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A  cellular  automata  (CA)-like  model  of  mutually  imitating  agents,
called  imitating  cellular  automata  (ICA),  is  presented.  An  agent  of  the
model  either  imitates  a  behavior  of  neighboring  agents  or  takes  a  ran-
dom action to compute the next state of  its  own, based on elementary
cellular  automata  (ECA)  rules.  When  combined  with  another  dynamic
that  determines  an  interaction  distance  to  the  neighborhood  agents,
ICA show complex spatiotemporal patterns and travel around between
ordered and chaotic phases without being trapped in a fixed state. The
patterns  were  robustly  observed across  a  wide range of  parameter  val-
ues and also found to follow a power-law relationship. 

Introduction1.

Imitation,  which  is  defined  as  the  copying  of  behavior  [1],  is  one  of
the  fundamental  behaviors  of  natural  life  forms.  It  is  observed  at  all
the  scales,  from molecular  to  social,  and  in  some  cases  is  crucial  for
higher-level behavior, such as social learning. For example, at the cel-
lular level, mirror neurons mimic firings of other neurons, and the imi-
tation by mirror  neurons is  considered to be important  for  acquiring
complex skills such as language [2]. At a higher level, bird song imita-
tion  is  one  of  the  well-known  examples  in  animal  behavior  [3],  and
an  ability  to  imitate  adults  is  essential  for  infants  to  learn  new tasks
[4].  The  stock  market  is  a  typical  example  of  imitation  at  the  social
level.  Traders  in  the  market  take  the  same  actions  as  influential
traders or tend to follow the mood of the market.

Along with the growing interest in the science of imitating behavior
in  the  last  decade,  many  theoretical  models  have  been  proposed  to
replicate imitation.  Suzuki and Kaneko proposed a dynamical  system
model of mutual-imitating agents inspired by bird song imitation [5].
Artificial  stock  market  models  based  on  cellular  automata  (CA)  in
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which  traders  imitate  others  as  their  behavior  strategy  are  presented
in  [6,  7].  Imitation  behavior  was  employed  to  construct  automata
models in the context of complex systems in the past. At a fundamen-
tal level, Wolfram proposed probabilistic CA, in which the rule to de-
termine the next step was specified by the probabilities of two neigh-
bor  states  [8].  Mazonka  proposed  a  computational  abstract  machine
model  that  consists  of  two  operations,  referencing  and  bit  copying,
and showed that the model was Turing complete [9]. In a more gener-
alized  perspective,  Adamatzky  and  Wuensche  investigated  the  notion
of creativity, which would be the opposite of imitation, and CA [10].
CA  rules  employed  there  were,  however,  elementary  cellular  au-
tomata  (ECA)  rules,  which  have  homogeneous  agents  that  share  the
same set of rules. 

In contrast, here we investigate the dynamics of mutually imitating
agents,  which  consist  of  heterogeneous  agents.  A  CA-like  system,
called imitating cellular automata (ICA), in which the agent can either
imitate  other  agents  or  take  a  random  action,  is  proposed.  CA  pro-
vide a simple yet powerful platform to model various kinds of natural
phenomena, such as physical [11], chemical [12], biological [13], and
even geological systems [14, 15]. While all agents in conventional CA
share a common rule to compute next states of their own, such an as-
sumption is  rather  unnatural  when it  comes  to  social  and behavioral
dynamics, including imitating behavior. Hence, ICA are motivated by
the fact that agents are heterogeneous in natural  (social)  systems and
are intended to construct CA-like models that capture that aspect.  In
addition to heterogeneity in agents, we also introduce "internal dynam-
ics#  in each ICA agent, which would correspond to, for example, the
thinking process. Thus, in this paper, we will discuss what kind of dy-
namics  would  emerge  from a  group  of  mutually  imitating  agents,  as
well as the interaction between the heterogeneous (external) dynamics
and the internal dynamics. 

Imitating Cellular Automata2.

ICA form a spatiotemporally  discrete  dynamical  system composed of
N automata cells with K states. The dynamics are defined as:

F$t% : &0, ' , K ( 1)N * &0, ' , K ( 1)N, $1%

where  F$t% + ,f1
t , ' , fi

t, ' , fN
t -  and  t  is  the  discrete  time  of  the  dy-

namics. An automaton at the ith  site of the ICA (hereafter referred to

as the "ith  cell#) consists of a finite state si
t . &0, ' , K ( 1), neighbor-

hood  radius  r,  and  a  transition  rule  table  fi
t : &0, ' , K ( 1)2 r/1 *
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&0, ' , K ( 1). Time development of the ith cell is computed as

si
t/1 + fi

t,si(r
t , ' , si

t, ' , si/r
t -. $2%

The  ICA  are  equivalent  to  the  conventional  one-dimensional  K-state

CA if fi
t + fj

t0  holds for all i, j . &0, 1, ' , N) and t, t0 . N. In this pa-

per, we focus on the simplest case, r + 1 and K + 2, which is an ICA
counterpart of ECA. N + 100 is used in all of the following cases.

Now let  us  describe how fi
t  is  defined.  As mentioned in the previ-

ous section, of particular interest in this model is the effect of imitat-
ing  behavior  on the  global  dynamics.  For  this  purpose,  we introduce
interaction radius R and define fi

t as follows: 

si
t/1 +

sj
t if si(1,i,i/1

t + sj(1,j,j/1
t(1 and 1i ( j2 3

R

2
X otherwise,

$3%

where  X  is  a  discrete  random  variable  that  gives  either  0  or  1  with
probability  of  0.5.  If  two  or  more  cell  sites  j1, j2, '  satisfying  the

first condition exist, max$&j1, j2, ')% (i.e., the rightmost cell of the ith

cell within the range of R 4 2) is adopted.
In  other  words,  fi

t  is  determined  with  the  following  process
(Figure 1):  First,  a  cell  checks  transitions  of  neighborhood  cells

Figure 1. The  schematic  diagrams  of  ICA  dynamics.  Each  ICA  cell  creates  a
temporary  rule  table  from transitions  of  other  cells  made  at  a  previous  time
step and applies it to compute the next state.
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(including itself) taken at a previous time step. The interaction radius
R  determines  the  number  of  transitions  the  cell  can  check.  Collected
past  transitions  are  put  into  a  temporary  rule  table  that  will  be  used
to compute the next state of the cell.  If  two or more transitions con-
flict with each other, for example, there exist 010 5 1 and 010 5 0 in
a  collected  transition  dataset,  a  transition  from  the  rightmost  cell
triplet  is  adopted.  Next,  if  the  temporary  rule  table  has  blank  cells,
they  are  filled  with  random numbers  (either  0  or  1)  to  complete  the
table.  The completed temporary rule table,  which is one of 256 rules
of ECA, is then applied to the triplet of the current cell in order to up-
date the cell's current state. The cell  has no memory, and therefore a
temporary rule table is created from scratch at every time step. 

The  definition  of  fi
t  effectively  implements  the  following  behavior

of  an  abstract  agent:  (1)  the  agent  imitates  a  neighboring  agent  if
there  exists  the  same  behavior  done  by  the  neighboring  agent;  (2)  it
behaves randomly if no same behavior exists previously. 

The interaction radius R  is  determined by another dynamic, called
the intra-agent dynamic. Although any dynamic can be used in princi-
ple,  one-dimensional  ECA  (r + 1  and  K + 2)  are  employed  here  as
the intra-agent dynamic of a cell in ICA (for short, "intraCA#). A tem-

porary rule table created by the ith ICA cell at time t is passed over to
the  intraCA  and  used  to  compute  the  time  development  of  intraCA
over Tin  steps.  During the computation of  the time development,  the
input  entropy  Hin$t%  of  the  bit  sequence  of  cells  in  intraCA is  calcu-
lated for each time step by [16]: 

Hin$t% + (
1

2 r / 1
6
i+0

22 r/1(1 Qt
i

Nin

log
Qt

i

Nin

, $4%

where X is neighborhood size, Nin  is the number of intraCA cells, Qt
i

is the appearance frequency of binary triplet pattern i, and Qt
i 7N rep-

resents  the  probability  of  pattern  i  (note  that  i  is  a  decimal  repre-
sentation of  a  bit  pattern,  e.g.,  "5#  for  "101#).  After  Tin  steps,  mean

entropy Hin  is calculated over another 100 time steps and used to de-
termine the interaction radius R defined as:

R + 8 Hin + int$8 9Hin$t%:%, $5%

where 8  is  a scaling parameter and int  is  a round-down function.  As
mentioned,  R  determines  the  number  of  past  transitions  an  ICA  cell
can  look up to  create  a  new rule  at  time  t / 1.  Accordingly,  two dy-
namics, rule-generating dynamics of ICA cells and intraCA dynamics,
are coupled together for the evolution of ICA cells.
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In  this  study,  we  fix  the  parameters  as  Nin + 50,  Tin + 200,  and
8 + 10.  The  periodic  boundary  condition  is  adopted  to  calculate  the
time development of both ICA and intraCA cells. The spatiotemporal
development of ICA is observed over 5000 steps. 

Results3.

Emergence and Collapse of Complex and Periodic Patterns3.1
In  total,  20 runs  were  carried  out  with  random initial  conditions  for
both ICA cells  and intraCA. In all  20 cases,  the time development of
ICA  cells  showed  a  spatiotemporal  pattern  similar  to  Figure  2(a).
Roughly speaking, spatiotemporal patterns of ICA cells consist of peri-
odic stripe regions and chaotic regions. The periodic stripe regions ap-
pear soon after starting from the random initial values. In Figure 2(a),
chaotic  regions  are  dominant  and  small  periodic  regions  are  found
only  in  patches  for  the  first  800  steps.  However,  a  periodic  region
gradually  extends,  and  chaotic  regions  were  eventually  wiped  out  at
t + 1000.  After  this  point,  the  whole  system  is  in  a  globally  stable
phase  where  each  cell  remains  in  the  same  state  for  120  steps.  At
t + 1183,  however,  a  chaotic  region  reappears  from  one  of  the  ICA
cells  and  takes  over  the  periodic  regions.  It  eventually  becomes  pre-
dominant again from t + 1400. After t + 1600, the whole system re-
peats  the  tug-of-war  between  globally  stable  and  globally  chaotic
phases.  Both  the  duration  of  globally  stable  phases  and  the  duration
between  two  neighboring  globally  stable  phases  appeared  to  be  ran-
dom in all 20 cases.

The mechanism of  the spatiotemporal  pattern development can be
explained  as  follows.  As  defined  in  equation  (3),  the  principal  dy-
namic of an ICA system is imitation of other cells. The appearance of
the  globally  stable  phase  can  be  considered  as  a  consequence  of  this
dynamic. On the other hand, an ICA cell behaves randomly if it can-
not find the same transition in neighboring cells within the interaction
radius R. This dynamic accounts for the collapse of the globally stable
phase  at  t + 1183.  In  the  case  of  Figure  2(a),  the  collapse  was  trig-
gered  by  the  twenty-ninth  imitating  cellular  automaton  cell;s  state
change  from  zero  to  one.  In  other  words,  the  cell  took  the  101 5 1
transition at t + 1182, while 101 5 0 was adopted for a long period
before  that  point.  This  is  because  the  interaction  radius  R  was  zero,

due  to  a  small  Hin  value,  and  thus  the  cell  filled  a  temporary  rule
table  with  all  random  bits.  Accordingly,  101 5 1  is  applied  to  com-
pute the state at t + 1183, and this change propagates rightward due
to the imitating behavior of ICA cells.  Eventually it  became a bundle
of chaotic states and led to the collapse of the global stable phase. 
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$a%

$b%

Figure 2. (a)  A  spatiotemporal  pattern  of  ICA.  The  first  1600  time  steps  are
shown.  Black  dots  indicate  the  state  is  1.  A  globally  stable  phase  appears
around  t + 1000,  followed  by  a  sudden  collapse  at  t + 1200.  (b)  The  time
course of the input entropy Hex$t% for (a). It fluctuates along with the time de-
velopment and occasionally becomes constant when ICA are settled in a glob-
ally stable phase (e.g., at t + 1000 and 3000).

To  quantify  the  development  of  the  spatiotemporal  pattern,  input
entropy Hex$t%  for ICA cells is introduced. The definition of Hex$t%  is
the same as equation (4), but Hex$t%  is calculated over a bit sequence
of ICA cells  at time t.  This parameter works as an indicator of glob-
ally stable phases. If Hex$t% takes a constant value for a length of time,
it means ICA are in a globally stable phase. As shown in Figure 3(b),
ICA sporadically fall  into a globally stable phase.  Otherwise they os-
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cillate at a higher range of Hex$t%, which means ICA are dominated by
chaotic phases. 

$a% $b%

$c%

Figure 3. Spatiotemporal  patterns  of  ICA  in  the  case  that  the  interaction  ra-
dius R is (a) fixed or (b) randomly assigned. In all cases examined, the pattern
ends up with a periodic pattern (when R  is fixed) and a chaotic structureless
pattern (when R  is  random). (c)  The time course of the input entropy Hex$t%
for (a) and (b). The fixed radius case (bold line) quickly settles down in a con-
stant  value,  whereas  the  random case  (dotted  line)  remains  high  throughout
the entire period. 
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For  comparison,  two  variants  of  ICA  regarding  interaction  radius
R  are examined: R  is either fixed or determined randomly. Note that
the computation of intraCA is not required in these cases. 

For the former case, R  is fixed to a constant value ranging from 1
to  15  for  all  ICA cells  throughout  the  whole  time  step.  Twenty  runs
were carried out for each parameter value. In summary, observed spa-
tiotemporal patterns were, in terms of Wolfram;s classification of CA
[8], mostly class 2 type (periodic pattern) and in rare cases, class 1 (all
black or all  white pattern) was observed. Once the system had fallen
into either one of the two types, the pattern never changed afterward
(Figure  3(a)).  In  the  second  case,  when  a  random number  from 1  to
15 was assigned for r  of  each ICA cell  at  every time step,  there were
no  specific  structures  observed  in  all  the  cases  (Figure  3(b)).  Regard-
ing  the  input  entropy  of  these  models,  it  settled  down  to  a  specific
level  after  several  hundreds  of  time  steps  in  the  first  case  and  re-
mained high throughout the time step in the second case (Figure 3(c)). 

Emergence and Collapse of Clusters in Rule-Entropy Space3.2

Figure 4(a–c) shows scatter plots of the input entropy Hin  against the
temporary  rule  number  created  by  ICA  cells  at  t + 718,  1118,  and
1518.  The data  used for  those  plots  is  the  same as  Figure  2(a).  Each
circle in the plots corresponds to an ICA cell at a time step. 

When the whole ICA system is in a chaotic phase, the distribution
of  ICA  cells  in  the  rule-entropy  space  appears  to  be  random
(Figure 4(a)).  As  the  spatiotemporal  pattern  is  organized  into  a  glob-
ally  stable  phase,  ICA  cells  form  clusters  in  the  rule-entropy  space
from  t + 1000  (Figure  4(b)).  Although  the  clusters  are  unstable  and
constantly  fluctuating,  ICA  cells  loosely  keep  the  four  clusters  while
they are in the globally  stable  phase.  If  the whole system falls  out  of
the  phase,  the  four  clusters  gradually  collapse,  and  eventually  ICA
cells show random distribution again (Figure 4(c)). 

$a%

82 S. Tsuda

Complex Systems, 24 ! 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.1.75



$b%

$c%

Figure 4. Emergence  and  collapse  of  clusters  in  rule-entropy  space.  (a)–(c)

Plots  of  the mean input entropy Hin  against  rule numbers based on the data
in Figure 2(a). Arrows by the spatiotemporal patterns on the left of the plots
indicate the time step at which entropy values and rule numbers are sampled
for the plots.

This  result  implies  that  ICA  cells  seem  to  develop  some  common
element when they are in a globally stable phase,  whereas temporary
rules are created rather randomly during the chaotic phase. To further
investigate  this,  we  looked  into  components  of  the  temporarily  cre-
ated  rules,  that  is,  transition  patterns.  A  temporary  rule,  which  is
equivalent to a rule of ECA numbered from 0 to 255, has eight transi-
tion patterns from 000 to 111. These triplets are mapped onto either
zero or one at the next time step. Considering that the main dynamic
of the ICA system is to imitate transition patterns of other cells, infor-
mation  on  transition  patterns  would  work  as  another  measure  to
investigate the underlying mechanism of ICA dynamics. In particular,
we focused on how many cells have a specific transition from a triplet
to one (e.g.,  010 5 1) at each time step. Figure 5 shows time courses
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of  the  number  of  cells  that  have  the  eight  transition  patterns.  Each
curve corresponds to a specific transition. Although it looks chaotic in
the  first  half  of  the  plot,  transition  patterns  010 5 1  and  101 5 1
show sharp increase and decrease, respectively, at t + 1000. The tim-
ing  of  this  sharp  change  is  exactly  consistent  with  the  appearance  of
the  globally  stable  phase.  As  a  result,  almost  all  the  ICA  cells  have
010 5 1 and 101 5 0 transitions during the stable phase.  Having in-
vestigated  all  the  20  runs,  we  found  that  the  dominance  of  010 5 1
and the extinction of 101 5 1 were observed every time ICA fall into
a  globally  stable  phase.  This  fact  accounts  for  two  things  about  an
ICA system: first, the stripe spatiotemporal pattern observed during a
globally  stable  phase  is  created  mainly  by  the  two  transitions,
010 5 1  and  101 5 0.  An  ICA  cell  using  either  transition  remains
itself in the same state. Thus, the combination of these two transitions
' 01 010 101 '  is  the  most  stable  solution  for  an  ICA  system.  The
longer the chain is, the more stable the pattern is. This explains why a
globally stable phase mostly consists of the stripe bit pattern. Second,
although there are four clusters observed in Figure 4(b), they are effec-
tively  one  single  cluster  that  consists  of  ICA  cells  that  have  both
010 5 1  and  101 5 0  transitions.  As  shown  in  Figure  5,  transition
patterns  during  a  globally  stable  phase  are  mostly  either  010 5 1  or
101 5 0. Accordingly, the only transitions an ICA cell can copy from
other ICA cells are 010 5 1 and 101 5 0, and the other six transition
patterns are filled with random bits. Because of the six transitions, the
cluster virtually appears to be four in rule-entropy space. 

Figure 5. Time  course  of  the  number  of  cells  that  have  a  specific  transition
pattern in a temporary rule. All the ICA cells have 010 5 1 and 101 5 0 tran-
sitions, while ICA stay in a globally stable phase (from t + 1000 to 1200).
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Effect of ! on Global Spatiotemporal Patterns 3.3
The scaling parameter 8 in equation (5) determines the interaction ra-
dius R and thus can be considered as a crucial parameter for ICA dy-
namics.  Spatiotemporal  patterns  of  an  ICA  system  are  investigated
when  8  is  varied  from  2  to  15.  For  each  case,  10  runs  were  carried
out. The mean and standard deviation (SD) of Hex$t% are calculated to
quantify  the  effect  of  8.  Figure  6(a)  and (b)  show several  patterns  at
different 8 and plots of the mean and SD against 8, respectively.

The most remarkable thing regarding the effect of 8 is a phase tran-
sition  between  8 + 6  and  7.  When  8 < 6,  patterns  looked  chaotic,
similarly  to  the  case  when  R  is  determined  randomly  (Figure  3(b)).
Globally  stable  phases  did  not  appear  at  all.  This  can  be  confirmed
from  Figure  6(b),  in  which  the  mean  remained  high  (due  to  chaotic
patterns) and SD was low (no globally stable phases observed). In con-
trast, at 8 + 7, periodic stable regions became dominant instead, and
the  area  occupied  with  chaotic  regions  was  rather  small.  Chaotic  re-
gions  became  more  and  more  dominant  as  8  increased.  In  fact,  the
mean  entropy  was  increasing  when  8 = 7  in  Figure  6(b).  In  all  cases
above  8 = 7,  observed  patterns  were  basically  similar  to  each  other;
that  is,  both  periodic  stable  regions  and  chaotic  regions  were  ob-
served, and globally stable phases, which lasted over hundreds of time
steps, appeared occasionally. 

! " 3 ! " 7 ! " 11 ! " 15

$a%
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Figure 6. The effect of the interaction radius R on the spatiotemporal pattern.
(a)  Examples  of  the  patterns  at  different  R.  The  first  400  steps  are  shown.
(b) A plot of the mean and standard deviation of input entropy Hex$t% against
the scaling parameter 8. 

Power Law in the Lifetime of Imitating Cellular Automata Cell 3.4
As mentioned in Section 3, ICA cells tend to remain in the same state
once they are in a globally stable phase. Based on this fact, the length
and  frequency  of  duration  that  a  cell  remains  in  the  same  state  (i.e.,
lifetime) were examined. Up to 10 000 steps of the spatiotemporal de-
velopment data of ICA with R + 10 were used. The data from a vari-
ant  of  ICA  where  the  interaction  radius  R  is  determined  randomly
(for short, random ICA) in Section 3.1 was analyzed for comparison.
We did not distinguish the two states, 0 and 1, and focused simply on
the duration of the same state.

A commonly used method to plot such data is to calculate a cumu-
lative distribution function (CDF) that gives the probability of lifetime
frequency greater than or equal to x, defined as [17]: 

P $x% + >
x

?
p$x0% @x0, $6%

where p$x0% is a probability of a lifetime length x0. Given that the orig-

inal  distribution  follows  a  power  law p$x% + C x(A,  it  is  known that
the CDF of the distribution P$x% also follows the power law with the
exponent A ( 1. The exponent of the original  distribution can be cal-
culated with the formula:
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A + 1 / n 6
i+1

n

ln
xi

xmin

(1

, $7%

where  n  is  the  measured  lifetime  length  and  xmin  is  the  minimum
value  of  the  lifetime.  xmin + 1 is  used  in  this  case.  Figure  7  shows  a
log-log  plot  of  the  CDFs  of  normal  ICA  and  ICA  with  random  R
against  the  frequency  of  lifetime  x.  Normal  ICA follow a  power-law
distribution  with  the  exponent  0.62  (thus  A + 1.62),  while  random
ICA do not. What makes the CDF of normal ICA different from that
of  random ICA are periodic stable  periodic regions and global  stable
phases,  which  contribute  to  a  longer  lifetime.  In  fact,  in  length-
frequency distribution plots (data not shown), the longest length of life-
time in  random ICA was around 50 time steps,  whereas  that  of  ICA
was around 5000 time steps, together with a long noisy tail in the end
of the curve.

Figure 7. A  log-log  plot  of  the  cumulative  distribution  function  of  ICA  cell
lifetime. Normal ICA follow a power law with the exponent A + 1.62.

Discussion and Conclusion4.

We presented a model  of  mutually imitating agents  based on cellular
automata  (CA),  called  imitating  cellular  automata  (ICA).  Despite  the
simple  design,  the  spatiotemporal  pattern  of  ICA  showed  complex
class 3-like behavior mixed with chaotic and periodic stable patterns.
It  has  been  observed  that  globally  stable  phases,  in  which  each  ICA
cell keeps the same state, occasionally emerge and eventually collapse
after  a  certain  period  of  time.  It  was  found  that  such  complex  pat-

          
         

         
        

            
              

          
   

Emergence and Collapse of Order in Mutually Imitating Agents 87

Complex Systems, 24 ! 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.1.75



          
        

        
         

           
         

   p         p  p
terns  were  due  to  the  coupling  of  the  imitating  (rule-generating)  dy-
namics  and  the  intra-agent  dynamics.  In  fact,  when  the  intra-agent
dynamics were absent,  the patterns were totally periodic or complex.
In  other  words,  the  intra-agent  dynamics  coordinate  the  complexity
level of a system at a moderate level.  Without those dynamics, a sys-
tem will fall into stable states or utter chaos. As a result of the coordi-
nation, the ICA dynamics exhibit the power-law relationship in the life-
time of cell states.

Numerous  complex  system models  have  been  proposed  to  answer
how a system can maintain the complexity of the system at an appro-
priate  level,  the  so-called  "edge  of  chaos#  state  [18].  Some  models
adopt two coupled dynamics to achieve complex emergent systems. A
classical example of such a model is Turing;s chemical morphogenesis
[19],  and  a  more  recent  example  is  self-organized  criticality  (SOC)
models,  first  proposed  by  Bak  [20].  It  should  be  mentioned  that  the
critical difference between ICA dynamics and the preceding models is
the  interdependency  of  the  employed  dynamics.  In  previously  pro-
posed models, two dynamics employed to model a system are indepen-
dently  defined.  For  example,  in  the  forest  fire  model  by  Drossel  and
Schwabl  [21],  two  dynamics,  the  tree  growth  probability  p  and  the

lightning probability  f ,  are  defined independently  and fixed through-
out the computation. On the other hand, in the ICA model, the imitat-
ing dynamics determine the "shape#  of the intra-agent dynamics, that
is, a rule used for the dynamics, and an outcome of the intra-agent dy-
namics  crucially  affects  the  formation  of  the  imitating  dynamics.  In
some cases  it  drastically  changes  the  direction  of  future  development
of ICA system, as illustrated by the collapse of a global stable phase.
In other words, two dynamics employed for ICA are built up from the
interactions to another dynamic as well as with other ICA cells on an
ad hoc basis.  As  a  result,  a  system with such coupled dynamics  does
not end up in utter chaos, but in reality the interrelated dynamics al-
low the system to take a wide range of states and also allow globally
stable phases to emerge. 

In  addition  to  the  interrelated  dynamics,  it  should  be  pointed  out
that random bit fillings also undertake an important role for the emer-
gence  of  complex  spatiotemporal  patterns.  If  an  ICA  cell  has  blanks
in a temporary rule table,  the cell  fills  them with random bits.  When
ICA are  dominated by  chaotic  regions,  an  ICA cell  can copy various
kinds  of  transition  patterns  from the  neighborhood  cells,  and  only  a
few  blanks  in  a  temporary  rule  are  filled  with  random  bits.  In  this
case,  the  dynamic  that  determines  the  next  state  of  the  ICA  cell  is
mostly governed by the imitating behavior, and the effect of randomly
determined  rules  is  rather  suppressed.  When  periodic  stable  regions
are  dominant,  on  the  other  hand,  observed  transition  patterns  are
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mostly  either  010 5 1  or  101 5 0,  and  the  other  six  transition  pat-
terns  are  filled  with  random  bits,  which  increases  the  chance  that

chaotic regions become larger. In some rare cases, this gives a low Hin
value and it leads the system to escape out of a globally stable phase,
as  we  showed  in  Section  3.  Thus,  being  intermediated  by  the  intra-
agent  dynamics,  blanks  in  a  temporary  rule  table  work as  a  "buffer#
for  the  whole  ICA  system  to  avoid  being  trapped  in  extreme  cases,
equilibrium, or chaotic states.  In fact,  complex patterns were not ob-
served  at  all  when blanks  were  filled  in  a  deterministic  way  (e.g.,  all
the blanks were filled with zero; data not shown). 

Although the  model  presented  in  this  paper  is  quite  simple,  it  dis-
played  complex  patterns  robustly  when  R = 7.  The  combination  of
the imitating behavior,  the  random behavior,  and the intra-agent  dy-
namics  provided  flexibility  to  the  whole  dynamics.  Arguably,  the  ro-
bustness  to  the  parameter  change  is  one  of  the  consequences  of  the
combination,  which  enabled  the  system  to  self-organize  the  complex
patterns.  We  just  examined  the  simplest  case.  If  the  parameter  space
becomes  larger,  for  example  if  ICA  cells  can  take  more  than  two
states, ICA would show more complex and interesting spatiotemporal
patterns. We also speculate that the basic design of the ICA system, in-
spired from a fundamental behavior of living systems, would turn out
to  be  useful  to  construct  a  model  of  natural  "lifelike#  phenomena,
such as animal population dynamics and stock market dynamics. 
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