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We propose the characterization of binary cellular automata using a set
of behavioral metrics that are applied to the minimal Boolean form of a
cellular  automaton’s  transition  function.  These  behavioral  metrics  are
formulated to satisfy heuristic  criteria derived from elementary cellular
automata. Behaviors characterized through these metrics are growth, de-
crease,  chaoticity,  and  stability.  From  these  metrics,  two  measures  of
global  behavior  are  calculated:  (1)  a  static  measure  that  considers  all
possible input patterns and counts the occurrence of the proposed met-
rics  in  the  truth  table  of  the  minimal  Boolean  form of  the  automaton;
and  (2)  a  dynamic  measure,  corresponding  to  the  mean  of  the  behav-
ioral metrics in n executions of the automaton, starting from n random
initial  states.  We use  these  measures  to  characterize  a  cellular  automa-
ton  and  guide  a  genetic  search  algorithm,  which  selects  cellular  au-
tomata  similar  to  the  Game  of  Life.  Using  this  method,  we  found  an
extensive set of complex binary cellular automata with interesting prop-
erties, including self-replication. 

Introduction1.

Cellular  automata with complex behavior  exhibit  dynamical  patterns
that can be interpreted as the movement of particles through a physi-
cal  medium.  These  particles  are  interpretable  as  loci  for  information
storage, and their movement through space is interpretable as informa-
tion  transfer.  The  collisions  of  these  particles  in  the  cellular  automa-
ton’s  lattice  are  sites  of  information  processing  [1–4].  Cellular  au-
tomata  with  complex  behavior  have  immense  potential  to  describe
physical systems, and their study has had impact in the design of self-
assembling  structures  [5–8]  and  the  modeling  of  biological  processes
like signaling, division, apoptosis, necrosis, and differentiation [9–13].
John Conway’s Game of Life [14] is the most renowned complex bi-
nary  cellular  automaton  and  the  archetype  used  to  guide  the  search
methodology for other complex binary cellular automata that we de-
scribe in this work. Previously, complex behavior in binary cellular au-
tomata has been characterized through measures such as entropy [3],
Lyapunov  exponents  [15,  16],  and  Kolmogorov–Chaitin  complexity
[17].  We  propose  the  characterization  of  the  behavior  of  n-dimen-
sional  cellular  automata through heuristic  measures  derived from the
evaluation of their minimal Boolean forms. This proposed characteri-
zation is  derived from heuristic  criteria validated in elementary cellu-
lar automata with simple Boolean forms. Table 1 illustrates the ratio-
nale  for  this  characterization,  showing  elementary  cellular  automata
whose  Boolean forms are  minimally  simple,  and whose  behavior  can
be  unequivocally  identified.  Cellular  behaviors  of  growth,  decrease,
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nary  cellular  automaton  and  the  archetype  used  to  guide  the  search
methodology for other complex binary cellular automata that we de-
scribe in this work. Previously, complex behavior in binary cellular au-
tomata has been characterized through measures such as entropy [3],
Lyapunov  exponents  [15,  16],  and  Kolmogorov–Chaitin  complexity
[17].  We  propose  the  characterization  of  the  behavior  of  n-dimen-
sional  cellular  automata through heuristic  measures  derived from the
evaluation of their minimal Boolean forms. This proposed characteri-
zation is  derived from heuristic  criteria validated in elementary cellu-
lar automata with simple Boolean forms. Table 1 illustrates the ratio-
nale  for  this  characterization,  showing  elementary  cellular  automata
whose  Boolean forms are  minimally  simple,  and whose  behavior  can
be  unequivocally  identified.  Cellular  behaviors  of  growth,  decrease,

Rule Sample Evolution Boolean Form Behavior

R204 q Stable

R160 p AND r Decreasing

R252 p OR q Growing

R90 p XOR q Chaotic

Table 1. Elementary  cellular  automata  with  simple  Boolean  forms,  which  are
unequivocally  associated to a  particular  behavior.  The Boolean values  of  the
cells in the neighborhood are p for the left neighbor, q for the central cell, and
r for the right neighbor. Black cells are in 1 state, white cells are in 0 state.

and  chaoticity  are  characterized  by  the  Boolean  operations  OR,
AND,  and  XOR,  respectively.  The  cellular  behavior  of  stability  can
be  characterized  by  the  absence  of  a  Boolean  operator  or  the  use  of
the NOT operator.
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and  chaoticity  are  characterized  by  the  Boolean  operations  OR,
AND,  and  XOR,  respectively.  The  cellular  behavior  of  stability  can
be  characterized  by  the  absence  of  a  Boolean  operator  or  the  use  of
the NOT operator.

We define an evaluation criterion to produce metrics that character-
ize the behavior of cellular automata whose minimal Boolean expres-
sions are more complex (i.e., have more terms and the combination of
various  operators)  than  those  appearing  in  Table  1.  The  produced
metrics  are  used  to  create  static  and  dynamic  measures  of  behavior.
The  static  measure  of  behavior  is  calculated  from  the  truth  table  of
the minimal Boolean expression of the cellular automaton, and the dy-
namic  measure  of  behavior  is  derived  from  the  averaged  appearance
of  the  metrics  in  n  executions  of  the  cellular  automaton from n  ran-
dom  initial  conditions.  We  use  the  Euclidean  distance  of  these  mea-
sures  in  a  given  cellular  automaton  to  the  measures  of  the  Game  of
Life to assess its capacity for complex behavior and also use this dis-
tance  as  a  cost  function to  guide  the  genetic  search of  n-dimensional
cellular automata with complex behavior. 

Definition of Binary Cellular Automaton2.

A  cellular  automaton  is  formally  represented  by  a  quadruple
{Z, S, N, f }, where:

◼ Z is the finite or infinite cell lattice

◼ S is a finite set of states or values for the cells

◼ N is the finite cell neighborhood

◼ f  is the local transition function, defined by the state transition rule

Each cell in the lattice Z is defined by its discrete position (an inte-
ger number for each dimension) and by its discrete state value S. In a
binary cellular automaton, S  {0, 1}.  Time is also discrete. The state
of the cell is determined by the evaluation of the local transition func-
tion on the cell’s neighborhood at time t; t + 1 is the next time step af-
ter time t.  The neighborhood is defined as a finite group of cells sur-
rounding and/or including the observed cell. 

Lattice, Cell, and Configuration2.1

The global state is the configuration of all the cells that comprise the
automaton,  C ∈ SZ.  The  lattice  Z  is  the  infinite  cyclic  group of  inte-
gers {… , -−1, 0, 1, 2, …}. The position of each cell in the lattice is de-
scribed  by  the  index  position  x ∈ Z.  Configurations  are  commonly
written as sequences of characters, such as
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The global state is the configuration of all the cells that comprise the
automaton,  C ∈ SZ.  The  lattice  Z  is  the  infinite  cyclic  group of  inte-
gers {… , -−1, 0, 1, 2, …}. The position of each cell in the lattice is de-
scribed  by  the  index  position  x ∈ Z.  Configurations  are  commonly
written as sequences of characters, such as

C  … c-−1 c0 c1 c2 …. (1)

The finite global state is a finite configuration C ∈ SZ, where Z is a
finite lattice, indexed with 0, 1, 2, 3 … n -− 1 integers, 

C  c1 c2 … cx cx+1 … cn-−2 cn-−1. (2)

Neighborhood and Local Transition Function2.2

The set of neighborhood indices A of size m  A is defined by the set
of relative positions within the configuration, such that

A  a0, a1, …, am-−2, am-−1. (3)

Nx  is the neighborhood of the observed cell cx  that includes the set
A of indices, and is defined as 

Nx  cx+a0 cx+a1 … cx+am-−2 cx + am-−1. (4)

This describes the neighborhood as a character string that includes
the cells that are considered neighbors of the observed cell x. A com-
pact representation of the neighborhood value Nx  is a unique integer,
defined as an m-digits, k-based number [2]

Nx  
i0

m-−1

km-−1-−i cx+ai
 cx+a0 km-−1 +⋯+ cx+am-−1 k k0. (5)

The  local  transition  function  f  that  yields  the  value  of  cx  at  t + 1
from  the  neighborhood  of  the  cell  observed  at  present  time  t  is  ex-
pressed by 

f Nx
t   cx

t+1, (6)

where  Nx
t  specifies  the  states  of  the  neighboring  cells  to  the  cell  x  at

time t. The transition table defines the local transition function, listing
an output value for each input configuration. Table 2 is a sample tran-
sition  table  for  an  elementary  cellular  automaton  with  a  neighbor-
hood  of  radius  1,  wherein  adjacent  neighboring  cells  of  cx  are  cx-−1
and cx+1, forming a tuple {cx-−1, cx, cx+1}, S ∈ {0, 1}.

Global Transition Function2.3

The  global  dynamics  of  the  cellular  automaton  are  described  by  the
global transition function F:

F : SN → SN. (7)
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Nx
t f (Nx

t )

000 0

001 1

010 1

011 1

100 1

101 0

110 1

111 0

Table 2. Local transition function of R94 as a truth table.

F is the transition between the current global configuration C t  and
the next global configuration C t+1:

C t+1  FCt. (8)

The  global  transition  function  F  is  defined  by  the  local  transition
function f  as 

F (Cx)  … f (Nx-−1) f (Nx) f (Nx+1) …. (9)

Transformation of the Cellular Space3.

We  redefine  the  local  transition  function  to  incorporate  behavioral
knowledge  of  the  automaton’s  evolution,  given an input/output  pair.
This  redefined  function  is  applied  to  all  cells  of  the  automaton  at  a
given evolution step t to quantify its overall behavior.

Redefined Local Transition Function3.1

The redefined local transition function g calculates the behavioral met-
ric of a single cell  cx,  evaluating the local transition function f  on its

neighborhood Nx
t .  Through the local transition function g,  we define

the  transformation  dx
t+1  that  yields  the  next  step  of  the  evolution  of

cell cx as

dx
t+1  gf , Nx

t . (10)

This  transformation  is  necessary  to  calculate  the  measure  of  dy-
namic  behavior  during  the  automaton’s  evolution,  and  we  propose
the inclusion of a metric characterizing the cell  behavior obtained af-
ter evaluating a particular input. Input for the Boolean operators con-
sidered may be of the form 
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This  transformation  is  necessary  to  calculate  the  measure  of  dy-
namic  behavior  during  the  automaton’s  evolution,  and  we  propose
the inclusion of a metric characterizing the cell  behavior obtained af-
ter evaluating a particular input. Input for the Boolean operators con-
sidered may be of the form 

Input1 〈 operator 〉 Input2  Output, (11)

where  〈 operator 〉 ∈ {OR, AND, XOR}.  The  behaviors  associated
with each binary Boolean operator and its possible inputs and outputs
are shown in Table 3. 

Input1 Input2 Output Behavior OR AND XOR

0 0 0 Stability X X

1 0 0 Decrease X

0 1 0 Decrease X

1 1 0 Chaoticity X

0 0 1 Chaoticity X

1 0 1 Growth X

0 1 1 Growth X

1 1 1 Stability X X

Table 3. Behaviors associated to binary Boolean patterns.

The  behaviors  associated  with  unary  patterns  are  shown  in
Table 4: 

〈 operator 〉 Input  Output, (12)

where  〈 operator 〉 ∈ {NOT, NOP}  and  NOP  stands  for  “no  oper-
ator.” To characterize the automaton’s behavior, we expand the state
space 

g : SN, f  → M, (13)

where

M  {0, 1, 2, 3, 4, 5}. (14)

The different values of M abbreviate the duples of state and behav-
ior shown in Table 5. Each tuple is obtained from the result of the lo-
cal  transition  function  g  applied  to  a  particular  configuration  of  the
cell x and its neighborhood N. 

The M  code eases the implementation of an algorithmic search for
cellular  automata  with  interesting  behavior,  using  the  proposed  met-
rics. According to the M code, chaotic and stable behaviors may gen-
erate  1  or  0  as  output  from  1  or  0  as  input,  growing  behavior  may
only  generate  1  as  output  from  0  as  input,  and  decreasing  behavior
may only generate 0 as output from 1 as input. 
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Input Output Behavior NOT NOP

1 1 Stability X

0 0 Stability X

1 0 Stability X

0 1 Stability X

Table 4. Behavior associated to unary Boolean patterns.

M Sx
t+1, behavior

0 {0, stable} 

1 {0, decreasing} 

2 {0, chaotic} 

3 {1, chaotic} 

4 {1, growing} 

5 {1, stable}

Table 5. M  code,  abbreviation  of  duples  of  cell  state  and  behavior  obtained
when applying the local transition function g.

Global Transition Function3.2

The  global  behavioral  metric  of  the  cellular  automaton  is  character-
ized as

G : SN, f  → MN. (15)

G  represents  the  transition  between  the  current  global  configuration
Ct  and the next global configuration Ct+1. We set D0  (0, f ) and ex-
press the automaton’s global behavioral metric as

Dt+1  GCt, f , (16)

for example, from the initial state,

C0 (initial state)

C1  F C0 → D1  G C0, f 

C2  F C1 → D2  G C1, f 

C3  F C2 → D3  G C2, f 

C 4  F C3 → D4  G C3, f 

⋮
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The redefined global transition function G is expressed as the con-
catenated string obtained when the redefined local transition function
g is applied to all of the automaton’s cells ci:

G (… cx-−1 cx cx+1, f ) 
… g(nx-−1, f ) g(nx, f ) g(nx+1, f ) ….

(17)

Implementation of gf , Nx
t 3.3

The  g  function  incorporates  heuristic  information  that  enables  the
measurement  of  behaviors  in  the  automaton’s  lattice.  The g  function

performs  the  following  steps,  given  a  pattern  Nx
t  and  the  transition

function f :

The local  transition function f  is  simplified to its  minimal Boolean ex-
pression. 

1.

f  is expressed as a binary execution tree. 2.

Nx
t  is evaluated on the binary execution tree obtained in 2. 3.

In  Table  1  we  mentioned  the  behavioral  characterization  corre-
sponding to cellular automata whose minimal expression corresponds
to  a  single  Boolean  operator.  This  characterization  needs  to  be  ex-
tended  to  describe  cellular  automata  whose  minimal  forms  have  sev-
eral  distinct  Boolean operators.  To tackle this  problem, we express  a
cellular  automaton’s  transition  function  in  a  binary  evaluation  tree
and propose a set of evaluation rules for its nodes, based on heuristic
criteria. 

We  write  the  transition  function  of  the  minimal  expression  of  the
automaton’s rule in a tree graph. We assign to each node of the tree a
Boolean  operation.  The  transition  function  is  evaluated,  with  input
placed  at  the  tree’s  leaves,  according  to  heuristic  rules.  The  result  of
the evaluation is obtained at the root node. The heuristics considered
are  crafted  to  fit  criteria  derived  from the  characteristic  behaviors  of
several elementary cellular automata. 

The  proposed  heuristic  H  consists  of  rules  for  evaluation  of  the
nodes in the binary tree. These tree evaluation rules are defined for 

term 〈 OPERATOR 〉 term

and

〈 OPERATOR 〉 term,

where 〈 OPERATOR 〉 ∈ {AND, OR, XOR, NOT} and term corre-
sponds to the set M  {0, 1, 2, 3, 4, 5}.

Figure 1 shows the heuristic precedence rules defined for each logi-
cal operator. Figure 2 shows the elementary cellular automata used to
define  the  heuristic  characterization  criteria,  alongside  their  minimal
Boolean forms. 

8 J. C. López-González and A. Rueda-Toicen

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.1.1



Figure 1 shows the heuristic precedence rules defined for each logi-
cal operator. Figure 2 shows the elementary cellular automata used to
define  the  heuristic  characterization  criteria,  alongside  their  minimal
Boolean forms. 

AND

OR

XOR

NOT

Figure 1. Tree evaluation rules H: squares correspond to inputs and circles to
outputs.  White  corresponds  to  M  0  {0, stable};  yellow  corresponds  to
M  1  {0, decrease}; green corresponds to M  2  {0, chaotic}; red corre-
sponds  to  M  3  {1, chaotic};  blue  corresponds  to  M  4  {1, growth};
black corresponds to M  5  {1, stable}.

◼ Criterion  1.  In  the  leaf  nodes,  S  0  must  be  equivalent  to  M  0 
{0, stable} and S  1 must be equivalent to M  5  {1, stable}. 

◼ Criterion  2.  Chaoticity  measured  in  R150  p XOR q XOR r  must  be
greater  than  chaoticity  measured  in  R90  p XOR r.  The  proposed
heuristic  H  produces  the  following  behavioral  metrics  in  these  au-
tomata: 

R150 chaoticity  0.375
R90 chaoticity  0.25.

◼ Criterion  3.  Chaoticity  measured  in  R90  p XOR r  must  be  greater
than  chaoticity  measured  in  R204  q.  The  proposed  heuristic  H  pro-
duces the following behavioral metrics in these automata: 

R90 chaoticity  0.25
R204 chaoticity  0.
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 R90  p XOR r  R128  p AND q AND r  R150  p XOR q XOR r

R160  p AND r R204  q R250  p OR r

R254  p OR q OR r 

Figure 2. Elementary cellular automata used to define the criteria in H.

◼ Criterion  4.  Decrease  measured  in  R128  p AND q AND r  must  be
greater  than  decrease  measured  in  R160  p AND r.  The  proposed
heuristic  H  produces  the  following  behavioral  metrics  in  these  au-
tomata: 

R128 decrease  0.75
R160 decrease  0.5.

◼ Criterion  5.  Decrease  measured  in  R128  p AND q AND r  must  be
greater  than  decrease  measured  in  R160  p AND r.  The  proposed
heuristic  H  produces  the  following  behavioral  metrics  in  these  au-
tomata: 

R160 decrease  0.5
R204 decrease  0.

◼ Criterion 6.  Growth measured in R254  p OR q OR r  must be greater
than  growth  measured  in  R250  p OR r.  The  proposed  heuristic  H
produces the following behavioral metrics in these automata: 

R254 growth  0.75
R250 growth  0.5.

Figure  3  shows  the  percentage  of  measured  behaviors,  using  the
proposed  set  of  evaluation  rules  H,  in  the  elementary  cellular  au-
tomata considered in the criteria. 
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Figure 3. Behavioral  percentages  in  elementary  cellular  automata  considered
as criteria for evaluating the proposed heuristic.

Evaluation Example with R943.4

The  minimal  Boolean  expression  of  R94,  f  (q AND (NOT p))
OR (p XOR r)  is  placed  in  a  binary  evaluation  tree,  as  shown  in
Figure 4.  Each node in the tree is  evaluated using the rules shown in
Figure 1. This process is demonstrated in Steps 1–5.

Figure 4. Evaluation of the input pattern 101 in R94 with the proposed rules.

◼ Step  1.  In  the  leaf  nodes,  the  values  in  the  neighborhood  Nq
t0  are

{p  1, q  0, r  1};  these  are  transformed  using  the  M  code  men-
tioned in Section 3.1, as follows: 

SM(p)  {1, stable}  5
SM(q)  {0, stable}  0
SM(r)  {1, stable}  5.
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Thus,  the  input  tuple  {p  1, q  0, r  1}  is  converted  into
{p  5, q  0, r  5}.

◼ Step  2.  Leaf  p  5  is  evaluated  at  the  NOT  node,  producing  output
0  {0, stable}. 

◼ Step  3.  Leaf  q  0  and  the  result  of  step  2  are  evaluated  at  the  AND
node, producing output 0  {0, stable}. 

◼ Step 4. Leaves p  5 and r  5 are evaluated at the XOR node, produc-
ing output 2  {0, chaotic}. 

◼ Step 5.  The output of step 4 and the output of step 5 are evaluated at
the  OR  node,  producing  as  final  output  2  {0, chaotic}.  The  cell  q
gets  assigned  to  state  0  in  t + 1,  and  a  counter  for  the  occurrence  of
chaotic behavior in the states of R94 would get incremented by one. 

Behavioral Characterization4.

To characterize the overall behavior of a cellular automaton with the
proposed metrics, we consider the correlation between two measures:

A static  measure,  which is  the counted occurrence of  behaviors associ-
ated  to  the  code  M,  in  the  output  of  the  truth  table  of  the  minimal
Boolean expression of the cellular automaton. 

1.

A dynamic measure, which is the median occurrence of behaviors asso-
ciated to the code M in n executions of the cellular automaton, starting
from n random initial states. 

2.

Static Measure of Behavior4.1

The local transition function transition f  is expressed as a truth table,
which is  converted to g  when we include behavioral  information.  To
calculate  the  static  measure  of  behavior,  we  count  the  occurrence  of
behaviors  associated  with  the  values  of  M  in  the  output  of  the  truth
table. This static measure is a vector, with the percentages of chaotic-
ity,  stability,  growth,  and  decrease  measured  in  the  cellular  automa-
ton. 

For  example,  in  R94  the  rule  is  characterized using the  M  code as
shown in Table 6. 

To  obtain  the  static  measure  of  R94,  we  count  the  occurrences  of
M.  The static  measure of  the rule  is  the percentage of  behavioral  oc-
currence in the automaton, as shown in Table 7. 
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Nx
t f (Nx

t ) g(Nx, f )

000 0 M  1

001 1 M  4

010 1 M  4

011 1 M  4

100 1 M  4

101 0 M  2

110 1 M  4

111 0 M  2

Table 6. Truth table of R94, with associated M code.

Stability Decrease Growth Chaoticity

M  {0, 5} M  1 M  4 M  {2, 3}

0% 12.5% 62.5% 25%

Table 7. Behavioral percentages in R94, static measure.

We express this measure as a vector of percentages: 

ME  {stability %, decrease %, growth %, chaoticity %}. (18)

For R94, the static measure of behavior is 

ME  {0, 12.5, 62.5, 25}.

Dynamic Measure of Behavior4.2

To estimate the dynamic measure of behavior MD, we execute the cel-
lular  automaton  n  times,  from  n  random  initial  configurations
Ci

t0 i ∈ n.  We  sample  occurrences  of  M  in  the  cell  space  up  to  the

kth  evolution  step,  where  k  is  an  integer  > 0,  obtained  from  a  uni-
form distribution: 

MD(g)  lim
x→∞

MD
tk g, ci

t0

n
. (19)

We exclude cells at t  0 from the sampling. The percentages of be-
havioral  occurrences  are  calculated  from  the  mean  of  samples.  Fig-
ure 5 shows the sampling of R94 in k  t  20. 
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Figure 5. Evolution of R94  from a random initial configuration: yellow color-
ing  for  M = 1,  green  coloring  for  M = 2,  and  blue  coloring  for  M = 4.  The
code M  was applied to cells in t ≥ 1. Cells with M = 1 (decreasing behavior)
occupy  18.658%  of  the  lattice,  cells  with  M = 2  (stable  behavior)  occupy
32.467%, and cells with M = 4 (chaotic behavior) occupy 48.874%.

Analysis of the Game of Life5.

The Game of Life is a complex cellular automaton, class IV according
to  the  classification  proposed  by  Wolfram [1,  3].  In  this  cellular  au-
tomaton, there is a negative correlation between the static measure of
behavior  and  the  dynamic  measure  of  behavior.  Table  8  shows  this
negative correlation.

Some observations pertinent to the measured behavior in the Game
of Life: 

◼ Static measure. Chaotic behavior predominates, an important character-
istic of class III automata. 

◼ Dynamic  measure.  Decreasing  behavior  predominates,  an  important
characteristic of class I automata. 

Looking  at  the  transition  function  f  of  the  Game  of  Life,  we  can
find patterns such as 

(…)
NOT x0 AND NOT x1 AND NOT x2 AND x8

AND (x3 XOR x4) AND (x5 XOR x6) OR
NOT x0 AND NOT x1 AND NOT x3 AND x8

AND (x2 XOR x4) AND (x5 XOR x6) OR
(…)

It is our hypothesis that the emergence of complex behavior in the
Game of Life is determined by the appearance of islands of chaotic be-
havior surrounded by decreasing patterns.  Taking a close look at the
Boolean  expression  of  f  in  the  Game  of  Life,  chaotic  subexpressions
can  be  observed  like  (x3 XOR x4)  being  “restricted”  with  AND  by
decreasing subexpressions such as (AND NOT x2 AND x8). 
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ME MD 

Chaoticity 67.96 13.38

Decrease 4.68 75.23

Growth 27.34 11.37

Stability 0 0

Table 8. Static and dynamic measures in the Game of Life; their correlation is
-−0.29.

In  Figure  6,  yellow  cells  have  value  M  1  (decreasing  behavior),
and blue cells  have value  M  4 (growth behavior).  Green cells  have
M  2, exhibiting chaotic behavior. Note that in Figure 6, decreasing
cells (M  1) cover the largest proportion of the lattice,  which corre-
sponds  with  the  dynamic  measure  of  decrease  shown  in  Table  8.  It
can  also  be  seen  that  the  isolated  patterns  exhibit  a  combination  of
growth (M  4) and chaoticity (M  2). 

Figure 6. The Game of Life, colored according to behavior.

Search of Complex Binary Cellular Automata in Two Dimensions6.

The  proposed  behavioral  metrics  were  crafted  using  heuristic  criteria
from one-dimensional  binary  cellular  automata,  yet  are  applicable  to
characterize binary cellular automata with different neighborhoods in
lattices of higher dimensions. To demonstrate this, we developed a ge-
netic  search  algorithm  [18]  of  nontotalistic  two-dimensional  cellular
automata in the Moore neighborhood with radius equal to one. This
algorithm searches  for  automata  with  behavioral  measures  similar  to
those  in  the  Game  of  Life  in  a  space  of  size  2512.  The  genetic  algo-
rithm uses a cost  function to evaluate each cellular automaton in the
population, with this cost being the Euclidean distance between the be-
havioral measures of each cellular automaton and the behavioral mea-
sures  of  the  Game  of  Life.  Another  selection  condition  was  added:
like  the  Game  of  Life,  the  selected  cellular  automaton  must  have
stability  0  in  both  its  static  and  dynamic  measures.  We  found  a
large  number  of  cellular  automata  with  interesting  complex  behav-
iors, like gliders, blinkers, and self-replicating patterns.
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The  proposed  behavioral  metrics  were  crafted  using  heuristic  criteria
from one-dimensional  binary  cellular  automata,  yet  are  applicable  to
characterize binary cellular automata with different neighborhoods in
lattices of higher dimensions. To demonstrate this, we developed a ge-
netic  search  algorithm  [18]  of  nontotalistic  two-dimensional  cellular
automata in the Moore neighborhood with radius equal to one. This
algorithm searches  for  automata  with  behavioral  measures  similar  to
those  in  the  Game  of  Life  in  a  space  of  size  2512.  The  genetic  algo-
rithm uses a cost  function to evaluate each cellular automaton in the
population, with this cost being the Euclidean distance between the be-
havioral measures of each cellular automaton and the behavioral mea-
sures  of  the  Game  of  Life.  Another  selection  condition  was  added:
like  the  Game  of  Life,  the  selected  cellular  automaton  must  have
stability  0  in  both  its  static  and  dynamic  measures.  We  found  a
large  number  of  cellular  automata  with  interesting  complex  behav-
iors, like gliders, blinkers, and self-replicating patterns.

Tests and Results6.1

The  proposed  genetic  search  algorithm  evolved  an  initial  population
of  20  individuals  through  5000  generations,  each  individual  being  a
cellular  automaton  with  a  randomly  generated  transition  function  f .
Each  cellular  automaton’s  transition  function  is  represented  in  the
population  as  a  chromosome  of  512  Boolean  values.  One-point
crossover and random mutation (with probability 0.01) were applied
at each evolution step [19]. The sampling used to measure dynamic be-
havior was taken at random intervals at least 10 times for each cellu-
lar  automaton in  the  population.  In  a  space  of  2512  possible  cellular
automata,  we  generated  about  10 000  different  cellular  automata
through crossover  and  mutation  and  selected  the  1000 closest  to  the
behavioral measures of the Game of Life. These automata were quali-
tatively  evaluated.  We found 300 cellular  automata  in  which gliders,
blinkers,  and  other  interesting  complex  behaviors  can  be  observed.
Among the cellular automata with complex behavior found, we identi-
fied  a  self-replicating  cellular  automaton,  corresponding  to  Wolfram
rule number

16 895 622 000 315 042 854 050 654 968 041 761 976 942 499 
540 948 773 344 255 633 961 233 308 171 712 857 937 436 
670 105 821 967 468 216 616 118 900 334 441 708 509 286 
446 343 520 818 184 926 824 448.

In this  automaton,  we can see  a  pattern that  is  replicated twice  after
91  steps,  as  shown  in  Figure  7.  Curiously,  this  complex  cellular  au-
tomaton is more distant from the behavioral measures of the Game of
Life than other cellular automata found using the proposed methodol-
ogy. However, one characteristic is prevalent in this and the other cel-
lular  automata found: a negative correlation between their  static  and
dynamic behavioral measures.

16 J. C. López-González and A. Rueda-Toicen

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.1.1



In  this  automaton,  we can see  a  pattern that  is  replicated twice  after
91  steps,  as  shown  in  Figure  7.  Curiously,  this  complex  cellular  au-
tomaton is more distant from the behavioral measures of the Game of
Life than other cellular automata found using the proposed methodol-
ogy. However, one characteristic is prevalent in this and the other cel-
lular  automata found: a negative correlation between their  static  and
dynamic behavioral measures.

This  self-replicative  pattern  is  a  particular  kind  of  localized  struc-
ture  that  moves  across  the  cellular  automaton’s  lattice.  These
localized  structures,  or  “gliders”  (which  are  not  always  self-replica-
tive) can be seen as streaks in averaged spacetime slices that depict the
evolution  of  the  cellular  automaton  from  random  initial  conditions.
Figure 8  shows  the  spacetime  slices  depicting  gliders  on  the  self-
replicative cellular automaton found and on the Game of Life, as com-
parison. 

(a) t  0 

(b) Replication of the initial state at t  91.

(c) Persistence of the pattern and its copy at t  307. 

Figure 7. Self  replication  in  cellular  automaton  with  behavioral  metrics  sim-
ilar to the Game of Life; the feature vector of behavioral metrics used to find
it is shown in Table 9.

ME MD 

Chaoticity 61.72 5.61

Decrease 3.32 90.63

Growth 34.96 3.77

Stability 0 0

Table 9. Euclidean distance  to  the  feature  vector  of  behavioral  metrics  of  the
Game  of  Life  is  21.31.  The  correlation  between  measures  of  static  and  dy-
namic behavior in this cellular automaton is -−0.45.
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Self-−Replicative Cellular Automaton Game of Life

Figure 8. Averaged spacetime evolutions, showing gliders as streaks.

We present examples of complex cellular automata found with the
proposed  search  method.  Mean  spacetime  visualizations  of  the
evolving state of the automaton are provided for each, the lower rows
of the lattice being the later time steps. A list of 277 selected complex
binary  cellular  automata  can  be  found  in  the  Bitbucket  repository
at  https://bitbucket.org/antonio_rt/search-of-complex-binary-ca/src.  A
Java implementation of the genetic search algorithm based on behav-
ioral metrics is available at http://discoverer.cellular-automata.com.

These cellular automata can be executed in Mathematica, replacing
〈Rule〉 with the corresponding rule number (see Appendix A).

ListAnimate[ArrayPlot /∕@
CellularAutomaton[{〈Rule〉, 2, {1, 1}},
{RandomInteger[1, {100, 100}], 0}, 150]]

Rule:  
354 830 437 430 697 307 314 658 045 280 649 922 899 653 607 237 

152 783 088 733 395 073 850 801 752 918 249 535 088 820 853 
655 864 680 729 189 540 963 997 737 594 766 246 170 112 169 
867 440 686 203 456

ME MD 

Chaoticity 62.11 12.06 

Decrease 4.88 78.88 

Growth 33.01 9.06 

Stability 0 0 

Table 10. Euclidean distance to the feature vector of behavioral metrics of the
Game of Life is 9.32. The correlation between measures of static and dynamic
behavior in this cellular automaton is -−0.34.

18 J. C. López-González and A. Rueda-Toicen

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.1.1



Averaged Spacetime Evolution

Identified Gliders

Rule:
196 928 112 803 567 351 078 509 513 317 947 776 313 717 639 009 

629 192 334 193 923 037 233 645 856 780 601 181 782 252 315 
349 164 603 950 024 916 004 629 851 769 274 774 088 586 292 
232 688 540 354 568

ME MD 

Chaoticity 64.45 9.28

Decrease 2.54 84.80

Growth 33.01 5.92

Stability 0 0

Table 11. Euclidean distance to the feature vector of behavioral metrics of the
Game  of  Life  is  13.68.  The  correlation  between  measures  of  static  and  dy-
namic behavior in this cellular automaton is -−0.40.
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Averaged Spacetime Evolution

Identified Gliders

Rule:
2 536 962 858 330 445 998 944 606 509 915 061 353 621 502 280 

763 765 013 218 910 019 118 617 632 623 181 726 351 808 015 
804 669 971 129 335 990 123 389 394 577 484 439 270 322 287 
946 219 773 078 676 008

 

ME MD 

Chaoticity 65.63 5.53 

Decrease 3.91 90.54 

Growth 30.47 4.00 

Stability 0 0 

Table 12. Euclidean distance to the feature vector of behavioral metrics of the
Game  of  Life  is  19.13.  The  correlation  between  measures  of  static  and  dy-
namic behavior in this cellular automaton is -−0.42.
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Averaged Spacetime Evolution

Identified Glider
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Appendix

Mathematica ExamplesA.

animateCA[rule_] := ListAnimate[
ArrayPlot /∕@ CellularAutomaton[{rule, 2, {1, 1}},

{RandomInteger[1, {100, 100}], 0},
150], ImageSize -−> Small]
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animateCA[
354830437430697307314658045280649922899653607237
152783088733395073850801752918249535088820853655
864680729189540963997737594766246170112169867440
686203456]

animateCA[
196928112803567351078509513317947776313717639009
629192334193923037233645856780601181782252315349
164603950024916004629851769274774088586292232688
540354568]
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animateCA[
2536962858330445998944606509915061353621502280763
765013218910019118617632623181726351808015804669
971129335990123389394577484439270322287946219773
078676008]
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