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Two different modeling approaches are discussed in the study of in vitro
cell cultures which, after exposure to a carcinogen, may develop trans-
formation foci that may be considered the in vitro analogue of tumors.
The most important variables that are measured in these tests are the
number of foci found at the end of the experiment, starting from a dif-
ferent number of initial cells. It is shown that an approach based upon
ordinary differential equations (ODEs) may fit the data, but in a fragile
way, while a cellular automata (CA) approach provides a robust agree-
ment. However, the story told here is not that of a conflict, but rather
of a cooperation between the two modeling approaches: the results of
the ODE study guided our exploration of the different alternatives in CA
simulations, and provided checks during model development and testing.

The CA model led us to consider the importance of the initial seeds,
a point which has not been stressed in the previous literature, and to re-
interpret published experimental data. It is shown that CA models, which
retain cell individuality, can handle this aspect in a straightforward way,
which would have been very difficult to introduce in methods based upon
partial differential equations. It is also shown that quantitative modeling
provides useful insights for the interpretation of experimental data as well
as suggestions for further experiments.

1. Introduction

Different approaches have been used to model the dynamical behavior
of biological systems, including ordinary differential equations (ODEs),

!Electronic mail address: rserra@cramont.it.

Complex Systems, 13 (2001) 347–380; " 2001 Complex Systems Publications, Inc.



348 R. Serra, M. Villani, and A. Colacci

discrete difference equations (DDEs), partial differential equations
(PDEs) and cellular automata (CA). CA are well suited to describe sev-
eral interesting biological phenomena (see [1] and further references
quoted therein) including immune system response [2], biodegradation
of organic compounds by soil microbes [3], and tumor growth [4, 5].

ODEs and DDEs can be usefully applied whenever spatial homogene-
ity (on a suitable scale) can be assumed, while PDEs and CA are able to
describe spatially heterogeneous systems. In dealing with reproduction
phenomena, DDEs are more naturally suited whenever reproduction
timing is synchronized within the population (e.g., all the newborns
are born in spring) while ODEs represent a favorite choice when no
such synchronization can be assumed and when the time scale of the
observation is large enough to justify a limiting operation #t $ 0.

We describe here an interesting biological system of cell cultures
which are exposed to a suspect carcinogen, that appeared at first very
well suited for an ODE approach. However, as we shall show, the ODE
description was partly unsatisfactory, so we developed a CA model that
can take into account some features that proved to be very important.
The CA model has provided robust agreement with experimental data
and has led to a re-interpretation of some literature data, pointing to a
possible role of a variable which had so far been unnoticed, to the best
of our knowledge. However, the previous work was not lost because the
results of the ODE models not only led us to introduce the new model,
they also provided guidance in our exploration of the “simulation space”
of the CA. We will see below that using different modeling tools to study
a complex system, in particular ODEs and CA, can be fruitful.

The cell cultures we studied may develop, a few weeks after exposure,
so-called “transformation foci” whose number provides an indication
about the carcinogenic affect of the substance under scrutiny. These sys-
tems are very useful in cancer risk assessment and are gaining widespread
interest and acceptance. They are described in section 2.

The variables that are measured in typical cancer risk tests are the
numbers of foci, which are found at the end of the experiment, under
different conditions. “The end of the experiment” is defined as a fixed
elapsed time from the beginning of the experiment, and is dictated by
intrinsic features of the cells, which after some time lack their capacity
to stick to the walls of the culture plate. A global variable is usually
measured; that is, the average number of foci per culture plate, while no
attention is paid to the location of foci in the plate itself. Therefore an
approach based upon ODEs or DDEs might seem appropriate. Indeed,
models of this kind have already been applied [6].

However, during this process the cell population increase takes place
through the growth of clusters of cells surrounding those which had
been plated on the bottom of the culture plate at the beginning of
the experiment (initial seeds). During this replication process, some
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cells become “transformed,” and each of them is able to give rise to
an observable transformation focus. The process of cell growth and
transformation is local and a mean-field approach, which ignores spatial
heterogeneities, might miss some important aspects.

The results of the ODE approach are described in section 3. Here
we will only synthesize the reasons why it was necessary to move to a
different modeling framework.

The ODE model can reach a reasonable agreement with the experi-
ment in regards to the most important variable which can be actually
measured, that is, the number of foci Ffin found at the end of the exper-
iment, in correspondence of different values of the number of initially
seeded cells M0. Experimantally [6] one finds a power-law relationship:

Ffin % cM
q
0 (1)

with c independent of M0 and q < 1 (typically, for the frequently used
C3H10T1/2 cell lines, q & 0.4).

Upon closer examination of the model behavior, such agreement can
be proved to be fragile, as it is heavily dependent upon the value of
a parameter which, in order to provide the agreement, should be con-
strained to a narrow, rather unrealistic interval. This parameter is the
exponent which relates the rate of formation of new cells (dM/dt)' to
the number of cells which are already present: (dM/dt)' ( MΝ.

In the beginning of the test each cell is surrounded by empty space, so
every existing cell can replicate and it is therefore reasonable to assume
linear growth, that is, (dM/dt)' ( M, but when clusters become large the
internal cells cannot replicate due to contact inhibition and replication
takes place mainly on the borders so that (dM/dt)' ( M1/2 (in the
case of circular clusters). For reasonable values of the other model
parameters, the agreement between the theoretical and the measured
shape of Ffin(M0) is reached only when the exponent Ν is very close to
one (see section 3 for a quantitative analysis). But, as we have seen, the
actual exponent is likely to be smaller than that for a large part of the
cell growth process.

Moreover, it is becoming increasingly apparent that power laws like
equation (1) can be obtained by a number of different models, so the
match between model and experiment does not per se guarantee ade-
quate modeling.

We tried to model the growth of the clusters while still adhering to an
ODE scheme by varying the effective growth exponent as a function of
the number of cells per cluster. But this model requires the introduction
of ad hoc hypotheses and geometrical parameters and its dependence
upon M0 is heavily dependent upon other parameter values.

We then developed a model where the spatial constraints to cell
growth are taken into account from the very beginning. A natural
framework to accomplish this task is that of CA [7–10], which is sup-
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posed known to the reader, because it allows the introduction of discrete
units (cells) in a straightforward way, and because it requires that inter-
actions be local, involving only a cell and its neighbors, as it happens
in cell reproduction. For a recent review on CA see [11] and further
references quoted therein.

A possible alternative would have been that of resorting to PDEs, but
this would have required considering a cluster as a continuum, which
in turn implies the choice of a length scale much wider than that of the
single cell. Moreover, as we shall see, this would have prevented us from
discovering a very interesting feature of these systems.

The CA model is described in section 4. Here we just mention that in
our initial attempts we found that for reasonable parameter values our
simulation yielded a function Ffin(M0) which was approximately flat, at
least in some intervals; that is, (dFfin/dM0) & 0, in disagreement with the
empirical behavior of equation (1).

The reason for the disagreement turned out to be subtle: according
to our model (and to most commonly shared views of the process as
in [6]) the change from a normal cell (B-type, B for “buono”) to a
transformed cell (T-cell) does not take place all of a sudden, but requires
an intermediate step, where cells become activated (A-type). The role of
the carcinogen is that of activating a certain number of cells, while the
transformation A $ T takes place spontaneously during the subsequent
phase of cell growth without carcinogen. In the following, we refer to
A-type cells simply as “A cells,” to B-type cells as “B cells,” and so on.

Our simulations start (t % 0) at the moment when the carcinogen is
washed away, and we must therefore assume that in the initial popula-
tion a certain fraction of the cells are type A. This is the initial condition
used for ODE simulations. In the CA simulations we placed at random
locations either a B or an A cell (taking into account the overall ratio
A/B). B cells gave rise to clusters of B cells, A cells gave rise to clusters of
A cells, some of which might possibly turn into type T. After some time,
clusters started to encounter each other, and B cells started to compete
with A cells on the colliding borders. For reasons described in section 3,
B cells are favored in this competition with respect to A cells.

In simulations carried out with the above initial conditions, we found
the already mentioned result that (dFfin/dM0) & 0 (except for rather
extreme and unreasonable values of some model parameters). But a
closer examination of the replication process described in section 4
showed that, whenever a B cell is turned into an A cell by the carcinogen,
there is very often at least one other cell close to it, which is still of
type B. This is due to the fact that activation takes place during cell
reproduction and it is highly unlikely that the same process involves
both daughter cells. Therefore the initial conditions had to be changed.
We used as initial seeds pairs of cells composed of either one A and one
B, or two B cells (but never by two A cells). The simulations with these
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initial conditions provided a close match with the observed behavior
described by the empirical equation (1). The behavior was robust for a
wide range of parameter values and also with respect to some different
model alternatives; such as, for example, endowing the cells with a
limited capability to move, looking for free space to reproduce.

A very interesting observation is that some researchers had performed
reseeding experiments, which are described in section 4, where the initial
seeds are likely to be actually composed of separate A and B clusters. In
these cases most researchers report that the number of foci seems largely
insensitive to the number of initial seeds, as predicted by our CA model
with initial conditions composed of all type A and all type B clusters.

While the experimental confirmation of this finding requires further
tests it is already clear that the CA model provides a convenient frame-
work to deal with such systems, and that its study allows one to re-
interpret experimental data in an interesting and meaningful way al-
lowing the design of further tests.

Moreover, the interplay between the ODE study of the system and
the CA simulations has been very fruitful. The results of the former
have allowed us to better understand the behavior of the simulations,
guided our experimentation in the space of possible parameter values,
and provided checks for the validity of the model assumptions. We
will come back to the issue of the comparison and cooperation of the
different modeling techniques in section 5.

2. Cell cultures and transformation foci

While many studies exist concerning in vivo cancer growth (see [12] for
a review), the mathematical analysis of in vitro assays is less developed.
However, in order to study the main features of tumor formation, in
vitro tests provide very useful information and reduce the need for
animal experimentation [13–15]. Moreover, the recent developments
of molecular biology allow for a careful comparison, at the level of
patterns of gene expression, between in vivo and in vitro systems, and
it is therefore expected that the importance of these latter methods will
further increase in the near future.

These tests [13] are based upon the use of well-defined cell clones,
some of which are plated on a Petri dish and exposed to a chemical
(e.g., a suspected carcinogen) for a short period of time. After that the
chemical is washed away and the cells are cultured for a longer period.
They reach confluence (i.e., they cover the bottom of the plate) in some
days but the test continues for some more weeks. While the growth
of the number of normal cells is inhibited, transformed cells which are
not affected by “contact inhibition,” undergo further growth giving rise
to macroscopic structures (transformation malignant foci), each one
composed of many transformed cells.
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Macroscopic foci are counted at the end of the experiment. In this
way it is possible to evaluate the carcinogenic effect of the chemical
under study by comparison with the results of other known substances.
Indeed, some of these tests; for example, those using Balb/c 3T3 clones,
show good correlation with in vivo tests [16]. Moreover, the use of in
vitro systems with well-defined cell clones makes the molecular charac-
terization of the steps leading to transformation easier than their in vivo
analogues.

Even these in vitro systems are complex biological systems and are
subject to a high level of variability among different tests. The following
variables are usually determined.

The number of transformation foci per dish which are found at the end
of the experiment Ffin in different experimental conditions (e.g., by using
different concentrations of a suspected carcinogen).

The transformation frequency Tf * Ffin/M0, where M0 is the number of
cells which were initially plated (more precisely, those which survive after
initial plating and exposure to the carcinogen, which may well have a
citotoxic effect).

However, by focusing only upon the number of foci at different car-
cinogen concentrations one is likely to ignore some useful information
that may be provided by these methods, perhaps introducing some fur-
ther tests. Mathematical modeling might therefore improve our ca-
pability to extract meaningful information from in vitro tests and to
suggest further experiments by providing a framework to interpret the
time development of cell cultures.

Existing dynamical models of the birth of transformation foci are
usually of the population dynamics type [17], and they treat cell growth
as spatially homogeneous [6]. This would be appropriate if the cells
were free to wonder in the plate, but they are actually bound to the
bottom of the dish, so they cannot move and interact freely with each
other and, as observed in section 1, grow in approximately circular
clusters.

A different model was proposed by Mordan in [18], which takes
into account the local features related to the development of cell clus-
ters. However, this model assumes that the number of final foci is a
logistic function of the average size of the cell clusters (microcolonies)
at the time of confluence, and no attempt is made to describe the dy-
namics of growth and transformation. Therefore it represents at most
a phenomenological relationship between different variables and not a
dynamical model.

As several phenomena take place during cell growth it is appropriate
to try to develop a minimal model which aims at describing the most
relevant aspects, leaving aside many details (until comparison with ex-
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perimental data does not compel us to take into account what had been
previously considered as a “detail”).

The models proposed in sections 3 and 4 are based upon the well
known fact that the cell transformation process involves more than
one step [6, 19, 20]; a minimal model therefore requires two steps, so
we will suppose that normal cells (called “B” cells in section 1) can
become active (type “A”) under the effect of the carcinogen. As the cell
lines which are used for in vitro tests have already undergone some of
the mutations which finally lead to the transformed state, they are not
really “normal” cells like those found in vivo, but are normal from the
viewpoint of the test. When no activation event occurs B cells grow
from their initial number to a full monolayer which covers the bottom
of the culture plate.

After the carcinogen has been removed, the A cells can spontaneously
undergo a further change, leading them to transformed (i.e., “T”) cells.
Type A cells can possibly be detected by the cell defense system and in-
duced to death, so their probability of dying may exceed that of the type
B cells. Activation represents the intermediate step between the original
cell and the transformed one: we will suppose that it is a property that
is inherited by daughter cells; like, for example, a mutation. A and B
cells, which are supposed to be indistinguishable under the microscope,
feel contact inhibition, but T cells do not and continue to grow. A single
T cell can give rise to a full macroscopic transformation focus.

The growth of transformation foci could be dealt with by a further
model, which can be built on top of the previous one, which should
describe how a single transformed cell may give rise to a focus. This
process is not modeled in the present work wherein we assume that
each newborn T cell gives rise to a full focus (unless it is too close to
another T seed; in this case, as coalescence between nearby foci may
occur, we count the two as a single focus when comparing the model
with experimental data). The choice of separating the description of foci
growth from that of the monolayer of type B and A cells is based upon
the assumption that the perturbations due to infiltration of transformed
cells among the others do not play a significant role in the formation of
new foci.

Following [6] we will assume that during the initial exposure to the
carcinogen some B cells may become activated. The models presented
here do not describe the events which take place during this initial phase
(which lasts typically 1 or 2 days), but do focus upon the phenomena
which take place after the carcinogen has been washed away. During
this 3 to 5 week period the culture medium is periodically changed so
that cells are provided with fresh nutrients and metabolic wastes are
removed.

Let us also remark that, in negative controls without a carcinogen,
transformation foci may occasionally be observed. However, as the
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number of foci in negative controls is typically much lower than in the
case of exposure to a carcinogen, this phenomenon is neglected in the
following models.

3. The ordinary differential equation model

ODEs represent a “natural language” to describe dynamical systems
which are homogeneous in space, or whenever we do not care about
their spatial heterogeneity. A possible alternative could be that of the
DDE, which has already been used in the literature [6]. However, the
lack of a self-maintaining synchronization among the cells makes the
former choice a more natural one in this case [17]. Moreover, in the
interesting regions of parameter space in the models considered, the
two classes of equations yield similar results (although it is well known
that in general DDEs can lead to instabilities even when their ODE
counterparts do not).

Let us first consider the growth of normal cells until confluence, when
they completely cover the bottom of the Petri dish. We can describe the
time evolution of a population of cells that feel contact inhibition by the
following equation

dM
dt

% [Gs(M) + Ω]M (2)

where M(t) is the density of cells at time t (as the culture plates are of
a fixed size, density is proportional to the total number of cells), Ω is
the spontaneous cell death rate, and s(M) - [0, 1] is a growth limiting
function. Two very well known empirical models of population growth
that have also been applied to tumor growth, are those of Verhulst and
Gomperz in [12]. They are special cases of equation (2), the former
corresponding to the choice s(M) % 1 + bM, the latter to s(M) % (Ω/G) +
ln(M(t)/M.). Here M. is a constant equal to the asymptotic limit
limt$. M(t).

Comparison with experimental data on the growth of cells in the
culture plate without carcinogen indicate comparable and not fully sat-
isfactory agreement for the models in [12] (data not reproduced here),
but a closer match is obtained by using a modified version of the Verhulst
equation, which takes into account the facts that (i) contact inhibition
starts to be felt only after a certain population density has been reached
and (ii) at very low levels of cell density the growth rate may be an
increasing function of cell density. In this case s(M) can be given by the
following piecewise linear expression (Figure 1):

s(M) % Α0 ' c0M % 1 + c0(s1 + M) 0 < M < s1

s(M) % 1 s1 0 M 0 s2

s(M) % 1 + b(M + s2) % b(s3 + M) s2 < M 0 s3

s(M) % 0 s3 < M (3)
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s1 s2 s3

s (M)

M

Figure 1. Shape of the function s(M) from equation (3).
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Figure 2. Comparison of modified Verhulst growth rate (indicated as lin tr) with
experimental data on Balb/c 3T3 data (indicated as cs 10 mmM). Parameter
values are s1 % 9500, s2 % 15000, s3 % 63000, and Α0 % 0.01.

where Α0 is the value of the growth limiting function when M % 0,
s1 and s2 are thresholds which separate the different regimes, s3 is the
maximum cell density, c0 is the slope of the growing region, and b that
of the decreasing region. Note that the parameters are not independent
since Α0 ' c0s1 % 1 and 1 + b(s3 + s2) % 0. The original Verhulst model
corresponds to the decreasing region only, that is, s1 % s2 % 0.

We refer to the growth equation described by equations (2) and (3) as
the “modified Verhulst equation” in the following. It is worth observ-
ing that it describes experimental data concerning cell growth well (an
example is shown in Figure 2) while both the Gomperz and the original
Verhulst models typically overestimate the initial growth rates.
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In the following, for the sake of simplicity we will often neglect the
effects of the initial growing portion of the curve, and will therefore
limit ourselves to the case where s1 % 0.

We now come to transformation tests. Let B(t), A(t), T(t) be the
numbers at time t of cells of type B, A, and T respectively. Let t % 0 be
the moment when the cells are fed a new culture medium after removal
of the carcinogen. Following [6] we assume that all the cells are born B,
that some become A during exposure to the carcinogen, and that some
A can spontaneously turn into T during the subsequent culture. Recall
also that A and B cells, which are indistinguishable by visual inspection,
feel contact inhibition: each A cell feels the effect of neighboring A
and B cells, each B cell feels the effect of neighboring A and B cells,
both A and B cells do not feel the T cells. This picture is supported
by experimental data concerning cell to cell communications, which
indicate the existence of two subpopulations that communicate within
themselves [21]. We will not follow the time evolution of the population
of T cells, which are mainly composed of growing foci.

The equation for the B cells is given by a modified Verhulst-type
equation, where the limitation to growth comes from the sum of the A
and B cells. The equation for the A cells contains similar terms, and in
addition two loss terms describing the transformation from A to T and
the increased probability that an A cell dies, with respect to a B cell.

As an alternative, one may think that the repair mechanisms are
able to transform an A into a B cell, as was done in [6]: however,
as it happens that A(t) 1 B(t) in almost every case, the addition of
some more B cells does not lead to any appreciable effects, so the two
hypotheses (increased A cell death rate or back-transformation of some
A to B) lead to similar results.

It is appropriate to discuss further the hypothesis that A cells are
more likely to die out than B. While this appears highly likely, due to
the cell repair mechanisms, it may also seem odd. In the B $ A $ T
sequence the net growth rate increases from B to T, while we suppose
that it decreases from B to A (due to the increased death rate). Indeed,
let us suppose that it were not so; that is, that the growth rate of A is
greater than that of B, and let us compare two different experiments,
one with an initial seed of, say, 90 B and 10 A cells, and another
with 900 B and 100 A cells. In experiment 1 cells grow and when
they number 1000, the relative proportion of A cells would be higher
than the initial 10%. From that time on, the number of A cells would
constantly exceed that of experiment 2, and so also the number of T
cells and therefore of transformation foci. We would then expect that
the number of final foci decreases as M0 increases, while the opposite
has been observed. So we rule out the possibility that the net growth
rate of A cells exceeds that of B cells. Indeed, while it is likely that a
single surviving A cell has a faster reproductive cycle than a B cell, the
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net growth rate of the population of the A cells is smaller than that of
the B cells.

The model equations according to the above hypotheses are therefore

dA
dt

% [Gs(A ' B) + Ω + p]A

dB
dt

% [Gs(A ' B) + Ω]B (4)

where it has been assumed that the growth and death rates (G and Ω)
are the same for both cell types and p is the sum of the extra death term
for activated cells and of the loss term due to transformation from type
A to T.

If we let M % A ' B be the total number of nontransformed cells, it is
straightforward to see that

dM
dt

% [Gs(M) + Ω]M + pA. (5)

Let us recall that in our hypotheses the number of foci is equal to the
number of A cells which become T cells. If we assume that transforma-
tion from A to T takes place during cell replication, then the number of
A cells which become T cells in a given time interval is proportional to
the number of A cells which undergo reproduction in that interval. Let
us denote the rate of generating new A cells by (dA/dt)', and the number
of foci at time t by F(t), so dF/dt ( (dA/dt)'. The rate of generation of
A cells is the nonnegative term in equation (4), so, if we let p2 be the
probability that a reproducing A gives birth to a T cell, then

dF(t)
dt

% p2 !dA
dt
"

'
% p2Gs(M(t))A(t). (6)

Therefore, (dA/dt)' ( A, but the proportionality coefficient changes in
time. In the following, we will suppose that s1 % 0 and therefore that
the growing portion of the curve of Figure 1 plays no role. In this case,
in the beginning of the test (dA/dt)' % GA; afterwards, when inhibition
starts to be felt, s(M) decreases. Summarizing:

M 0 s2 3
dF(t)

dt
% p2GA(t) (7)

s2 < M 0 s3 3
dF(t)

dt
% p2G[1 + b(M(t) + s2)]A(t)

% p2Gb(s3 + M(t))A(t). (8)

We will now summarize the main features of the system described by
equations (4) through (8). The details of the calculations are given in
appendix A.

As far as the asymptotic behavior is concerned, in the interesting case
where A(0) and B(0) are both nonvanishing, the final state is one where
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all the A cells become extinct. It can be proven that the ratio y between
A and B cells

y(t) %
A(t)
B(t)

(9)

decreases exponentially in time

y(t) % y0e+pt. (10)

From equation (5) one finds that, if pA is much smaller than [Gs(M) +
Ω]M, then an approximate equation for the total number of cells can be
obtained:

dM
dt
! [Gs(M) + Ω]M. (11)

Its solution is given by

t 0 t! 3 M(t) % M0e(G+Ω)t

t > t! 3 M(t) % s2
bs3 + Ω

G

bs2 ' #1 + Ω
G $ e+(Gbs3+Ω)(t+t! )

(12)

where

t! %
ln s2

M0

G + Ω
. (13)

Equations (9), (10), and (11) allow an approximate analytical eval-
uation for the growth of the population of A cells. By neglecting the
number of initial foci (a reasonable assumption), the number of foci Ffin
is the sum of two terms: #F(t!, 0), those which are formed before contact
inhibition starts to be felt (i.e., before t!); and #F(tfin, t!), those which
are formed after t! and before the end of the experiment, tfin. The depen-
dence of #F(t!, 0) and #F(tfin, t!) upon the number of initial seeds M0 is
studied in appendix A. Summarizing, both terms approximately follow
a power law dependence upon M0 with the same exponent, therefore

Ffin % const 4 M
p/(G+Ω)
0 . (14)

Note that this law compares well with the empirical relationship (equa-
tion (1)) and that the exponent of the power law has a clear physical
meaning, as it is the ratio between the increased death rate of the A cells
and the net cell growth rate far from saturation. As typically G 5 Ω,
from the slope experimentally observed one is tempted to infer that the
cell repair mechanisms are able to “kill” 30 to 40% of activated cells at
each reproduction.

These results generalize those of [6], which were obtained using a
crude approximation where an exponential growth is supposed to take
place until saturation, when any further growth would stop.
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The agreement with experimental data might appear satisfactory, but
a closer examination reveals that cell growth takes place through the
formation of clusters surrounding each initial seed cell. The effective
cell density which is “felt” by cells in a cluster is higher than the average
cell density in the plate, and contact inhibition is therefore felt in the
interior of the cluster at a density value which would give no effect
if the cells were scattered on the whole culture plate. Growth of the
cell population then takes place on the borders of the clusters and the
growth rate term can no longer be assumed proportional to the total
number of cells, but only to a fraction. When clusters become large, the
number of cells involved in replication scales roughly with the square
root of the total number of cells.

In order to deal with the aspects related to cluster growth it is possible
to resort to a different model wherein the growth term scales with some
power Ν of the number of cells, like

dA
dt

% [Gs(A ' B) + Ω + p]AΝ

dB
dt

% [Gs(A ' B) + Ω]BΝ. (15)

Numerical simulations show that for a wide range of parameter val-
ues the number of foci turns out to be a growing function of the number
of initial cells if the growth exponent Ν is very close to 1, but it becomes
a decreasing function of M0 if the exponent becomes slightly smaller.

This model behavior can be understood by considering the time evo-
lution of y % A/B. Qualitatively, let us recall that in order to obtain
more foci by seeding more cells it is necessary (although not sufficient)
that the ratio A/B decreases in time. Otherwise, when comparing two
experiments with different M0, the one starting with the smaller num-
ber would show at the time when the number of its cells equals the
initial number of the other experiment a higher fraction of A cells,
and therefore a higher number of final foci, so that one would observe
dFfin/dM0 < 0. Therefore, in order for the model to provide a value of
Ffin growing with M0 it is necessary that, at least for small t, dy/dt < 0.

In order to understand the behavior of our equations, let us then
consider the initial value of dy/dt. In the case of equation (4), y was
indeed a growing function of time, but this is no longer guaranteed in
the sublinear growth of equation (15). Let us first consider the initial
period of growth, when M < s2 and therefore s % constant % 1:

dy
dt

%
AΝB(G + Ω + p) + ABΝ(G + Ω)

B2

%
G + Ω

B2 [AΝB + ABΝ] + p
AΝ

B
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recalling that y % A/B, this can be rewritten as

dy
dt

%
G + Ω

B2 AΝB[1 + y1+Ν] + p
AΝ

B

%
AΝ

B
[(G + Ω)(1 + y1+Ν) + p]. (16)

Since G 5 Ω, G > p, dy/dt may well be positive if y < 1 and Ν < 1.
Even with a very high (perhaps unrealistic) number of initial seeds

M0 > s2 the initial value of dy/dt may be positive; in this case, s(M) %
bs3 + b(A ' B) so

dA
dt

% (Gbs3 + Gb(A ' B) + Ω + p)AΝ

dB
dt

% (Gbs3 + Gb(A ' B) + Ω)BΝ.

It is straightforward to obtain

dy
dt

%
AΝ[1 + y1+Ν]

B
(Gbs3 + Ω + GbM) + p

AΝ

B
(17)

since s3 > M and G > p, dy/dt may have also in this case the same sign
as 1 + y1+Ν, that is, positive.

Note also that equations (16) and (17) allow us to roughly estimate
the threshold value for the exponent Ν above which one may expect that
dy/dt < 0, and therefore that dFfin/dM0 > 0. As shown in appendix B,
if p/G % 0.3 and y0 % 0.1, the threshold is 0.87 for the case of equa-
tion (16) (few initial seeds) and 0.90 for the case of equation (17) (many
initial seeds). Numerical simulations support the above conclusions.
Moreover, similar behaviors are also found by using slightly different
versions of the model which include the following features.

The use of a linear death term (cells may die even in the interior of a
growing cluster).

A power law dependence upon M of the term responsible for slowing
down cell growth; like, for example, dA/dt % (G + Ω + p + ΒMΜ)AΝ and a
similar equation for dB/dt.

The observation that dFfin/dM0 < 0 with sublinear growth expo-
nents demonstrates that the agreement between the ODE model and
experiments is fragile and does not survive a parameter change which is
biologically well founded.

In order to analyze the problem we also considered models wherein
the effective growth exponent gradually decreases as the average cluster
size increases. These models aim at describing the growth of clusters of
cells by supposing that the total growth rate of the cells of a given kind
(say dB/dt) is proportional to the number of initial clusters multiplied
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by a function which describes the growth of a single cluster. The effec-
tive exponent of cluster growth varies as the dimension of the cluster
changes, ranging between 1 (single seed) and 1/2 (large cluster). The
death terms are linear, since cells may die in the interior of a cluster as
well as on its boundary.

We call these models variable effective exponent (VEE). They have
the form

dA
dt

% [G + ΒM]A0f ! A
A0
" + (Ω ' p)A

dB
dt

% [G + ΒM]B0f ! B
B0
" + ΩB (18)

where f (x) accounts for the growth of a single cluster. A specific form
which was tested is

f (x) % Q(x)xΝ(x)

Ν(x) %
1
2

'
e+kx

1 ' e+kx

Q(x) % 4 + 6
e+Kx

1 ' e+Kx .

The shape of Ν(x) is similar to that of the well known Fermi–Dirac
distribution in quantum statistical mechanics, but here it is used in a
phenomenological way to assure a smooth transition of the exponent
from Ν % 1 when isolated seeds are present, to Ν % 1/2 when big clusters
have developed.1 Q(x) is a form factor which ranges from 1 to 4 in the
case of square clusters, the precise shape of the cluster does not modify
the form factor too much (e.g., for a circular cluster it would range from
1 to Π).

We assume as usual that the number of foci is proportional to the
number of newly created A cells, that is,

dF(t)
dt

% p2 !dA
dt
"

'
% p2[G + ΒM]A0f ! A

A0
" . (19)

In these cases one finds that, for a reasonable set of parameter values,2

dy/dt < 0; however, the total number of new A cells (and therefore of
the final foci Ffin) upon M0 (y0 fixed) depends upon several factors.

A frequently found behavior of the number of foci is shown in Fig-
ure 3. If M0 is small enough, Ffin grows with M0 but, after a certain

1Note that x ranges from 1 upwards; however, if k and K are much smaller than 1, the
smallest value of the expression is very close to that which can be found by putting x % 0.

2The parameters used in most simulations are the following: kinetic coefficients G % 1,
b % 6.10+6, p % 0.3, w % 10+3; Fermi function k % 0.1, K % 0.02; initial conditions:
A0/B0 % 0.1, B0 ranging from 500 to 100,000; duration of the simulation is 29 days.
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Figure 3. Dependence of the number of new A cells (proportional to the number
of foci) as a function of M0 for the VEE model of equation (18).

value, it decreases with M0. By changing the parameter values even
more complicated dependencies can be observed.

However, a robust feature observed is that the number of foci shows
a very weak dependence upon the number of initial cells. While varying
M0 between 500 and 64,000, as shown in Figure 3, we find that the num-
ber of new A cells is always in the interval [5000, 10,000]. Simulations
performed with different sets of parameters support this conclusion.

So, the observed “fragility” of the agreement between observed data
and the ODE model has not been robustly eliminated by the choice of
more elaborate models of the same kind. Therefore we turned to a
different model that would deal with locality in a straightforward way.
As we shall see, the models developed in this section are however useful,
as they allow us to better understand the behavior of the CA model.

4. The cellular automata model

We have developed a model using the framework of CA which is well
suited for this task [7–10]. The available space is divided into pieces
of equal size, which are called cells in CA jargon. Each of these cells
may be either occupied by a biological cell or not. In order to avoid
confusion, we will limit the use of the term “cell” to biological cells,
and will explicitly refer to the “CA cell,” “lattice site,” or simply “site”
in the other case.

The model is described in detail in [22] and is briefly summarized
here. A formal synthetic description is given in appendix C.

We divide the two-dimensional space (which physically corresponds
to the bottom of the culture plate) into a fixed number N of CA cells,
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whose size is chosen to match the average size of a biological cell. A
cells are supposed to be macroscopically indistinguishable from B cells,
so their average size is the same. T cells are smaller than B cells but
we neglect this aspect here. Therefore, in any lattice site there may be
either a B cell, an A cell, a T cell, or no cell at all. The state of site i will
be called Xi; Xi - 9B, A, T, E:, where the first three symbols refer to the
kind of (biological) cell which may occupy the site, and the last refers
to the case where the site is empty.

For simplicity a square topology is used with the nine-membered
Moore neighborhood [8]. Updating is synchronous, as is typical in CA.

At each time step, a cell may either do nothing, duplicate itself, give
birth to a different cell, or die. Note that it is supposed that the major
events in cell life, like the transition from type A to T, take place only
when the cell enters its reproductive cycle and its DNA double strand
is open. Therefore, at each time step, a biological cell located at site i
may try to reproduce according to a stochastic rule if there is at least
one empty neighbor of lattice point i.

The probabilities associated to the different “reaction channels” are
pB$A (probability that a B cell gives birth to an A cell), pA$T (probability
that an A cell gives birth to a T cell), and pRB, pRA (probability that a B
or an A cell duplicates itself) respectively.

A reproducing cell will try to place its daughter cell in one of the
empty neighbors at random. Actually, the algorithm for updating the
state of the lattice sites proceeds in several steps. First, the CA sites
occupied by type B or A cells are considered and each reproducing cell
identifies the empty site which is to be occupied by its daughter cell. In
a second step, all the empty CA cells are considered, and those which
have been selected by a neighbor for reproduction become occupied.
If there are conflicts (i.e., two or more neighbors trying to occupy the
same empty space) then a stochastic choice is performed.

The search for empty neighbors is iterated. Indeed, without iterations
an unrealistically high slow down of growth would be observed due to
the fact that some empty space would be left unoccupied even if it were
available. It has been verified that three iterations suffice to make the
artificial slow down negligible.

A cell may also die. Let pDA and pDB denote the probability that at
each time step an A or B cell dies off (note that cells may die at every
time step, not only when trying to reproduce). For reasons discussed in
section 3, it will be assumed that pDA > pDB. The possibility that a T cell
dies off will be neglected here as the dynamics of T cells are not described
in detail. In the simulations we also assume that pB$A; that is, the proba-
bility of “spontaneous activation,” is negligible during cell growth. Cells
only become activated in the initial phase of exposure to the carcinogen.

The time origin is set at the end of this exposure period. We also
assume that there is no nutrient limitation during the culture period,
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only the crowding of other cells bounds the growth of the cell population
and no lack of essential nutrients is experienced.

In order to estimate the number of foci for comparison with experi-
mental data it should be noted that if two activated cells which are close
to each other become transformed, the two nearby foci may coalesce
so that a single focus will be observed by the experimenter. Therefore,
in foci counting we consider that two transformed cells which are very
close to each other actually give rise to a single focus.

The model as described introduces, besides others, two simplifica-
tions that might be relaxed, giving rise to two major variants.

1. It has been assumed in the original model that an A cell can become
fully transformed in a single generation. Looking at the phenomenon at
a more microscopic level, it may be supposed that transformation from
A to T corresponds to a genetic change, which is likely to initially take
place only on one of the two DNA strands of one of the two daughter
cells of the original A parent. If transformation were dominant, it would
show up immediately, otherwise it would need another generation to
appear at a phenotypic level. In this latter case competition for available
space from other cells and contact inhibition might actually change the
transformation frequency and it is not obvious a priori that the model
features remain unaltered. Therefore, we have also tested a modified
version of the model wherein the final transformation from A to T takes
place in two generations: A $ A2 $ T.

2. Some form of taxis (cell movement) in the dish cannot be a priori ex-
cluded. In this case newborn cells could migrate far from their parents
so that the effects of contact inhibition would be initially mitigated. We
have therefore also tested a model wherein newborn biological cells are
allowed to move one CA cell away from their parents, therefore limiting
crowding effects in the initial growth phases.

However, the main features and results of the model described below
are not deeply affected by these modifications.

A series of experiments has been performed to study the dynamical
properties of the CA model on a grid of 400 ; 400 % 160,000 CA cells.
The graphs and figures in this section were obtained with the set of
parameters shown in Table 1 (where Np is the number of simulations
run for each set of parameter values and initial conditions). In the

Parameter Value Parameter Value Parameter Value
Np 10 M0 160-32000 pB$A 0
pRB 1 y0 1/9 pDB 0
pRA 0.1-0.7 pA$T 0.001 pDA 0

Table 1. List of parameters of the CA model. The meaning of symbols is given
in the main text.
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following A(t), B(t), and T(t) will denote the number of cells of type
A, B, and T at time step t; M(t) % A(t) ' B(t) is the total number
of nontransformed cells; y(t) % A(t)/B(t); subscript “0” denotes initial
values, for example, M0 % M(0). As already observed, the origin of time
is set at the end of exposure to the carcinogen (which lasts 1 to 2 days).

Note that in order to use this model to simulate actual in vitro car-
cinogenesis tests one must stop the replication after a certain number of
generations (tfin) instead of studying the limit t $ ..

The cells which have survived seeding and the initial treatment may
then have already undergone some reproduction during the exposure
period, so we investigate two classes of cases, differing for the configu-
ration of initial cells (“seeds”).

1. Sparse seeds, where at t % 0 there are M0 cells, either of type A or B,
placed at random in the spatial grid.

2. Grouped seeds, where the initial clusters are composed of two cells. In
this case, whenever there is an A cell in the initial seed, there is also a B
cell in the same seed (due to the fact that A cells originate from B cells
and to the hypothesis that activation initially affects only one strand of
DNA). In some cases initial clusters formed by four cells (with at most
one A cell) have been tested.

As previously mentioned, the major results are similar for the differ-
ent variants that have been tested. Figure 4 refers to the variant with
moving cells.

The expected growth of the clusters of cells is observed, until con-
fluence. The growth of the number of cells in time follows a familiar
S-shaped curve. In a log-log plot of M versus time one easily verifies that
in the initial part of the curve M grows approximately with t2, as is to
be expected if growth takes place on the borders of a two-dimensional
cluster (dM/dt ( M1/2). Later growth is slowed by collision between
clusters.

Let us consider the dependence of the final number of transformation
foci upon the number of initial seed cells. As coalescence is a rare
event, we can actually consider Tfin, the number of new cells of type T
which are found, instead of Ffin. Transformation frequency is low so
typical diagrams which show how the number of T cells scales with M0
are rather noisy [23]. In this model transformation occurs with a fixed
probability every time a new A cell is generated and we can study directly
the number of newly generated A cells during the whole experiment (let
it be NA). This is much larger and less affected by noise and should be
proportional, in the limit of a very large number of simulations, to the
number of transformations from A to T cells. A diagram of this variable
is shown in Figure 5.

With the exception of very small M0 values the dependence of NA
(and therefore of Ffin) upon M0 is rather flat. Note that this feature is
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Figure 4. The observed growth of the cells until confluence (a) normal scale and
(b) log-log scale. M0 % 160 cells.

Figure 5. Number of A cells which have been generated during the experiment
(NA) versus the number of initially seeded cells M0 ; 10+4 (pRA % 0.7, pDA % 0).
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Figure 6. Number of A cells which have been generated during the experiment
NA versus the number of initial seed cells M0 ; 10+4 (pRA % 0.7, pDA % 0).

Figure 7. Number of transformed cells found at the end of the experiment Tfin

versus M0 ; 10+4 (data on a log-log scale, pRA % 0.7, pDA % 0).

similar to that of the previously described EEV models. So the mean-
field model described in section 3 allows us to interpret the results of
the CA model. However, experimental data mentioned in section 1 do
not appear to behave according to the model.

So let us now consider the case where the seeds are formed by pairs of
cells, recalling that the initial clusters are composed of either two B cells
or one A and one B cell. In this case each initial A cell immediately faces
competition with the faster growing B cells, and the overall behavior is
such that the number of A cell reproductions, and therefore the number
of foci, is a growing function of M0 (Figures 6 and 7).

We see that the CA model can lead to two different scaling behaviors.
In the case where the clusters develop from isolated cells the dependence
of the number of final foci upon the initial number of cells is rather flat
for a wide range of parameters and for the different model versions
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which we have tested (including moving and nonmoving cells, as well
as one-generation and two-generation models). On the other hand, if
the initial seeds are formed by groups of cells, Ffin is a growing function
of M0. This is again a robust result that continues to hold, for example,
if we suppose that the initial seeds are composed by quadruples of cells
instead of couples.

It should be remarked that this difference in behavior is not due to
the actual number of initial cells (as can easily be checked) but to the
fact that in the second case each A cell is born close to at least one B
cell, and it is therefore subject to competition pressure from the very
beginning. In the former case nuclei composed of all A cells have some
generations available for reproduction before colliding with other nuclei
composed of B cells.

It has been observed in reported experimental data that the growth
of cell cultures exposed to a chemical carcinogen show a power-law
increase of Ffin with M0 like equation (1). The data by Fernandez in [6]
concerning C3H10T1/2 cells exposed to methylcholanthrene, show an
initial slope of about 0.4, in agreement with those of Figure 7. Note that
no adjustable parameters have been used here, although we have chosen
a value for the ratio of the parameters pRA/pRB % 0.7, which agrees
with the estimate in [6] of the analogous parameter in their model (see
section 3). Also the data by Haber in [24] concerning C3H10T1/2 cells
exposed to benzo(a)pyrene and those of Reznikoff in [25] concerning
C3H10T1/2 cells exposed to 3-methylcholanthrene show an increase
in the number of foci per dish, with increasing seeding density, with a
similar slope.

This is the kind of behavior which we would expect in our model, if
the initial event of activation would affect only one of the two strands
of the DNA of a replicating cell—so that A cells always appear close
to their parent B cells. There are however other experiments (reseeding
experiments) where some cells are taken from a dish after reaching
confluence and then replated to a new dish. In this case, replating
would lead to initially sparse cells, so we would expect the dependence
of Ffin upon M0 to be rather low. Actually, interesting data by Kennedy
in [19, 20] and Mordan in [18] show that in replating experiments there
exist large intervals of M0 values where no appreciable difference in foci
per dish is observed. Contrasting with this observation, there is indeed
one data set [24] where Ffin seems to be a growing function of M0 in
replating experiments, but the values of the variables are such that in
several cases no foci are actually observed.

Note also that some interesting experiments have been performed
using x-ray irradiation instead of a chemical carcinogen [19, 20, 26,
27]. It has been suggested that in this case the intermediate activated
state of the cell corresponds to a large genome-wide damage to the
DNA [27] which is supposed to be inheritable and prone to develop
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later in a fully transformed state. Therefore, our model should also
be applicable to this case. One could speculate that in such a case
the wide damage could affect both DNA strands, and therefore there
would exist initial clusters formed by activated cells only. Since these
experiments have been performed by reseeding, it is not possible to
provide an independent test of this hypothesis.

5. Conclusions

We wish to comment here on the major lessons learned in the develop-
ment and testing of the models and to address some issues that need
further investigation.

The capability of mean-field ordinary differential equation (ODE)
models to describe the major experimental data was shown to be frag-
ile. Models which are similar to those of section 3 (although making
use of cruder approximations) had been proposed in the past [6] and
this feature had not been noticed. Moreover, the relevant variables are
the number of foci, no attention being paid to their position or dimen-
sion, so ODE or discrete difference equation (DDE) approaches might
seem perfectly fit. An interesting aspect is that the locality of the foci
generating interactions cannot be ignored even if we are not concerned
with the space dependence of the variables.

It should then be recalled that one of the major drawbacks of cellullar
automata (CA) modeling is the lack of “analytical” methods, similar to
those that are so useful in dealing with (some) differential equations.
Although the body of theoretical knowledge about CA is growing [28]
there is so far no analytical treatment of models like those discussed
here (see also [11] for a recent review).

In this situation an approach based upon a mixed use of differential
equations and CA can be very powerful. While this statement may
appear obvious in the case of partial differential equations (PDEs), it is
not trivial in the case of ODEs. The example discussed in this paper
shows that indeed, at least in this case, the combined use of the two
modeling methods may provide useful insights.

The ODEs by themselves are not able to provide a satisfactory ac-
count of the phenomena. Although the model fits the data it does so in
a fragile way which embodies unrealistic values of a key parameter and
when the unrealistic value is changed the agreement is lost.

CA provide the required, robust agreement, when equipped with the
appropriate initial conditions. They also allow one to ascertain that
the initial conditions have a crucial role in determining the shape of
the curve Ffin(M0) and to interpret old experimental data in a new way,
pointing out a major (so far unnoticed) difference between standard
tests and reseeding experiments. These observations came out of a
number of simulations performed with different parameter values, and
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the analytical results described in section 3, concerning the dependence
of the shape of the curve upon the effective exponent of the growth of
the population of cells, have been of great help in interpreting the results
of the simulation tests.

In particular, the fact that dFfin/dM0 < 0 for effective growth expo-
nents smaller than 0.8 to 0.9 (obtained by studying ODEs) indicated
that the “cure” of the observed discrepancy between data and the CA
model was not to be found by slightly modifying the system parameters,
but that a different attack was needed, and this led to the analysis of the
initial conditions.

The analytical results were also useful to provide consistency checks
of the model validity. For example, the fact that the number of non-
transformed cells M grows approximately with t2, as it is to be expected
if the growth takes place on the borders of a two-dimensional cluster
(dM/dt ( M1/2), gave support to the kind of replication dynamics we
have developed.

The overall idea is then the following: CA models of natural phe-
nomena require the exploration of a large parameter space, a procedure
that is long and sometimes misleading. A fundamental caveat in order
to avoid trivial mistakes is that of looking for robust agreement between
model and data. The exploration of simplified ODE descriptions may
provide hints for better modeling as well as checks of the models and,
even more important, it may help in understanding the behavior of the
CA model.

One further point is worth stressing: the possible crucial role of
the initial conditions has been relatively easy to identify within the CA
framework, where individual biological cells are modeled, so that they
are born, compete, and die. If we had adopted a PDE approach, which
looks at the cell population as a continuum, we could not have outlined
the role of the initial conditions (unless perhaps in a very cumbersome
way). Needless to say, this would have been impossible or very cum-
bersome and ad hoc also within an ODE framework. So the use of
agent-based models like the CA described here, where single agents (bi-
ological cells, in our case) retain their individuality, is very well suited
to deal with phenomena of this kind.

While the present work is concerned with in vitro tumors, it is tempt-
ing to speculate about the usefulness of adopting a similar approach
to the study of in vivo tumors (for a review see [12, 29] and further
references given therein). While the feasibility and usefulness of a CA
description has already been proven for some solid tumors [4, 5], it
would be interesting to try to combine differential equation methods
with CA simulations, in an approach similar to the one of sections 3
and 4.

As far as the indications for further investigations are concerned,
there are different aspects that are worth deepening. The following
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indications for further work are not meant to cover every detail, but
rather to point out some aspects which we feel particularly important.

From the experimental viewpoint, it would be important to assess
the role of initial conditions by careful comparison of tests performed
with and without reseeding. Moreover, it would be interesting to gain
further information about cluster growth by performing a set of exper-
iments that should be stopped at intermediate times between 0 and tfin.
Further information—although perhaps indirect—might be provided by
the knowledge of the distribution of dimensions of the foci which are
found at the end of the experiment.

The model developed here, following the lines of previous researchers,
including Fernandez [6] and Little [26], is based upon the hypothesis
that cells which appear “normal” may exist in at least two different
states, B and A. Molecular biology might perhaps provide methods and
techniques to distinguish between activated and normal cells in order to
directly verify this key hypothesis. In this case, it could become possible
to study the change in time of the corresponding populations.

From the theoretical and modeling viewpoint some issues which need
further investigation include the developments of models which can
describe the following.

The growth of foci in time.

The effects of chemicals (nutrients, promoters, etc.) and the actual change
of culture medium.

The effects of the carcinogen, that is, the birth of activated cells during
the initial exposure period.

Moreover, there are also more technical aspects related to the CA mod-
eling methods which may need to be addressed (e.g., testing different
neighborhoods, using asynchronous updating, etc.).

Finally, we wish to stress that the present work provides a further
confirmation of the usefulness of the framework of CA, invented more
than 50 years ago by von Neumann, in describing the unfolding in time
of complex biological processes.
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Appendix

A. Calculations for the ordinary differential equation model

We now study the asymptotic behavior of equation (4) (section 3). We
show that, in the interesting case where there are initially both A and B
cells, the asymptotic state is one where all the A cells become extinct.

Let for simplicity X % (A, B): then X % 0 (i.e., A % B % 0) is a fixed
point of equation (4) but it is an unstable fixed point.

In order to demonstrate this statement we perform a linear stability
analysis by letting X % 0 ' ∆X. Neglecting second and higher order
terms we obtain:

d∆A
dt

& [Gs(0) + Ω + p]∆A

d∆B
dt

& [Gs(0) + Ω]∆B

which can be written as d∆X/dt % P∆X. The matrix P is diagonal and
its eigenvalues are the solutions of

det(P + ΛI) % [Gs(0) + Ω + p + Λ][Gs(0) + Ω + Λ] % 0.

Provided that Gs(0) > Ω ' p (which is the interesting case where cells
do actually grow in the plate) both eigenvalues are positive and the
instability is therefore proven. Of course if there are no cells, this state
persists, but the state of complete absence of cells cannot be reached from
any state with nonzero cells (according to the deterministic dynamics
used here, if we were to adopt a more realistic stochastic dynamics, then
small initial populations might become extinct).

Let us consider other fixed points of equation (4). They are solu-
tions of

[Gs(A. ' B.) + Ω + p]A. % 0 (A.1)
[Gs(A. ' B.) + Ω]B. % 0. (A.2)

Let us suppose that A. > 0, B. > 0: dividing equation (A.1) by A.
and equation (A.2) by B., we obtain that [Gs(A. 'B.)+Ω+p] % 0 and
[Gs(A.'B.)+Ω] % 0, which cannot both be satisfied if p > 0. Therefore
asymptotic states where both A and B take nonvanishing values are not
allowed in this system.
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The only possible asymptotic states are therefore either of the form
(A., 0) or (0, B.). Note that, if A(0) > 0 and B(0) % 0, no B cell will
ever appear, so the final state will be of the form (A., 0) (and of course
if A(0) % 0 and B(0) > 0, no A cell will ever appear, so the final state
will be of the form (0, B.)). Let us consider what happens in the really
interesting case where A(0) > 0 and B(0) > 0 by letting

y(t) %
A(t)
B(t)

(A.3)

from equation (4) one directly finds that

d ln(y)
dt

% +p < 0. (A.4)

ln y is a decreasing function of t, and so is y. The asymptotic state is
therefore (0, B.) where B. is determined by Gs(B.) + Ω % 0.

Let us also observe that by integrating equation (A.4) one finds

y(t) % y0e+pt (A.5)

which provides a quantitative description of the evolution towards the
asymptotic state.

Let us now determine the time history 9M(t):. From equation (5) one
finds that if pA is much smaller than [Gs(M) + Ω]M, then

dM
dt

& [Gs(M) + Ω]M. (A.6)

The approximation holds well at initial times, when saturation effects
are not apparent. At later times, when Gs(M) + Ω is small, the A cells
have almost disappeared from the system so the approximation used
here continues to hold.

Let t! be the moment when M equals s2 (we suppose that s1 % 0):

M(t!) % s2. (A.7)

M grows with pure first order kinetics in the interval [0, t!] so

M(t) % M0e(G+Ω)t

therefore:

t! %
1

G + Ω
ln ! s2

M0
" . (A.8)

According to equation (A.6), M is ruled by a Verhulst equation after t!:

dM(t)
dt

! [Gbs3 + Ω]M + GbM2

whose analytic solution is known [17]. Therefore, if we adopt the
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approximation of equation (A.6), M(t) is given by

t 0 t! 3 M(t) % M0e(G+Ω)t

t > t! 3 M(t) % s2
bs3 + Ω

G

bs2 ' #1 + Ω
G $ e+(Gbs3+Ω)(t+t! )

. (A.9)

A(t) can then be determined from the relationship A % zM, where
z % y/(1 ' y). In the following we consider cases where the number
of initially activated cells is always smaller than the number of B cells.
Note also that if y0 is small, y(t) will be even smaller. The number A can
therefore be estimated by the approximate relationship A % yB & yM
(which is used here as it leads to analytical results, see below).

Therefore, within this approximation

t 0 t! 3 A(t) % y0M0e(G+Ω+p)t

t > t! 3 A(t) % s2y0
#bs3 + Ω

G $ e+pt

bs2 ' #1 + Ω
G $ e+(Gbs3+Ω)(t+t!)

. (A.10)

Let us now consider the number of foci F(t). From equation (6) one gets
(for t > t!):

F(t) % F0 ' p2G% t!

0
A(s)ds ' p2Gb% t

t!
(s3 + M(s))A(s)ds

% F0 ' #F(t!, 0) ' #F(t, t!). (A.11)

The total number of foci is expressed as the sum of the following three
terms.

F0, those which were already there at t % 0 (and are neglected in the
following).

#F(t!, 0), those which are formed before contact inhibition starts to be
felt, that is, before t!.

#F(t, t!), those which are formed after t!.

We first estimate #F(t!, 0). From equations (A.10) and (A.11) one
gets

#F(t!, 0) % p2G% t!

0
A(s)ds % p2GM0y0 % t!

0
e(G+Ω+p)sds

%
p2GM0y0

G + Ω + p

?@@@A@@@
B
! s2

M0
"1+ p

G+Ω

+ 1
C@@@D@@@
E

. (A.12)

If M0 1 s2, the last term on the righthand-side of equation (A.12) can
be neglected and

#F(t!, 0) !
p2GM0y0

G + Ω + p
! s2

M0
"1+ p

G+Ω

%
p2Gy0

G + Ω + p
s
1+ p

G+Ω
2 M

p
G+Ω
0 , (A.13)

therefore #F(t!, 0) grows with M0 according to a power law.
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We now consider the third term in equation (A.11), that is,

#F(t, t!) % p2Gb% t

t!
(s3 + M(s))A(s)ds

% p2Gby0 % t

t!
e+ps(s3M(s) + M2(s))ds.

Note that, according to equation (A.10), M depends upon s + t!. We
can make this explicit by posing s2 % s + t! and M2(s2) % M(s), that is,

M2(s2) % s2
bs3 + Ω

G

bs2 ' #1 + Ω
G $ e+(Gbs3+Ω)s2 .

Since

e+ps % e+p(s2't!) % e+pt!
e+ps2

% ! s2

M0
"+ p

G+Ω

e+ps2
,

we obtain

#F(t, t!) % p2Gby0e+pt! % t+t!

0
e+ps2

(s3M2(s2) + M22(s2))ds2

% p2Gby0 !M0

s2
" p

G+Ω % t+t!

0
e+ps2

(s3M2(s2) + M22(s2))ds2.

Now let

Φ(x) * e+px(s3M2(x) + M22(x))

(note that M2 remains bounded at limx$. Φ(x) % 0), then

#F(t, t!) % p2Gby0 !M0

s2
" p

G+Ω

I(t + t!)

I(t + t!) * % t+t!

0
Φ(s)ds.

#F(t, t!) shows an explicit dependence upon M0 in the first equation.
I(t + t!) might depend upon M0 through the dependence of the upper
integration limit upon t!, which in turns depends upon M0. By applying
the Leibniz rule one finds
dI(t + t!)

dM0
% Φ(t + t!)

d(t + t!)
dM0

% +
Φ(t + t!)
G + Ω

d
M0

ln
s2
M0

%
Φ(t + t!)

M0(G + Ω)
.

However, since Φ(t + t!) decays exponentially with time constant 1/p,
the derivative approximately vanishes for sufficiently long times, leaving
only the previously determined dependence of #F(t, t!) upon M0:

#F(t, t!) ! p2Gby0s
+ p

G+Ω
2 IM

p
G+Ω
0 , (A.14)

where I depends upon t but is approximately independent of M0.
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The dependence of #F(t!, 0) and #F(tfin, t!) upon the number of initial
seeds M0 is in both cases (equations (A.13) and (A.14)) a power law with
the same exponent. Therefore

Ffin % const 4 M
p

G+Ω
0 . (A.15)

B. Threshold values

Equations (16) and (17) from section 3 allow us to roughly estimate the
threshold value for the exponent Ν below which one may expect that
dy/dt < 0, and therefore that dF/dM0 > 0.

Indeed, we are interested in values at times close to t % 0, so we sub-
stitute y0 for y in the two equations. Since G 5 Ω, from equation (16)
we obtain

dy
dt

< 0 G G(1 + y1+Ν
0 ) < p

which in turns implies that

Ν < Νth % 1 +
ln &1 + p

G '
ln y0

! 1 '
p

G ln y0
.

If p/G % 0.3 and y0 % 0.1, this provides a threshold of about 0.87.
Numerical simulations support the above conclusions.

If the initial number of cells is very high equation (17) should be
used. Since s3 5 M, G 5 Ω, and bs3 is of the order of unity, then
Gbs3 + Ω + GbM ! Gbs3 and equation (17) leads to

ẏ !
AΝ

B
[Gbs3(1 + y1+Ν) + p]

therefore dy/dt > 0 implies

1 + y1+Ν >
p
G
!1 +

s2

s3
"

which in turn leads to the following condition for a positive derivative

Ν < Νth % 1 +
ln (1 + p

G )1 + s2
s3
*+

ln y0
! 1 '

p
G ln y0

!1 +
s2

s3
"

which provides a slightly higher threshold than the previous case (i.e.,
Νth ! 0.9 if s2/s3 ! 1/4).

C. The cellular automata model

The CA is formally defined as a quadruple A %< G, V, Q, f > with the
terms defined as follows.
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G is the cellular space, in our case G H Z2 is a finite subset of the set of
points with integer coordinates in two-dimensional euclidean space.

V defines the neighborhood; using relative coordinates
V % 9(0, 0), (0, 1), (1, 1), (1, 0), (1, +1), (0, +1), (+1, +1), (+1, 0), (+1, 1):.

Q is the state space: it is the cartesian product of the state space of (i)
a variable describing the kind of biological cell, (ii) a variable describing
the reproductive state, and (iii) a variable describing the relative direction
in which reproduction could take place: Q % X ; Y ; D, where X %
9B, A, T, E:; Y % 90, 1:; D % V + 90, 0:.

f is the transition function which describes how the state of a CA cell is
determined from the knowledge of the previous states of its neighbors.
The basic steps are the following.

for every t
9
for every site i such that Xi > E

" determine whether reproduction will be attempted (by comparing
a stochastic variable with a threshold which determines the repro-
duction rate); let G1 be this set of sites

" for every site in G1, verify whether there is at least one empty site
in the neighborhood; let G2 be the set of CA cells with at least one
empty neighbor

" repeat

" 9

" for every site in G2, determine the direction of reproduction; if there
are more available sites, choose at random among them

" for every site i such that Xi % E

! determine whether at least one of the neighbors has a direction
of reproduction pointing to i; let Gi be the set of these CA cells

! if all the sites in Gi have a common state, then set Xi(t ' 1)
equal to that state; otherwise, choose at random among the
states

! assign at random the newborn biological cell in Gi to one of
its parents (let it be Pi)

! set Xi(t ' 1) equal to the state of Pi

! if the new state is A, then change it to T according to a fixed
probability

" :

" remove Pi from G2

:
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