
ffe

re
nc

e
!

f

Distance to optimum dopt

fl1577.tsp

Figure 6. Fitness distance scatter plots produced with LK.

fractal instances on the other hand are very easy to solve. They are not
well suited as benchmark problems for highly effective heuristics since
they do not have the same characteristics as the instances arising in TSP
applications. The big valley structure can be well exploited by an MA
with recombination since good solutions are more likely to be found
near other local optima, and most recombination operators produce
solutions that lie “between” other solutions (respectful recombination).

Complex Systems, 13 (2001) 297–345

320 P. Merz and B. Freisleben

Furthermore, an EA usually increases fitness of the solutions contained
in the population while simultaneously decreasing the distance between
the solutions.

The TSP instances considered in the analysis can be regarded as very
well suited for MAs with respectful recombination. Many other com-
binatorial optimization problems do not share the properties of TSP
landscapes. For example, the local optima of graph bipartitioning in-
stances have an average distance to the optimum or best-known solution
that lies slighty below the maximum distance (diameter) of solutions in
the search space [73]. In some landscapes of the quadratic assignment
problem, the local optima are randomly distributed over the search
space (no correlation of fitness and distance to the optimum), again
with an average distance near the diameter of the landscape [74]. The
correlation length, on the other hand, depends in some problems on
the problem instance itself, as can be observed for the quadratic assign-
ment problem [73], for NK-landscapes, and for the binary quadratic
programming problem [70].

4. Effective memetic algorithms for the traveling salesman problem

The proposed MAs for the TSP are similar to the EA outlined above:
A population of locally optimum solutions is evolved over time by ap-
plying evolutionary variation operators (mutation and recombination
operators). To ensure that the individuals in the population are local
optima, after each application an evolutionary variation operator, local
search is applied. This includes the initialization phase of the popu-
lation in which solutions are constructed from scratch: A local search
procedure is applied to these solutions so that even the first generation
consists exclusively of local optima.

The problem-specific parts of the algorithm comprise initialization,
local search, and the evolutionary variation operators.

4.1 Initialization and local search

To initialize the population of the MA, a local search procedure is
applied to solutions constructed by the randomized greedy heuristic
described above. However, the randomization technique proposed by
Johnson et al. in [53], is not well suited for initialization of MA since
the resulting solutions are very similar. Therefore, a variant is used:
Before the greedy construction scheme is applied, n/4 edges are inserted
in the tour solution randomly by selecting the edge to the nearest or
second nearest unvisited neighbor of a randomly chosen unvisited city.
The edge to the nearest city is selected with a probability of 0.66 and
the edge to the second nearest city is selected with probability 0.33.
After an edge has been inserted, the endpoints of the edge are marked

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 321

as visited to guarantee that the partial solution will not become an
infeasible solution.

Since the LK heuristic is the best local search heuristic proposed for
the TSP, it is used in our algorithm. In some cases, the simpler fast 3-opt
heuristic is used when it is more efficient to use a fast but less elaborate
local search.

4.2 Variation operators

Mutation operators used in simple EAs are not suited for use in MAs,
since subsequently applied local search procedures will usually revert
the changes made. For example, the inversion operator randomly ex-
changing two edges is ineffective when 2-opt, 3-opt, or LK local search
is used. Therefore, in MAs alternative mutation operators are required.

4.2.1 The mutation operator

The mutation operators of our algorithms are based on edge exchange.
There are two variants, one of which produces arbitrary exchanges of a
predefined number of k edges, and the other one which produces nonse-
quential edge exchanges. The smallest of such an exchange is displayed
in Figure 7 and involves four edges [66]. It stands in contrast to the
sequential edge exchanges performed by the LK heuristic as described
above. Since the LK heuristic performs sequential changes, the prob-
ability is minimized that LK reverses mutation if nonsequential edge
exchanges are utilized. In the effective iterated LK heuristic, the nonse-
quential four-change is used as a mutation operator to escape from the
basins of attraction of local optima.

4.2.2 The distance preserving crossover operator

In the case of recombination, previously published operators for EAs
without local search can be used in MAs, but as shown in [24, 69],
there may be others that are better suited for use with MAs. These
operators may be ineffective when used without local search.

u1

u2
u3
u4

u5 u6

u7u8

u1

u2
u3
u4

u5 u6

u7u8

Figure 7. The nonsequential four-change.

Complex Systems, 13 (2001) 297–345

322 P. Merz and B. Freisleben

5 3 9 1 2 8 0 6 7 4

1 2 5 3 9 4 8 6 0 7

5 3 9 8 7 2 1 46 0Offspring:

Parent 1:

Parent 2:

5 3 9 1 2 8 0 6 7 4Fragments:

Figure 8. The DPX recombination operator for the TSP.

The distance preserving crossover (DPX) proposed in [34, 35] is such
an operator that is only useful in combination with local search. In
contrast to other recombination operators such as the edge recombina-
tion operators [105, 114], it forces the inclusion of foreign edges in the
offspring instead of preventing them.

DPX tries to generate an offspring that has equal distance to both of
its parents, that is, its aim is to achieve that the three distances between
offspring and parent 1, offspring and parent 2, and parent 1 and parent
2 are identical. It works as follows. The content of the first parent
is copied to the offspring, and all edges that are not in common with
the other parent are deleted. The resulting parts of the broken tour
are reconnected without using the nonshared edges of the parents. A
greedy reconnection procedure is employed to achieve this: if the edge
(i, j) has been destroyed, the nearest available neighbor k of i among
the remaining tour fragments is taken and the edge (i, k) is added to the
tour, provided that (i, k) is not contained in the two parents. In order to
illustrate the DPX operator, let us consider an example.

Suppose that the two parents shown in Figure 8 are given, then
copying parent 1 to the offspring and deleting the edges not contained
in both parents leads to the tour fragments 5 3 9 - 1 2 - 8 - 0 6 -
7 - 4. The greedy reconnection procedure fixes the broken connections
by producing the offspring shown in Figure 8 as follows. First, a city
is chosen randomly as the starting point for the reconnection. Let us
assume that the city to begin with is city 6, then the other endpoint
(city 0) of the fragment containing city 6 is considered and its nearest
neighbor in the set of available cities (5,9,1,2,4) is determined. The
set of available cities only contains the start and endpoints of unvisited
tour fragments. City 8 and city 7 are not contained in this set, because
it is not desirable to re-insert edge (0, 8) or edge (0, 7), since they are
contained in parent 1 or parent 2, respectively. Let us assume that in the

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 323

example the nearest neighbor to city 0 is city 5, so city 0 is connected to
city 5, and the end of the connected fragment (city 9) is considered. At
this point, the set of available cities is (2,8,7). The procedure is repeated
until all fragments have been reconnected. Note that the distance d
between the offspring and both parent 1 and parent 2 is identical to
the distance between the two parents (d $ 6), hence the name distance
preserving crossover.

In some rare cases, it is necessary to introduce backtracking into the
greedy reconnection procedure to fulfill the distance criterion. For ex-
ample, if in the example above the edges (2, 0), (6, 4), (7, 8), (7, 9), and
edge (1, 8) are inserted due to the nearest neighbor relations, the remain-
ing edge to close the tour is edge (4, 5). Since this edge is contained in
parent A, the resulting child will not fulfill the distance criterion: the
distance to parent A becomes 5 and the distance to parent B becomes 6.
In such a situation, a backtracking mechanism trying alternative edges
in preceding steps has to be employed. However, in the MA used in the
experiments, the DPX operator does not include backtracking since the
extra computation time for backtracking is not worthwhile. The cases
for which the distance criterion is not obeyed are extremely rare and
experiments have shown that the use of backtracking in the DPX has
no influence on the overall performance of the MA. Thus, the easier to
implement “one-pass” DPX is used in the MA experiments.

4.2.3 The generic greedy recombination operator

To study the important characteristics of recombination operators for
the TSP, a new recombination operator is proposed in the following that
utilizes the greedy construction scheme of the greedy heuristic described
above. The generic greedy recombination operator (GX) consists of
four phases. In the first phase, some or all edges contained in both
parents are copied to the offspring tour. In the second phase, new
short edges are added to the offspring that are not contained in one
of the parents. These edges are selected randomly among the shortest
edges emanating from each node. These edges are with high probability
contained in (near) optimum solutions and are thus good candidates for
edges in improved tours. In a third phase, edges are copied from the
parents by making greedy choices. Here, edges may be included that
are not common to both of the parents. Edges are inserted in order of
increasing length and only candidate edges are considered, that is, edges
that do not violate the TSP constraints. In the fourth and last phase,
further edges are included utilizing the greedy construction scheme of
the greedy heuristic described above until the child consists of n edges
and is thus a feasible TSP tour. The operator is motivated by the facts
that (a) in the case of an MA framework, implicit mutations can have
a positive effect on the subsequent local search, as shown in [24, 69],
(b) respectfulness is considered an important property of recombination

Complex Systems, 13 (2001) 297–345

324 P. Merz and B. Freisleben

function GX(a,b in X; cRate, nRate, iRate: Real): X;

begin
let x = ();
let rem = n;
/* Copy common edges */
foreach edge e in a do

if (e in b and cRate < random[0,1)) then
add e to x;
rem := rem – 1;

end;
end;
/* Insert new edges */
for k := 1 to (rem ! nRate) do

i := n ! random[0,1);
j := select from (the 5 nearest neighbors of i)
with (i, j) feasible and (i, j) not in a or b;
add edge (i, j) to x;
rem := rem – 1;

end;
/* Inherit edges from parents */
for k := 1 to (rem ! iRate) do

parent := select randomly from (a, b);
if (parent has candidate edges) then

e := select from (2 shortest candidates);
add e to x;
rem := rem – 1;

end;
end;
/* greedy completion */
while (rem > 0) do

e := select from (2 shortest candidates);
add e to x;
rem := rem – 1;

end;
return x;

end;

Figure 9. The GX recombination operator for the TSP.

operators, (c) innovation is an important aspect in MAs due to small
population sizes, and (d) the greedy heuristic is more effective than
the nearest neighbor heuristic in constructing a feasible TSP tour. The
pseudo code of the recombination operator is provided in Figure 9.

The GX operator has three parameters. The common edges inheri-
tance rate (cRate) that determines the probability that a common edge
is added to the child and is thus a control parameter for the first phase.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 325

With a rate of 1.0, respectful recombination is achieved, all other rates
lead to unrespectful recombination. The second phase is controlled by
the new edges introduction rate (nRate) that determines the number of
new edges to insert. A rate of 0.5, for example, determines that half
of the remaining edges to insert after phase one are new edges that are
short but not contained in one of the parent solutions. The number of
edges to inherit from the parents including edges not common to both
parents is determined by the inheritance rate (iRate). In the last phase,
edges in increasing length are chosen that may or may not be found in
the parents. Note that the recombination operator proposed in [48] is
very similar to GX with cRate $ 1.0, nRate $ 0.0, and iRate $ 1.0.
However, in the last phase of GX, the greedy heuristic is used instead of
the nearest neighbor heuristic, which is more effective.

4.2.4 Local search and recombination
In MAs, recombination operators are desired that are efficient in com-
bination with the local search that is applied after a child has been
generated. Thus, it makes sense to tune the local search for its opera-
tion after recombination. The landscape analysis has shown that there
is correlation between tour length and distance to the optimum of local
minima and that a local optimum with high fitness (short tour length) is
contained near other local optima with high fitness. Therefore, it makes
sense to restrict a local search after recombination to search only the
region around or between the two parents. This can be accomplished
by fixing all common edges that have been included in the child in the
first step of recombination. The edges that are common to both parents
can be regarded as the “building blocks” of the evolutionary search and
should be found in good offspring tours. Fixing these edges prevents the
local search from replacing these edges by others and reduces the run-
ning time of the local search considerably. The fixing of edges reduces
the problem size for the local search since fixed edges are not considered
during the search for edge exchanges. After the local search has been
terminated, all edges are marked as not fixed.

The landscape analysis has shown that less than one fourth of the
edges in the local optima are different from the optimum tour. Thus, in
the first generation of an MA, a local search operates on a problem with
a dimensionality of one fourth of the original one if the fixing of edges
is performed during recombination. Since with ongoing evolution, the
distance between the members of the population diminishes, the size of
the problem becomes smaller for the local search in each generation.
This leads to a significantly reduced running time for the local search.

4.2.5 Selection and restarts
Selection occurs two times in the main loop of the MA. Selection for
reproduction is performed before a genetic operator can be applied, and

Complex Systems, 13 (2001) 297–345

326 P. Merz and B. Freisleben

selection for survival is performed after the offspring of a new generation
have been created to reduce the population to its original size.

Selection for reproduction is performed on a purely random basis
without bias to fitter individuals, while selection for survival is achieved
by choosing the best individuals from the pool of parents and children.
Thus, replacement in our algorithm is similar to the selection in the
(Μ & Λ)-ES [101]. Additionally, duplicates will be replaced by other
solutions, so that each phenotype exists only once in the new popula-
tion.

The population size of an MA is typically small compared to GAs:
a size of 10 up to 40 is common in an MA, since the computational
complexity of the local search does not allow evolution of much larger
populations within reasonable time. Such a small population size leads
to a premature convergence of the algorithm, especially in the absence of
mutation. To overcome this drawback, the restart technique proposed
by Eshelman in [27] is employed. During the run, it is checked whether
the average distance of the population has dropped below a threshold
d $ 10, or the average fitness of the population did not change for more
than 30 generations. If one of these conditions hold, the search is as-
sumed to have converged and the whole population is mutated except
the best individual, using the mutation operator described above with
a high mutation jump distance. After mutation, each individual is im-
proved by the local search algorithm to obtain local optima. Afterwards,
the algorithm proceeds with performing recombination as usual. Thus,
the MA continues with a population of arbitrarily distant local optima.
During the run, the solutions contained in the population move closer
together until they are concentrated on a small fraction of the search
space: the search is said to have converged. The restarts perturb the
population so that the points are again far away from each other. Thus,
the restart technique represents an escape mechanism from suboptimal
regions of the search space.

4.3 Implementation details

In the implementation of the algorithms for the TSP described in this pa-
per, a nearest neighbor list of size m $ 100 for each node is maintained,
which is initialized by nearest neighbor queries on a two-dimensional
binary search tree [6]. In the local search procedures, a data structure
for maintaining don’t look bits is incorporated, with the local search for
the initial population starting with all don’t look bits set to zero. After
recombination has been performed, only the don’t look bits of the nodes
that are incident to the edges not shared by both parents are cleared.
Similarly, after mutation, only nodes incident to the edges newly in-
cluded in the tour have their don’t look flags set to zero. This focuses
the search of the hill-climber to the promising regions of the search space

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 327

and also reduces the time for checking the interesting members of the
neighborhood.

Additionally, in the algorithm for the TSP, data structures have been
incorporated to deal with large instances of up to 100,000 cities. Since
for large instances it is not possible to store the entire distance matrix
in main memory the euclidean distances are computed online. This is a
rather expensive operation, so a distance cache of size 35n is maintained,
where the first n entries are used to cache the distances of the edges in the
current tour and the remaining 2 5 n entries are organized as described
in [6]. The average hit rate of the cache varies between 80% and 95%.

Another target for optimizations is the LK heuristic itself. Most of
the computation time is spent in submoves that will be reversed later in
the algorithm. Hence, it is profitable to distinguish between tentative
and permanent moves. Applegate and Cook have proposed a segment
tree data structure for efficiently managing tentative moves, as described
in [33]. Instead of using a segment tree, the algorithms described here
operate on a segment list that represents a tentative tour. Operations
performing a flip on this tentative tour are highly optimized, such that a
high performance gain compared to the simple array representation can
be achieved. The running times for all operations are in O(1), since the
data structure is limited to perform 20 flips only. In practice, this has
proven to be sufficient.

4.4 Performance evaluation

Several experiments have been conducted to evaluate the performance
of MAs for the TSP. All experiments described in the following were
conducted on a PC with a Pentium III Processor (500 MHz) under
Linux 2.2. All algorithms were implemented in C++.

4.4.1 Comparison of recombination operators

In a first set of experiments, several recombination operators for the TSP
were tested under the same conditions on three selected TSP instances
contained in TSPLIB: att532, pr1002, and fl1577. To get a clear picture
of the operator effectiveness, no additional mutation was performed and
the restart mechanism was disabled during the runs. Furthermore, a fast
2-opt local search was used in the MAs that is not as effective as 3-opt
local search or the LK heuristic to reduce the strong influence of the
(sophisticated) local search. The recombination operators MPX, DPX,
and GX were studied with various parameter settings. The population
was set to P $ 100 in all runs, and the variation operator application
rate was set to 0.5, that is, 50 offspring were produced per generation.
The results of the experiments are summarized in Table 3. For each
instance/operator, the average number of generations, the shortest tour
length found, and the percentage access over the optimum solution value
is provided. For the GX operator, the values for cRate, nRate, and iRate

Complex Systems, 13 (2001) 297–345

328 P. Merz and B. Freisleben

Operator att532 pr1002 fl1577
DPX 1565 0.386% 664 2.778% 653 0.292%
MPX 2691 0.311% 3404 1.023% 1240 0.444%
GX-Params
1/0.5/1 868 0.158% 759 0.719% 624 0.206%
1/0.5/0.75 929 0.148% 733 1.133% 713 0.205%
1/0.5/0.5 923 0.142% 808 0.801% 682 0.214%
1/0.5/0.25 892 0.137% 832 0.648% 641 0.245%
1/0.25/0 928 0.139% 1223 0.628% 690 0.250%
1/0.25/0.75 1091 $ 0.120% 1430 0.633% 769 0.206%
1/0.25/0.5 1065 0.131% 1422 0.595% 684 0.282%
1/0.25/0.25 998 0.135% 1334 $ 0.565% 696 0.261%
1/0/1 956 0.280% 1321 0.901% 736 0.335%
1/0/0.75 1071 0.152% 1481 0.714% 735 $ 0.174%
1/0/0.5 1035 0.142% 1434 0.735% 744 0.283%
1/0/0.25 1006 0.186% 1412 0.749% 719 0.347%
0.75/0.25/0 233 1.084% 229 3.948% 227 1.932%
0.75/0.25/0.75 269 1.968% 288 4.007% 269 1.897%
0.75/0.25/0.5 254 1.363% 258 3.972% 254 1.838%
0.75/0.25/0.25 243 1.049% 240 3.991% 239 1.800%
0.75/0/1 407 0.661% 422 1.734% 270 1.503%
0.75/0/0.75 517 0.309% 705 $ 1.024% 620 $ 0.316%
0.75/0/0.5 457 $ 0.221% 558 1.232% 398 0.747%
0.75/0/0.25 415 0.233% 435 1.386% 298 1.093%
0.5/0.25/0 156 2.558% 179 3.998% 161 2.143%
0.5/0.25/0.75 191 2.699% 224 4.007% 187 2.143%
0.5/0.25/0.5 172 2.630% 201 4.007% 178 2.139%
0.5/0.25/0.25 162 2.483% 187 4.007% 170 2.143%
0.5/0/1 195 1.285% 216 2.954% 174 1.999%
0.5/0/0.75 403 0.667% 455 $ 1.535% 363 $ 0.751%
0.5/0/0.5 293 $ 0.551% 316 1.627% 242 1.263%
0.5/0/0.25 220 0.754% 227 2.559% 192 1.706%
ILS 61365 0.331% 126457 0.633% 150797 0.540%
NS4 744 0.629% 1438 1.111% 1633 0.247%
Time: 60 sec. 120 sec. 200 sec.

Table 3. Comparison of MA recombination strategies for the TSP using 2-opt.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 329

are provided in the form cRate/nRate/iRate. For example, a parameter
setting of 1/0.25/0.75 means that the common inheritance rate cRate
was set to 1.0, the new edges introduction rate nRate was set to 0.25,
and the inheritance rate iRate was set to 0.75. The dot in each column
block indicates the best result within this block.

For all three instances, MPX and DPX are outperformed by GX for
some of the parameter settings: all GX variants with a common inher-
itance rate of 1.0 and a new edge introduction rate of 0.25 perform
better than MPX and DPX. However, the best parameter setting for
GX is a different one for each of the instances implying that there is
no “golden rule” leading to the best recombination strategy for all TSP
instances! For example, the best setting for fl1577 is 1/0/0.75 but all
other combinations with nRate set to 0.0 do not perform as good as the
GX variants with nRate set to 0.25. Furthermore, it becomes apparent
that respectfulness is a very important property of recombination op-
erators since all GX versions with a common inheritance rate less than
1 perform significantly worse than the respectful greedy recombination
operators. However, choosing a high inheritance rate can compensate
the phenomenon to an extent since the common edges of the parents
have a chance to be included in the offspring in the third phase of the
generic recombination. Additionally, iterated 2-opt local search (ILS)
and an MA with the nonsequential four-change mutation and no recom-
bination has been applied to the three instances. The mutation-based
algorithms perform relatively good but cannot compete with the greedy
recombination MAs. The correlation structure of the landscape can be
exploited by a recombination-based MA. For the instance fl1577, the
MA with NS4 performs much better than ILS indicating that for this
type of landscape search from multiple points (population-based search)
is more promising.

In the second experiment, the fast 2-opt local search has been replaced
by the LK heuristic. The population size was set to 40, the variation
operator application rate was set to 0.5; that is, 20 offspring were pro-
duced per generation, and restarts were enabled with a diversification
rate of 0.3. The results obtained from experiments with MAs using
DPX, MPX, respectful GX, and nonsequential four-change mutation
(NS4) in comparison to the iterated LK heuristic (ILK) are displayed in
Table 4. For each instance/operator pair, the average number of gen-
erations and the percentage access over the optimum solution value is
provided. For the GX operator, the values for nRate and iRate are pro-
vided in the form nRate/iRate. cRate was set to 1.0 in all experiments.
The dot in each row indicates the best result for an instance.

Here, the performance differences of the MAs are in most cases not
significant. For the problems rat783 and pr1002 all algorithms per-
form well with only small differences, except for the MA with MPX
recombination in the case of pr1002. Surprisingly, this MA performs

Complex Systems, 13 (2001) 297–345

330 P. Merz and B. Freisleben

rat783 pr1002 fl1577 pr2392 pcb3038
ILK 0.018 % 0.065 % 0.158 % 0.215 % 0.135 %
DPX 0.004 % 0.023 % $ 0.028 % 0.068 % 0.113 %
MPX $ 0.001 % 0.169 % 0.142 % 0.054 % 0.128 %
NS4 0.010 % 0.020 % 0.181 % 0.119 % 0.171 %
GX 1.0/1.0 0.007 % 0.036 % 0.055 % 0.042 % 0.132 %
GX 1.0/0.75 0.026 % 0.022 % 0.058 % 0.053 % 0.211 %
GX 1.0/0.5 0.008 % 0.011 % 0.045 % 0.050 % 0.171 %
GX 1.0/0.25 0.006 % 0.013 % 0.051 % 0.047 % 0.146 %
GX 0.5/0.5 0.006 % 0.009 % 0.042 % 0.037 % 0.112 %
GX 0.5/0.75 0.007 % 0.031 % 0.048 % 0.055 % 0.175 %
GX 0.5/0.5 0.008 % 0.005 % 0.046 % 0.051 % 0.143 %
GX 0.5/0.25 0.009 % 0.011 % 0.037 % 0.044 % 0.136 %
GX 0.25/0 0.002 % 0.017 % 0.044 % 0.022 % 0.125 %
GX 0.25/0.75 0.012 % 0.003 % 0.041 % 0.031 % 0.151 %
GX 0.25/0.5 0.006 % 0.002 % 0.036 % 0.025 % 0.111 %
GX 0.25/0.25 0.005 % 0.002 % 0.040 % 0.023 % $ 0.111 %
GX 0.0/1.0 0.008 % 0.006 % 0.052 % $ 0.020 % 0.123 %
GX 0.0/0.75 0.003 % $ 0.000 % 0.043 % 0.027 % 0.115 %
GX 0.0/0.5 0.011 % 0.008 % 0.052 % 0.029 % 0.122 %
GX 0.0/0.25 0.004 % 0.002 % 0.050 % 0.035 % 0.123 %
Time: 80 sec. 200 sec. 300 sec. 400 sec. 800 sec.

Table 4. Comparison of MA recombination strategies for the TSP using LK.

significantly worse than the other algorithms. For fl1577, the MAs with
DPX and GX outperform all other competitors, with the MA using
DPX being the best. For pr2392, all recombination-based algorithms
perform similarly, but the MAs with mutation and ILK perform signif-
icantly worse. In the case of pcb3038, the largest instance considered,
all results lie close together. The MAs with DPX and MPX outperform
ILK and the MA with NS4. In the greedy recombination MAs, high dif-
ferences can be observed. The best results are obtained with a new edge
introduction rate of 0.25. The results show no clear tendency and often
the values lie too close together to be significantly different. However,
in none of the cases did ILK or the MA with mutation outperform the
MA using DPX or the best greedy recombination. The performance dif-
ferences between mutation and recombination operators have become
more apparent using 2-opt local search. For larger instances, this may
also be observed for MAs with the LK heuristic.

In an additional experiment, the combination of recombination and
mutation operators in MAs has been investigated. In the same exper-
imental setup as before, the MAs with DPX and MPX recombination

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 331

att532 rat783 pr1002 fl1577 pr2392 pcb3038
DPX 0.030 % 0.004 % 0.023 % 0.028 % 0.068 % 0.113 %
DPX, m $ 0.1 0.017 % 0.001 % 0.012 % 0.027 % 0.021 % 0.099 %
DPX, m $ 0.5 0.017 % 0.007 % 0.000 % 0.041 % 0.043 % 0.106 %
MPX 0.021 % 0.001 % 0.169 % 0.142 % 0.054 % 0.128 %
MPX, m $ 0.1 0.013 % 0.000 % 0.041 % 0.146 % 0.053 % 0.094 %
MPX, m $ 0.5 0.025 % 0.005 % 0.054 % 0.138 % 0.047 % 0.103 %
Time: 60 sec. 80 sec. 200 sec. 300 sec. 400 sec. 800 sec.

Table 5. Comparison of MAs with recombination and mutation (NS4).

have been run with the nonsequential four change mutation operator.
The results are provided in Table 5. The table contains the results
achieved with DPX and MPX without mutation as well as the results
for a mutation operator application rate of m $ 0.1 and m $ 0.5. The
number of offspring per generation produced by mutation is m 5 P. The
results show a clear tendency: in the majority of runs, additional mu-
tation improves the results. Furthermore, it is shown that the mutation
application rate of m $ 0.1 is preferable.

4.4.2 Results on small and medium traveling salesman problem instances

Using a mutation application rate of m $ 0.1, the MAs have been run
on a variety of problem instances contained in TSPLIB to show the
robustness and scalability of the memetic approach. Table 6 shows the
results for five instances up to a problem size of 1002. The population
size was set to P $ 40 in all runs, the recombination application rate
was set to 0.5, and the diversification rate to 0.1. Two MAs were run on
each instance, the first one with DPX recombination and the second one
with GX recombination. In the latter, cRate was set to 1.0, nRate was
set to 0.1 (which appears to be a good compromise between 0.25 and
0.0), and iRate was set to 0.5. The programs were terminated as soon
as they reached an optimum solution. In the table, the average number
of generations (gen) and the average running time of the algorithms (t
in s) in seconds is provided. In 30 out of 30 runs, the optimum could be
found for all instances in less than two minutes. The average running
time for rat783 is much lower than for att532 which is not surprising
since the landscape of the random instance rat783 has a higher fitness
distance correlation coefficient. In most cases, the MA with greedy
recombination appears to be slightly superior to the MA with DPX.
For larger instances, the average time to reach the optimum as well
as the deviation of the running time increases dramatically. Thus, the
MAs were run on the larger instances with a predefined time limit.
Table 7 summarizes the results for the MA with GX recombination.
The population size was set to P $ 100 for pr2392 and pcb3038, since

Complex Systems, 13 (2001) 297–345

332 P. Merz and B. Freisleben

Instance Op gen quality Nopt t in s

DPX 19 42029.0 (0.000%) 30/30 8
lin318

GX 13 42029.0 (0.000%) 30/30 8
DPX 824 50778.0 (0.000%) 30/30 147

pcb442
GX 286 50778.0 (0.000%) 30/30 68
DPX 560 27686.0 (0.000%) 30/30 127

att532
GX 289 27686.0 (0.000%) 30/30 106
DPX 122 8806.0 (0.000%) 30/30 26

rat783
GX 136 8806.0 (0.000%) 30/30 35
DPX 333 259045.0 (0.000%) 30/30 112

pr1002
GX 182 259045.0 (0.000%) 30/30 98

Table 6. Average running times of two MAs to find the optimum.

Instance gen quality sdev. Nopt t in s

pr2392 2407 378032.6 (0.000%) 0.8 27/30 2588
pcb3038 5248 137702.6 (0.006%) 6.4 3/30 6955
fl3795 341 28794.7 (0.079%) 21.3 1/30 7212

Table 7. Performance of MA using GX on large TSP instances.

smaller population sizes led to poorer performance. Due to the long
running time of the LK heuristic, the population size for fl3795 was set
to P $ 40. In the table, the average number of generations evolved by
the MA (gen), the average final tour length, the percentage access over
the optimum solution value (in parentheses), the standard deviation of
the final tour length (sdev.), the number of times the optimum was found
(Nopt), and the running time in seconds (t in s) is provided.

The running times presented here can only be indirectly compared
with results of alternative approaches found in the literature, since dif-
ferent hardware/software platforms have been used. However, it ap-
pears that the MA presented here outperforms other approaches. With
ASPARAGOS96 [40], an average tour length of 8809 (0.03%) could be
found in approximately three hours on a 170 MHz SUN UltraSparc for
rat783, and an average final tour length of 28,820 (0.34%) for fl3795
in approximately 17 hours. These results are significantly worse in both
running times and solution quality. With the edge assembly crossover
[87], the running time for finding the optimum for rat783 was 3013
seconds on a PC with a 200 MHz Intel Pentium processor, which is
much slower even taking the performance differences of the processors
into account. The running time to reach a solution quality of 0.006%
for pr2392 was 33,285 seconds which is worse than the MA presented
here in both quality and time.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 333

The physically inspired IPT approach [78] outperforms the MA on
problem fl3795, for which it requires 6050 seconds on a HP K460 Server
with 180 MHz PA8000 processors to find the optimum solution. How-
ever, the MA is superior on the instances att532, rat783, and pr2392 in
terms of average solution quality. For the latter instance, IPT required
9380 seconds to reach an average final tour length of 378,158 (0.033%).

The genetic iterated local search approach (GILS) [56] is similar to the
MA presented in this paper. Due to the different hardware platform and
different running times, a comparison is not possible. GILS delivers very
impressive results for instance pr2392: an average quality of 0.006%—
the optimum is found 3 out of 10 times—is achieved in 1635 seconds
on a Fujitsu S-4/5 workstation (microSPARCII 110 MHz). The average
final quality for att532 and rat783 is 0.056% and 0.022% found in
113 and 103 seconds, respectively. However, the MA is able to find the
optimum for fl3795 while the optimum could not be found after 26,958
seconds by the GILS.

All other heuristics proposed for the TSP, such as simulated annealing
[50, 111], tabu search [28], ant colonies [22, 36, 106], artificial neural
networks [23, 76, 92], search space smoothing [43], and perturbation
[18] have been applied only to rather small problems from TSPLIB or
to randomly generated problems. None of these heuristics has been
applied to TSPLIB instances with between 3000 and 4000 cities.

The branch and cut approach by Applegate et al. in [3, 4] required
80,829 seconds for pcb3038, and 69,886 seconds for fl3795 on a Com-
paq XP1000 (500 MHz) machine, which is more than two times faster
than a 500 MHz Pentium III.

4.4.3 Results on large traveling salesman problem instances

Finally, the MA has been applied to the largest instances in TSPLIB.
For these instances, there are no published results of other evolutionary
methods known to us. Table 8 shows the tour length of the optimum
solutions as well as the computation times required by branch and cut to
find the optimum [4] on a Pentium II (600 MHz) machine. For the three
largest problems, the optimum solutions are not known. Therefore, the
bounds in which the optimum is known to lie is provided instead of the
optimum value itself.

To demonstrate the applicability of the algorithms to very large in-
stances, the MA has been applied to the seven problems listed in Table 8.
With the same parameters as above, but with termination before the
third restart, the MAs were run with a population size P of 10, 20, and
40. The results are presented in Table 9. For each population size (P)
and each instance, the average number of generations (gen), the average
final tour length and percentage access over the optimum or the lower
bound (quality), the standard deviation (sdev.), and the average time (t)
in seconds of 10 runs is displayed.

Complex Systems, 13 (2001) 297–345

334 P. Merz and B. Freisleben

Time to find optimum
Instance

Optimum/Bounds Pentium II 600 MHz
fnl4461 182566 4 108044 sec
pla7397 23260728 4 867661 sec
rl11849 923288 4 313 days
usa13509 19982859 4 8 years
d18512 [645198,645255] – open –
pla33810 [66005185,66059941] – open –
pla85900 [142307500,142409553] – open –

Table 8. The largest instances in TSPLIB.

P Instance gen quality sdev. t in s
fnl4461 291 183762.7 (0.655%) 192.1 105
pla7397 887 23328499.5 (0.291%) 21931.7 802
rl11849 314 931333.5 (0.871%) 1417.2 417

10 usa13509 466 20186311.8 (1.018%) 17135.1 790
d18512 379 653474.3 (1.283%) 381.3 930
pla33810 1386 66575838.8 (0.864%) 57687.2 3443
pla85900 2216 143596390.7 (0.906%) 103234.6 12314
fnl4461 528 183366.3 (0.438%) 163.7 294
pla7397 1155 23307621.7 (0.202%) 14120.4 1860
rl11849 536 928115.5 (0.523%) 795.8 1006

20 usa13509 1082 20125182.2 (0.712%) 27980.9 2422
d18512 1226 650803.2 (0.869%) 477.8 2873
pla33810 3832 66321344.7 (0.479%) 45162.4 11523
pla85900 9069 142986675.5 (0.477%) 79510.3 52180
fnl4461 856 183047.1 (0.263%) 82.2 742
pla7397 1185 23294046.2 (0.143%) 12538.2 3789

40 rl11849 861 926253.7 (0.321%) 605.5 2503
usa13509 1936 20057767.0 (0.375%) 10176.8 6638
d18512 2091 649354.6 (0.644%) 501.6 7451

Table 9. Performance of MA using GX on the largest instances in TSPLIB.

The results show that a running time smaller than an hour is sufficient
to reach a quality of less than 1% for all problems except the largest one.
For the latter, the running time increases to 12,000 seconds. Increasing
the population size increases the final solution quality, but running times
increase drastically. In the extreme case of the largest problem, the
running times grow 4.2 times from 12,314 to 52,180 seconds. In most
other cases the running time grows less than 3 times. It can be observed

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 335

that the pla-problems are better solved than the other instances with
respect to the solution quality.

5. Conclusions

In this paper, the fitness landscape of various (euclidean) traveling sales-
man problem (TSP) instances has been investigated. The autocorrelation
analysis described in this paper is well suited for finding the most effec-
tive family of local search algorithms, but it does not allow predicting
the performance of meta-heuristics based on local search. Therefore, a
fitness distance correlation analysis of local optima has been conducted
on various TSP landscapes. It has been shown that there are different
types of landscapes although the majority of instances have common
characteristics: locally optimum tours have more than 3/4 of the edges
in common. Thus, the local minima are contained in a small fraction of
the search space. Fractal instances like the ones studied in this work are
artificial, they have highly correlated landscapes and are therefore easily
solved by well-known improvement heuristics. Although they are of in-
terest in the analysis of heuristics [82], they are not well suited for testing
highly effective heuristic approaches for the TSP. Random instances in
which the cities are uniformly distributed have higher correlated local
optima with respect to fast 2-opt and Lin–Kernighan (LK) local search
than others based on real city coordinates. The local optima of instances
in which the cities form clusters—as found in the application of drilling
holes in printed circuit boards—have even lower correlation of tour
length and distance to the global optimum. These instances belong to
the hardest type of instances from the viewpoint of heuristics for the TSP.

The high correlation of tour length and distance to the optimum
of the local optima in the TSP landscape is an indicator for a good
performance of recombination-based search algorithms, since recom-
bination is capable of exploiting this correlation in an efficient way.
However, for the TSP, an effective combination of local search and
mutation exists—iterated local search. In an extensive study, several
recombination operators, including a newly proposed generic greedy
recombination operator (GX), are compared against each other in a
memetic algorithm (MA) framework. The MAs show significant per-
formance differences if a simple fast 2-opt local search is employed.
For MAs with the sophisticated LK local search, the results lie much
closer together. The study has shown that respectfulness is the most
important property of a recombination operator. Furthermore, the MA
with the newly proposed GX operator has been shown to outperform
all its competitors: MAs with DPX or MPX recombination, MAs with
nonsequential four change mutation, and iterated local search.

MAs with DPX and GX recombination and mutation have been
applied to various instances contained in TSPLIB to show robustness

Complex Systems, 13 (2001) 297–345

336 P. Merz and B. Freisleben

and scalability of the approach. While for problems with up to 1000
cities the optimum could be found in all runs in an average time of less
than two minutes on a state of the art personal computer, for the larger
instances much more time was required to find the optimum solution.
However, for a problem size up to 3795, the optimum could be found in
less than two hours. Compared to other proposed approaches, the MA
appears to be superior in average solution quality and running times.
Finally, the MA with GX has been applied to very large instances of up
to 85,900 cities and is thus the first meta-heuristic known to us which
can tackle very large problems.

There are several issues for future research. Most importantly, a par-
allel implementation of the MA is desired to reduce the running time on
large instances (n > 10,000) and to allow performing more experiments.
Regional parallelization models of evolutionary algorithms (EAs) using
subpopulations and migration may enhance the overall performance
of the memetic approach. Sophisticated data structures are required
to solve very large problems, and we believe that performance can be
increased significantly if a strong effort is made to tune the LK local
search, as recent developments suggest [44].

References

[1] E. Angel and V. Zissimopoulos, “Autocorrelation Coefficient for the
Graph Bipartitioning Problem,” Theoretical Computer Science, 191
(1998) 229–243.

[2] D. Applegate, R. Bixby, V. Chvátal, and B. Cook, “Finding Cuts in the
TSP (A preliminary report),” Technical Report 95-05 (DIMACS, 1995).

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “On the Solution of
Traveling Salesman Problems,” Documenta Mathematica, Extra Volume
ICM III (1998) 645–656.

[4] D. Applegate, R. Bixby, V. Chvátal, and W. Cook, “Concorde Bench-
marks on TSPLIB Instances,” W. M. Keck Center for Computa-
tional Discrete Optimization, Rice University, Houston, USA, 2000.
http://www.keck.caam.rice.edu/concorde/bench.html.

[5] J. L. Bentley, “Experiments on Traveling Salesman Heuristics,” in Pro-
ceedings of the First Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 1990.

[6] J. L. Bentley, “K-d-Trees for Semidynamic Point Sets,” in Proceedings of
the Sixth Annual ACM Symposium on Computational Geometry, 1990.

[7] J. L. Bentley, “Fast Algorithms for Geometric Traveling Salesman Prob-
lems,” ORSA Journal on Computing, 4(4) (1992) 387–411.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 337

[8] H. Bersini, M. Dorigo, S. Langerman, G. Seront, and L. Gambardella,
“Results of the First International Contest on Evolutionary Optimisation
(1st ICEO),” in Proceedings of the 1996 IEEE International Conference
on Evolutionary Computation (IEEE Press, Piscataway, NJ, 1996).

[9] K. D. Boese, Models for Iterative Global Optimization, PhD thesis
(University of Carlifornia, Los Angeles, USA, 1996).

[10] K. Boese, “Cost versus Distance in the Traveling Salesman Problem,”
Technical Report TR-950018 (UCLA Computer Science Department,
Los Angeles, CA, 1995).

[11] K. Boese, A. Kahng, and S. Muddu, “A New Adaptive Multi-start Tech-
nique for Combinatorial Global Optimizations,” Operations Research
Letters, 16 (1994) 101–113.

[12] L. B. Booker, D. E. Goldberg, and J. H. Holland, “Classifier Systems and
Genetic Algorithms,” Artificial Intelligence, 40 (1989) 235–282.

[13] R. M. Brady, “Optimization Strategies Gleaned from Biological Evolu-
tion,” Nature, 317 (1985) 804–806.

[14] H. Braun, “On Solving Traveling Salesman Problems by Genetic Algo-
rithms,” in Parallel Problem Solving from Nature—Proceedings of First
Workshop, PPSN 1, edited by H.-P. Schwefel and R. Männer (Springer-
Verlag, Berlin and Dortmund, 1–3 October, 1991).

[15] T. G. Bui and B. R. Moon, “A New Genetic Approach for the Traveling
Salesman Problem,” in Proceedings of the First IEEE Conference on
Evolutionary Computation (IEEE Press, 1994).

[16] N. Christofides, “The Traveling Salesman Problem,” in Combinatorial
Optimization, edited by N. Christofides, A. Mingozzi, P. Toth, and
C. Sandi (Wiley and Sons, 1979).

[17] G. Clarke and J. W. Wright, “Scheduling of Vehicles from a Central
Depot to a Number of Delivery Points,” Operations Research, 12 (1964)
568–581.

[18] B. Codenotti, G. Manzini, L. Margara, and G. Resta, “Perturbation:
An Efficient Technique for the Solution of Very Large Instances of the
Euclidean TSP,” Technical Report TR-93-035 (International Computer
Science Institute, Berkeley, CA, 1993).

[19] G. A. Croes, “A Method for Solving Traveling Salesman Problems,”
Operations Research, 5 (1958) 791–812.

[20] L. Davis, “Applying Adaptive Algorithms to Epistatic Domains,” in Pro-
ceedings of the International Joint Conference on Artificial Intelligence
(Morgan Kauffman, 1985).

[21] L. Davis, Genetic Algorithms and Simulated Annealing (Pitman, Lon-
don, 1987).

Complex Systems, 13 (2001) 297–345

338 P. Merz and B. Freisleben

[22] M. Dorigo and L. M. Gambardella, “Ant Colony System: A Cooper-
ative Learning Approach to the Traveling Salesman Problem,” IEEE
Transactions on Evolutionary Computation, 1(1) (1997) 53–66.

[23] R. Durbin, R. Szeliski, and A. Yuille, “An Analysis of the Elastic Net
Approach to the Traveling Salesman Problem,” Neural Computation, 1
(1989) 348–358.

[24] J. Dzubera and D. Whitley, “Advanced Correlation Analysis of Opera-
tors for the Traveling Salesman Problem,” in Parallel Problem Solving
from Nature—Proceedings of the Third Workshop, PPSN III, edited by
H.-P. Schwefel and R. Männer (Springer-Verlag, Berlin and Dortmund,
1994).

[25] L. J. Eshelman and J. D. Schaffer, “Preventing Premature Convergence in
Genetic Algorithms by Preventing Incest,” in Proceedings of the Fourth
International Conference on Genetic Algorithms (Morgan Kaufmann,
1991).

[26] L. Eshelman, K. Mathias, and J. D. Schaffer, “Convergence Controlled
Variation,” in Foundations of Genetic Algorithms 4, edited by R. K.
Belew and M. D. Vose (Morgan Kaufmann, 1997).

[27] L. Eshelman, “The CHC Adaptive Search Algorithm: How to Have Safe
Search When Engaging in Nontraditional Genetic Recombination,” in
Foundations of Genetic Algorithms, edited by G. J. E. Rawlings (Morgan
Kaufmann, 1991).

[28] C.-N. Fiechter, “A Parallel Tabu Search Algorithm for Large Traveling
Salesman Problems,” Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science, 51 (1994) 243–267.

[29] M. M. Flood, “The Traveling–Salesman Problem,” Operations Re-
search, 4 (1956) 61–75.

[30] D. B. Fogel, “Applying Evolutionary Programming to Selected Traveling
Salesman Problems,” Cybernetics and Systems, 24 (1993) 27–36.

[31] D. B. Fogel, “An Evolutionary Approach to the Traveling Salesman
Problem,” Biological Cybernetics, 60 (1988) 139–144.

[32] B. R. Fox and M. B. McMahon, “Genetic Operators for Sequencing
Problems,” in Foundations of Genetic Algorithms, edited by G. J. E.
Rawlings (Morgan Kaufmann, 1991).

[33] M. L. Fredman, D. S. Johnson, L. A. McGeoch, and G. Ostheimer,
“Data Structures for Traveling Salesmen,” Journal of Algorithms, 18
(1995) 432–479.

[34] B. Freisleben and P. Merz, “A Genetic Local Search Algorithm for Solv-
ing Symmetric and Asymmetric Traveling Salesman Problems,” in Pro-
ceedings of the 1996 IEEE International Conference on Evolutionary
Computation, edited by T. Bäck, H. Kitano, and Z. Michalewicz (IEEE
Press, Piscataway, NJ, 1996).

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 339

[35] B. Freisleben and P. Merz, “New Genetic Local Search Operators for the
Traveling Salesman Problem,” in Proceedings of the Fourth International
Conference on Parallel Problem Solving from Nature—PPSN IV, edited
by H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel (Springer,
Berlin, 1996).

[36] L. M. Gambardella and M. Dorigo, “Ant-Q: A Reinforcement Learn-
ing Approach to the Traveling Salesman Problem,” in Proceedings of
the Twelfth International Conference on Machine Learning (Morgan
Kaufmann, 1995).

[37] D. E. Goldberg and J. R. Lingle, “Alleles, Loci, and the Traveling Sales-
man Problem,” in Proceedings of an International Conference on Ge-
netic Algorithms and their Applications (Carnegie Mellon Publishers,
1985).

[38] M. Gorges-Schleuter, “ASPARAGOS: An Asynchronous Parallel Genetic
Optimization Strategy,” in Proceedings of the Third International Con-
ference on Genetic Algorithms, edited by J. D. Schaffer (Morgan Kauf-
mann, 1989).

[39] M. Gorges-Schleuter, Genetic Algorithms and Population Structures—
A Massively Parallel Algorithm, PhD thesis (Universität Dortmund,
Germany, 1990).

[40] M. Gorges-Schleuter, “Asparagos96 and the Traveling Salesman Prob-
lem,” in Proceedings of the 1997 IEEE International Conference on
Evolutionary Computation (IEEE Press, 1997).

[41] J. Grefenstette, R. Gopal, B. Rosimaita, and D. V. Gucht, “Genetic
Algorithms for the Traveling Salesman Problem,” in Proceedings of an
International Conference on Genetic Algorithms and their Applications
(Carnegie Mellon Publishers, 1985).

[42] J. J. Grefenstette, “Incorporating Problem Specific Knowledge into Ge-
netic Algorithms,” in Genetic Algorithms and Simulated Annealing,
edited by L. Davis (Morgan Kaufmann Publishers, 1987).

[43] J. Gu and X. Huang, “Efficient Local Search With Search Space Smooth-
ing: A Case Study of the Traveling Salesman Problem (TSP),” IEEE
Transactions on Systems, Man, and Cybernetics, 24 (1994) 728–735.

[44] K. Helsgaun, “An Effective Implementation of the Lin-Kernighan Trav-
eling Salesman Heuristic,” European Journal of Operational Research,
126(1) (2000) 106–130.

[45] M. Herdy, “Application of the Evolutionsstrategie to Discrete Optimiza-
tion Problems,” in Parallel Problem Solving from Nature, edited by H.-P.
Schwefel and R. Männer (Springer, 1991).

[46] W. D. Hillis, “Co-evolving Parasites Improve Simulated Evolution as an
Optimization Procedure,” in Artificial Life II, edited by C. G. Langton,
C. Taylor, J. D. Farmer, and S. Rasmussen (Addison-Wesley, 1992).

Complex Systems, 13 (2001) 297–345

340 P. Merz and B. Freisleben

[47] J. Holland, Adaptation in Natural and Artificial Systems (University of
Michigan Press, 1975).

[48] D. Holstein and P. Moscato, “Memetic Algorithms using Guided Lo-
cal Search: A Case Study,” in New Ideas in Optimization, edited by
D. Corne, M. Dorigo, and F. Glover (McGraw-Hill, London, 1999).

[49] A. Homaifar, S. Guan, and G. E. Liepins, “A New Approach to the
Traveling Salesman Problem by Genetic Algorithms,” in Proceedings
of the Fifth International Conference on Genetic Algorithms (Morgan
Kaufmann, 1993).

[50] C.-S. Jeong and M.-H. Kim, “Fast Parallel Simulated Annealing for
Traveling Salesman Problem on SIMD Machines with Linear Intercon-
nections,” Parallel Computing, 17(2–3) (1991) 221–228.

[51] P. Jog, J. Y. Suh, and D. V. Gucht, “The Effects of Population Size,
Heuristic Crossover and Local Improvement on a Genetic Algorithm for
the Travelling Salesman Problem,” in Proceedings of the Third Interna-
tional Conference on Genetic Algorithms (Morgan Kaufmann, 1989).

[52] P. Jog, J. Y. Suh, and D. V. Gucht, “Parallel Genetic Algorithms Applied
to the Traveling Salesman Problem,” SIAM Journal on Optimization,
1(4) (1991) 515–529.

[53] D. S. Johnson and L. A. McGeoch, “The Traveling Salesman Problem:
A Case Study,” in Local Search in Combinatorial Optimization, edited
by E. H. L. Aarts and J. K. Lenstra (Wiley and Sons, New York, 1997).

[54] T. Jones and S. Forrest, “Fitness Distance Correlation as a Measure
of Problem Difficulty for Genetic Algorithms,” in Proceedings of the
Sixth International Conference on Genetic Algorithms, edited by L. J.
Eshelman (Morgan Kaufmann, 1995).

[55] R. M. Karp, “A Patching Algorithm for the Nonsymmetric Traveling
Salesman Problem,” SIAM Journal on Computing, 8(4) (1979) 561–
573.

[56] K. Katayama and H. Narihisa, “Iterated Local Search Approach us-
ing Genetic Transformation to the Traveling Salesman Problem,” in
GECCO-1999: Proceedings of the Genetic and Evolutionary Compu-
tation Conference, edited by W. Banzhaf (Morgan Kauffman, 1999).

[57] S. A. Kauffman, The Origins of Order: Self-Organization and Selection
in Evolution (Oxford University Press, 1993).

[58] S. A. Kauffman and S. Levin, “Towards a General Theory of Adaptive
Walks on Rugged Landscapes,” Journal of Theoretical Biology, 128
(1987) 11–45.

[59] B. Kernighan and S. Lin, “An Efficient Heuristic Procedure for Partition-
ing Graphs,” Bell Systems Journal, 49 (1972) 291–307.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 341

[60] S. Kirkpatrick and G. Toulouse, “Configuration Space Analysis of Trav-
elling Salesman Problems,” Journal de Physique, 46 (1985) 1277–1292.

[61] J. R. Koza, Genetic Programming: On the Programming of Computers
by Natural Selection (MIT Press, Cambridge, 1992).

[62] J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable
Programs (MIT Press, Cambridge, 1994).

[63] B. Krakhofer and P. F. Stadler, “Local Minima in the Graph Bipartitioning
Problem,” Europhysics Letters, 34 (1996) 85–90.

[64] G. E. Liepins and M. R. Hilliard, “Greedy Genetics,” in Genetic Algo-
rithms and their Applications: Proceedings of the Second International
Conference on Genetic Algorithms (Lawrence Erlbaum, 1987).

[65] S. Lin, “Computer Solutions of the Travelling Salesman Problem,” Bell
System Technical Journal, 44 (1965) 2245–2269.

[66] S. Lin and B. Kernighan, “An Effective Heuristic Algorithm for the
Traveling Salesman Problem,” Operations Research, 21 (1973) 498–
516.

[67] K.-T. Mak and A. J. Morton, “Distances between Traveling Salesman
Tours,” Discrete Applied Mathematics and Combinatorial Operations
Research and Computer Science, 58 (1995) 281–291.

[68] F. Margot, “Quick Updates for p-opt TSP Heuristics,” Operations Re-
search Letters, 11 (1992) 45–46.

[69] K. Mathias and D. Whitley, “Genetic Operators, the Fitness Landscape
and the Traveling Salesman Problem,” in Proceedings of the Second In-
ternational Conference on Parallel Problem Solving from Nature—PPSN
2, edited by R. Männer and B. Manderick (Elsevier Science Publishers,
1992).

[70] P. Merz, Memetic Algorithms for Combinatorial Optimization Prob-
lems: Fitness Landscapes and Effective Search Strategies, PhD thesis
(Department of Electrical Engineering and Computer Science, Univer-
sity of Siegen, Germany, 2000).

[71] P. Merz and B. Freisleben, “Genetic Local Search for the TSP: New
Results,” in Proceedings of the 1997 IEEE International Conference
on Evolutionary Computation, edited by T. Bäck, Z. Michalewicz, and
X. Yao (IEEE Press, Piscataway, NJ, 1997).

[72] P. Merz and B. Freisleben, “Fitness Landscapes and Memetic Algorithm
Design,” in New Ideas in Optimization, edited by D. Corne, M. Dorigo,
and F. Glover (McGraw-Hill, London, 1999).

[73] P. Merz and B. Freisleben, “Fitness Landscape Analysis and Memetic
Algorithms for the Quadratic Assignment Problem,” IEEE Transactions
on Evolutionary Computation, 4(4) (2000) 337–352.

Complex Systems, 13 (2001) 297–345

342 P. Merz and B. Freisleben

[74] P. Merz and B. Freisleben, “Fitness Landscapes, Memetic Algorithms
and Greedy Operators for Graph Bi-Partitioning,” Evolutionary Com-
putation, 8(1) (2000) 61–91.

[75] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Pro-
grams (Springer, Berlin, 1996).

[76] C. Ming and L. Minghui, “Kohonen Neural Network-based Solution of
TSP,” Mini-Micro Systems, 15(11) (1994) 35–39.

[77] A. Möbius, A. Diaz-Sanchez, B. Freisleben, M. Schreiber, A. Fachat,
K. Hoffmann, P. Merz, and A. Neklioudov, “Two Physically Motivated
Algorithms for Combinatorial Optimization: Thermal Cycling and Iter-
ative Partial Transcription,” Computer Physics Communications, 121–
122(1–3) (1999) 34–36.

[78] A. Möbius, B. Freisleben, P. Merz, and M. Schreiber, “Combinatorial
Optimization by Iterative Partial Transcription,” Physical Review E,
59(4) (1999) 4667–4674.

[79] P. Moscato, “On Evolution, Search, Optimization, Genetic Algorithms
and Martial Arts: Towards Memetic Algorithms,” Technical Report C3P
Report 826 (Caltech Concurrent Computation Program, California In-
stitue of Technology, 1989).

[80] P. Moscato and M. G. Norman, “A Memetic Approach for the Travel-
ing Salesman Problem Implementation of a Computational Ecology for
Combinatorial Optimization on Message-Passing Systems,” in Parallel
Computing and Transputer Applications, edited by M. Valero, E. Onate,
M. Jane, J. L. Larriba, and B. Suarez (IOS Press, Amsterdam, 1992).

[81] P. Moscato and M. Norman, “Arbitrarily Large Planar ETSP Instances
with Known Optimal Tours,” Pesquisa Operacional, 15 (1995) 89–96.

[82] P. Moscato and M. Norman, “On the Performance of Heuristics on
Finite and Infinite Fractal Instances of the Euclidean Traveling Salesman
Problem,” INFORMS Journal on Computing, 10(2) (1998) 121–132.

[83] P. Moscato and F. Tinetti, “Blending Heuristics with a Population-based
Approach: A Memetic Algorithm for the Traveling Salesman Problem,”
Technical Report CeTAD (CeTAD, Universitad Nacional de La Plata,
1994).

[84] P. Moscato, “Memetic Algorithms: A Short Introduction,” in New
Ideas in Optimization, edited by D. Corne, M. Dorigo, and F. Glover
(McGraw-Hill, London, 1999).

[85] H. Mühlenbein, M. Gorges-Schleuter, and O. Krämer, “Evolution Algo-
rithms in Combinatorial Optimization,” Parallel Computing, 7 (1988)
65–88.

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 343

[86] H. Mühlenbein, “Evolution in Time and Space—The Parallel Genetic
Algorithm,” in Foundations of Genetic Algorithms, edited by G. J. E.
Rawlins (Morgan Kaufmann Publishers, 1991).

[87] Y. Nagata and S. Kobayashi, “Edge Assembly Crossover: A High-power
Genetic Algorithm for the Traveling Salesman Problem,” in Proceedings
of the Seventh International Conference on Genetic Algorithms, edited
by T. Bäck (Morgan Kaufmann, 1997).

[88] M. G. Norman and P. Moscato, “The Euclidean Traveling Salesman
Problem and a Space-Filling Curve,” Chaos, Solitons and Fractals, 6
(1995) 389–397.

[89] I. M. Oliver, D. J. Smith, and J. R. C. Holland, “A Study of Permutation
Crossover Operators on the Traveling Salesman Problem,” in Genetic
Algorithms and their Applications: Proceedings of the Second Interna-
tional Conference on Genetic Algorithms (Lawrence Erlbaum, 1987).

[90] I. Or, Traveling Salesman-Type Combinatorial Problems and Their Re-
lation to the Logistics of Regional Blood Banking, PhD thesis (North-
western University, Evanston, 1976).

[91] J. Paredis, “Coevolutionary Computation,” Artificial Life, 2(4) (1995)
355–375.

[92] J.-Y. Potvin, “The Traveling Salesman Problem: A Neural Network
Perspective,” ORSA Journal on Computing, 5 (1993) 328–348.

[93] N. Radcliffe and P. Surry, “Fitness Variance of Formae and Performance
Prediction,” in Proceedings of the Third Workshop on Foundations of
Genetic Algorithms, edited by L. Whitley and M. Vose (Morgan Kauf-
mann, San Francisco, 1994).

[94] N. Radcliffe and P. Surry, “Formal Memetic Algorithms,” in Evolution-
ary Computing: AISB Workshop, edited by T. Fogarty (Springer-Verlag,
Berlin, 1994).

[95] C. R. Reeves, “Landscapes, Operators and Heuristic Search,” Annals of
Operations Research, 86 (1999) 473–490.

[96] G. Reinelt, “TSPLIB—A Traveling Salesman Problem Library,” ORSA
Journal on Computing, 3(4) (1991) 376–384.

[97] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP
Applications, volume 840 of Lecture Notes in Computer Science,
(Springer-Verlag, Berlin, 1994).

[98] S. Ronald, “Finding Multiple Solutions with an Evolutionary Algo-
rithm,” in Proceedings of the 1995 IEEE International Conference on
Evolutionary Computation (IEEE Press, 1995).

[99] S. Ronald, “Distance Functions for Order-Based Encodings,” in Pro-
ceedings of the 1997 IEEE International Conference on Evolutionary
Computation (IEEE Press, 1997).

Complex Systems, 13 (2001) 297–345

344 P. Merz and B. Freisleben

[100] G. Rudolph, “Global Optimization by Means of Distributed Evolution
Strategies,” in Parallel Problem Solving from Nature—Proceedings of
the First Workshop, PPSN 1, edited by H. P. Schwefel and R. Männer
(Springer, 1991).

[101] H.-P. Schwefel, Numerische Optimierung von Computer–Modellen mit-
tels der Evolutionsstrategie, volume 26 of Interdisciplinary Systems
Research (Birkhäuser Verlag, Basel, 1977).

[102] P. F. Stadler, “Towards a Theory of Landscapes,” in Complex Systems
and Binary Networks, edited by R. Lopéz-Peña, R. Capovilla, R. Garcı́a-
Pelayo, H. Waelbroeck, and F. Zertuche (Springer-Verlag, Berlin, New
York, 1995).

[103] P. F. Stadler, “Landscapes and their Correlation Functions,” Journal of
Mathematical Chemistry, 20 (1996) 1–45.

[104] P. F. Stadler and W. Schnabl, “The Landscape of the Travelling Salesman
Problem,” Physics Letters A, 161 (1992) 337–344.

[105] T. Starkweather, S. McDaniel, K. Mathias, D. Whitley, and C. Whitley,
“A Comparison of Genetic Sequencing Operators,” in Proceedings of
the Fourth International Conference on Genetic Algorithms (Morgan
Kaufmann, 1991).

[106] T. Stützle, Local Search Algorithms for Combinatorial Problems—
Analysis, Improvements, and New Applications, PhD thesis (FB In-
formatik, TU Darmstadt, 1998).

[107] J. Y. Suh and D. V. Gucht, “Incorporating Heuristic Information into
Genetic Search,” in Genetic Algorithms and their Applications: Pro-
ceedings of the Second International Conference on Genetic Algorithms
(Lawrence Erlbaum, 1987).

[108] G. Tao and Z. Michalewicz, “Inver-over Operator for the TSP,” in Pro-
ceedings of the Fifth International Conference on Parallel Problem Solv-
ing from Nature—PPSN V, edited by A.-E. Eiben, T. Bäck, M. Schoe-
nauer, and H.-P. Schwefel (Springer, 1998).

[109] N. L. J. Ulder, E. H. L. Aarts, H. J. Bandelt, P. J. M. van Laarhoven, et al.,
“Genetic Local Search Algorithms for the Traveling Salesman Problems,”
in Proceedings of the First International Conference on Parallel Problem
Solving from Nature—PPSN I, edited by H. P. Schwefel and R. Männer
(Springer-Verlag, Berlin and Dortmund, 1991).

[110] C. L. Valenzuela, “Evolutionary Divide and Conquer (II) for the TSP,” in
Proceedings of the Genetic and Evolutionary Computation Conference,
edited by W. Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V. Honavar,
M. Jakiela, and R. E. Smith (Morgan Kaufmann, 1999).

[111] P. J. M. van Laarhoven and E. H. L. Aarts, Simulated Annealing: Theory
and Applications (Kluwer Academic Publishers, 1987).

Complex Systems, 13 (2001) 297–345

Memetic Algorithms for the Traveling Salesman Problem 345

[112] T. Walters, “Repair and Brood Selection in the Traveling Salesman Prob-
lem,” in Proceedings of the Fifth International Conference on Parallel
Problem Solving from Nature—PPSN V, edited by A.-E. Eiben, T. Bäck,
M. Schoenauer, and H.-P. Schwefel (Springer, 1998).

[113] E. D. Weinberger, “Correlated and Uncorrelated Fitness Landscapes and
How to Tell the Difference,” Biological Cybernetics, 63 (1990) 325–336.

[114] D. Whitley, T. Starkweather, and D. Fuquay, “Scheduling Problems and
Traveling Salesman: The Genetic Edge Recombination Operator,” in
Proceedings of the Third International Conference on Genetic Algo-
rithms (Morgan Kaufmann, 1989).

[115] S. Wright, “The Roles of Mutation, Inbreeding, Crossbreeding, and
Selection in Evolution,” in Proceedings of the Sixth Congress on Genetics
(Brooklyn, New York, 1932).

Complex Systems, 13 (2001) 297–345

