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We  investigate  the  use  of  cellular  automata  (CAs)  as  the  core  abstrac-
tion supporting the perspective of immunity as computation, that is, of
immunity as the process of computing the state of the body so that pro-
tection can be effected, as well as boosted through learning. We associ-
ate  each  basin  of  cellular  automaton  (CA)  evolution  with  a  consistent
set  of  body  states  and  introduce  perturbations  to  the  CA  rule  allowing
transitions between basins. Even for elementary CAs, there are rules for
which these perturbed variations display remarkable resiliency in terms
of  basin  occupation.  For  these  rules,  the  long-run  probability  that  the
CA is found in a given basin is practically the same as in the determinis-
tic case when the initial CA state is chosen uniformly at random. 

Introduction1.

The  immune  system  is  one  of  the  body’s  major  regulatory  systems.
Comprising important elements at various physical scales, such as or-
gans,  cells,  and  molecules,  the  immune  system  provides  defenses
against  pathogenic  bacteria  and  viruses,  identifies  and  seeks  to  elimi-
nate  abnormally  behaving  cells  before  they  become  established  tu-
mors, and carries out tissue restoration as well as various other house-
keeping  activities.  The  immune  response  to  invading  pathogens,  as
well as the system’s participation in body maintenance, is the product
of  learning  and  self-organization:  beginning  with  the  so-called  innate
immunity,  the  immune  system  is  capable  of  recreating  itself  along  its
history while avoiding the pitfalls of autoimmunity [1]. In order to re-
main  fit  for  such  a  potentially  daunting  task  for  as  long  as  possible,
the immune system relies on the process known as somatic hypermuta-
tion  [2],  which  continually  provides  the  required  diversity  at  the  im-
mune-cellular level.

While by virtue of the immune system’s nature as a self-organizing
entity  it  seems  safe  to  view  the  rise  of  the  various  immune  functions
as a process that proceeds from the bottom up, starting with local in-
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teractions  at  the  molecular  level,  immunity  is  undoubtedly  a  systemic
process. Explanatory theories of the immune system have therefore os-
cillated between the very local (with the clonal selection theory [3, 4])
and  the  very  wide  (with  the  elusive  idiotypic-network  theory  [5–7],
based  on  the  idea  that  many  immune-system  elements  interact  with
one  another  much  as  they  do  with  antigens).  A  curious  (though  apt)
perspective  that  might  reconcile  the  two  extremes  is  that  the  immune
system  continually  “computes”  the  state  of  the  body  (of  which  it  is
part),  resulting  in  state  alterations  as  the  immune  system  both  acts
and learns [8]. 

Models  of  the  immune  system,  however,  have  concentrated  on  ex-
pressing the evolution in time of cell concentrations and other quanti-
ties,  usually  by  differential  equations  (e.g.,  [9])  but  also  by  discrete-
time  abstractions  akin  to  cellular  automata  (CAs)  [10].  In  general,
such  models  have  been  shown  to  provide  a  qualitatively  convincing
picture of how several of the important immune functions arise, or of
how the idiotypic network is thought to be organized. But the immu-
nity-as-computation paradigm is to our knowledge yet to be explored,
though  it  should  be,  for  at  least  two  reasons  that  we  find  quite  com-
pelling.  The  first  one  is  that  viewing  immunity  as  resulting  from  the
continual  computation  of  states  of  the  body  is  bound  to  require  new
abstractions through which such states can be represented and manip-
ulated,  mathematically  or  computationally.  As  a  consequence,  valu-
able  insights  can  be  expected  to  emerge.  The  second  reason  is  that
once suitable state representations have been identified,  the possibility
of uncertain events that render the entire system both adaptive and vul-
nerable can be more easily taken into account. 

Here  we  begin  to  investigate  the  use  of  CAs  as  a  suitable  abstrac-
tion  to  underlie  the  study  of  the  immune  system  as  a  computational
entity.  Although  choosing  CAs  may  seem  only  natural  to  uncondi-
tional  cellular  automaton  (CA)  enthusiasts,  given  the  impressive
plethora  of  domains  to  which  CAs  have  been  applied  [11],  in  our  vi-
sion there are specific  reasons backing our choice. One of them is that
by virtue of the deterministic character of how CAs evolve in time, all
CA states for a given finite  number of cells and a fixed  rule are neces-
sarily  partitioned  into  attractor  basins.  Viewing  CA  states  as  body
states and the CA rule as summarizing the computation of body states
by  the  immune  system  immediately  yields  an  interpretation  of  each
basin as the set of states to which the body is confined  once it is born
into  that  basin.  Depending  on  the  CA  rule  in  question,  some  basins
may  express  a  complex  succession  of  body  states,  while  others  may
seem  dull  by  comparison  or  merely  bespeak  decay  and  disorganiza-
tion. 

Another  reason  for  choosing  a  representation  by  CAs  is  that  they
yield  easily  to  the  incorporation  of  uncertainty.  This  can  be  achieved
in  many  ways,  our  choice  being  to  allow  each  cell,  at  each  time  step,
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to disobey the CA rule in use and change its state differently than the
rule  mandates.  We  model  this  possibility  by  a  single  probability  pa-
rameter,  denoted  by  p.  The  usual,  deterministic  CA  world  is  recov-
ered by setting p to 0, but proceeding otherwise (i.e., choosing p > 0)
immediately  opens  up  new  doors.  Specifically,  every  CA  state  be-
comes  reachable  from  every  other  state,  whence  it  follows  that  the
aforementioned  attractor  basins  are  no  longer  unreachable  from  one
another  during  the  CA  dynamics  but  rather  allow  the  body  whose
states  are  the  CA  states  to  journey  through  a  rich  variety  of  domains
(health,  disease,  recovery,  etc.),  however  unlikely  the  transition  from
one to another may be. It also follows that the attractor dynamics in-
side a basin are no longer inevitable, and likewise that the periodic at-
tractor lying at a basin’s core is not inescapable. 

The  question  we  seek  to  answer  is  the  following.  Given  a  CA  rule
and  an  attractor  basin  in  the  corresponding  CA  state  space,  what  is
the probability that in the long run, the CA state is part of that basin?
Unlike  other  studies  that  model  uncertainty  in  a  manner  similar  to
ours  (e.g.,  [12]  and  references  therein),  answering  this  question  relies
not  on  analyzing  spatiotemporal  patterns  of  CA  evolution  but  rather
on  solving  Markov  chains  for  their  stationary  distributions.  This  is
computationally  strenuous,  but  for  modestly  sized  systems  we  show
that there do exist CA rules for which the added uncertainty, while al-
lowing the desired transitions between CA states of different basins to
occur,  nevertheless  tends  to  confine  the  CA  dynamics  to  within  the
same  basin  where  they  would  unfold  if  no  uncertainty  had  been
added, but initial conditions were random. 

We proceed in the following manner. We present our model, along
with its main properties, in Section 2. This is followed by our method-
ology  in  Section  3,  results  in  Section  4,  and  discussion  in  Sections  5
and 6. We conclude in Section 7. 

Model2.

We consider binary CAs, that is, CAs whose cell states are either 0 or
1. If n is the number of cells, assumed finite,  then the number of dis-
tinct  CA  states  is  2n.  All  cells  update  their  states  at  all  times  syn-
chronously  (i.e.,  in  lockstep)  based  on  the  same  rule,  which  can  be

thought  of  as  a  table  of  binary  outputs  indexed  by  δ + 1-bit  inputs.

Here δ is the size of a cell’s neighborhood, the same for all cells, so a
cell’s new state depends on its own current state and on its neighbors’

current  states.  Each  rule’s  size  is  2δ+1,  so  there  exist  22
δ+1

 distinct
rules.  Fixing  the  rule  to  be  used  gives  rise  to  a  function  f  mapping

each CA state in 0, 1n into another state in the same set.
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Our model is based on turning deterministic CAs into probabilistic
ones. We do this by introducing a probability p with which each cell,
at each time step, disobeys the rule’s prescription for its next state in-
dependently  of  all  other  cells.  So  if  x  denotes  a  cell’s  next  state  and

the  CA  rule’s  current  prescription  for  the  value  of  x  is  b ∈ 0, 1,  we

have

x :=
1 - b, with probability p;

b, otherwise.
(1)

Now let i, j ∈ 0, 1n be any two CA states and let Di,j be the Ham-

ming distance between them (i.e., the number of cells at which i and j
differ).  Additionally,  let  ki  f(i);  that  is,  ki  is  the  CA  state  that  fol-
lows i in the deterministic dynamics for the rule at hand. Once we in-
troduce  the  probability  p,  the  probability  that  CA  state  i  is  followed
by j, denoted by pi,j, is 

pi,j  pDj,ki 1 - pn-Dj,ki . (2)

Readily,  letting  j  ki  yields  Dj,ki
 0,  and  consequently

pi,j  1 - pn.  This  is  the  probability  with  which  i  is  followed  by  ki,

that  is,  the  probability  that  at  any  given  time  step  the  deterministic
prescription is respected.

Thus, while using p  0 clearly recovers the traditional, determinis-
tic  dynamics  (since  pi,j  1  if  j  ki  and  pi,j  0  otherwise),  using

p > 0  lets  the  CA  dynamics  be  described  as  a  discrete-time  Markov
chain  on  the  CA  states  having  P  [pi,j]  for  the  transition-probability

matrix. To see this, it suffices  to verify that the elements of P sum up
to 1 on any row. That is, fixing i yields 


j∈{0,1}n

pi,j  

d0

n
n

d
pd1 - pn-d  1 (3)

(because ki  is fixed  along with i and differs at h cells from 

n

h
 of the

2n CA states for any given number h of cells). Moreover, for p > 0 ev-
ery element of P is nonzero, and therefore the chain is ergodic, mean-
ing that regardless of how likely it is for any given CA state to be the
initial state, in the long run the CA is found in state i with the station-
ary probability πi given by π  π P, where π  [πi] is a row vector.

On Symmetry2.1

By equation (1), letting p  1 also implies deterministic behavior, but
following  the  rule  that  is  complementary  to  the  one  that  is  followed
when p  0. That is, one rule sets x to b if and only if the other sets it
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to 1 - b. A similar type of symmetry occurs between the case in which
p > 0 and that in which 1 - p is used instead. 

To  see  this,  first  let l  denote  the  complement  of  CA  state l  (i.e.,

adding  any  cell’s  state  in  l  to  its  state  in  l  yields  1).  It  clearly  follows
that  Dl,j +Dl,j

 n  for  any  CA  state  j.  Now  recall  that  equation  (2)

refers to a specific  CA rule and to each cell disobeying it with proba-
bility  p  at  each  time  step.  Rewriting  the  equation  for  the  comple-
mentary rule and also letting it be disobeyed with probability 1 - p in-
stead has no effect on the value of pi,j, since 

1 - p
D
j,ki p

n-D
j,ki  1 - pn-Dj,ki pDj,ki . (4)

Thus,  studying  the  case  of  any  given  rule  under  p  leads  to  the  same
Markov  chain  as  studying  the  complementary  rule  under  1 - p  and
consequently, to the same stationary probabilities on the CA states.

Typically  our  interest  lies  in  small  values  of  p,  which  makes  the
case  of  (the  correspondingly  large)  1 - p  even  more  remarkable,  at
least  at  the  level  of  CA  states.  At  the  higher  level  of  the  attractor
basins, however, no equivalence can in general be expected: the proba-
bility  that  the  CA  is  found  in  a  particular  basin  in  the  long  run
depends on how the CA states cluster into basins, and in general this
happens differently for a given rule and its complement. 

Nevertheless, there do exist rule pairs that display equivalent behav-
ior  for  the  same  value  of  p.  We  identify  these  pairs  by  first  introduc-
ing a transformation between CA states—call it g—and requiring that
one of the rules in the pair lead the CA from state i to state ki  if and

only  if  the  other  rule  leads  the  CA  from  state  g(i)  to  state  gki.  Any

rule  pair  satisfying  this  requirement  is  such  that  the  corresponding
sets  of  attractor  basins,  one  for  each  rule,  are  structurally  equivalent
to each other. If, moreover, we require Dj,ki

 Dg(j),gki
, then we also

have pi,j  pg(i),g(j). What results from this is that in the long run, the

CA is found in any given basin of one of the rules with the same prob-
ability that it is found in the equivalent basin of the other rule. 

Rule pairs like this are important in our context because they have
the  potential  of  reducing  the  number  of  rules  that  have  to  be  ana-
lyzed. This is so because even though the two sets of stationary proba-
bilities on the CA states are in general distinct, when the probabilities
are  summed  up  inside  any  basin  of  one  of  the  rules  the  result  is  the
same as that for the other rule’s equivalent basin. One transformation
g  for  which  every  rule  has  a  counterpart  with  which  it  satisfies  the
two given requirements is negation; that is, adding any cell’s state in i

to  its  state  in  g(i)  yields  1.  Another  one  is  reflection;  that  is,  the  cth

cell’s state in i is the same as the n - c + 1th  cell’s state in g(i) for ev-

ery c ∈ 1, 2, … , n. 
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A Special Case2.2

By equation (2), letting p  0.5 leads to pi,j  1  2n  regardless of i, j,

or the rule being used. From this it follows that πi  1  2n for every i,

so  the  CA  is  equally  likely  to  be  found  at  any  state  in  the  long  run.
However, our transition-probability matrix P for this particular value
of  p  is  not  the  only  one  leading  to  the  uniform  distribution  over  the
CA  states:  in  fact,  this  happens  if  and  only  if  the  matrix  is  doubly
stochastic  (i.e.,  its  elements  add  up  to  1  column-wise  just  as  they  do
row-wise)  and  implies  an  ergodic  chain.  An  example  is  obtained  by
letting

pi,j 

1

n

τ

, ifDi,j  τ;

0, otherwise

(5)

for  any  number  τ  of  cells  [13]  (but  note  that  our  p  0.5  case  is  not
equivalent to choosing any particular value for τ).

The General Case2.3

Our model is a special case of the so-called probabilistic CAs (PCAs),
in which a cell’s next state is no longer given by the customary deter-
ministic  rule  but  instead  is  chosen  probabilistically  as  a  function  of
the  cell’s  and  its  neighbors’  current  states.  Our  particular  types  of
PCAs rely on the probabilistic decision summarized in equation (1), it-
self  dependent  on  a  specific  deterministic  rule  (unlike  most  PCAs,  in
whose cases no deterministic rule plays any role).

Placing our model within the wider class of PCAs is important be-
cause  they  have  been  viewed  as  prototypes  of  many  important  sys-
tems,  both  physical  and  computational,  in  a  way  similar  to  that  in
which  immunity  may  come  to  be  characterized  as  a  computational
process. Examples of such systems include the spin lattices of statisti-
cal  physics  [14–18]  and,  more  generally,  the  Markov  and  Gibbs  ran-
dom  fields  [19]  that  together  with  various  asynchronous  state-update
schemes  [20,  21]  underlie  many  of  the  so-called  probabilistic  graphi-
cal models (such as Bayesian networks and hidden Markov models) in
artificial intelligence [22]. 

Methods3.

Given a deterministic CA rule and the number n of cells, let m denote

the  number  of  attractor  basins  into  which  the  set  0, 1n  is  parti-

tioned.  We  denote  these  basins  by  B1, B2, … , Bm.  For  the  case  in
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which  the  rule  in  question  may  be  disobeyed  by  any  cell  at  any  time
step  according  to  equation  (1)  with  p > 0,  our  aim  is  to  calculate  the
probability  that  in  the  long  run,  the  CA  is  found  in  some  state  of  a
given basin B ∈ {B1, B2, … , Bm}. Denoting this probability by πB, we
clearly have 

πB  
i0∈{0,1}n

πB i0 Pr(i0), (6)

where πB i0  is the conditional probability that in the long run, the CA

is found in some state in B, given that it started at state i0, and Pr(i0)
is the probability that it did start at i0. However, it follows from our
discussion  in  Section 2  that  πB i0  is  actually  unaffected  by  i0  and  can

be  obtained  by  adding  up  πi,  the  stationary  probability  of  CA  state  i
in the associated Markov chain, for all i ∈ B. We then have

πB  
i∈B

πi, (7)

regardless  of  how  we  choose  the  initial  state  i0,  that  is,  regardless  of
Pr(i0) for any i0.

All  our  analyses  in  the  forthcoming  sections  are  based  on  compar-
ing  πB  to  the  corresponding  probability  when  p  0,  that  is,  when
evolution  is  deterministic.  We  denote  this  probability  by  σB  and  the
corresponding conditional probability, given i0, by σB i0 . Readily, 

σB i0 
1, if i0 ∈ B;

0, otherwise
(8)

and

σB  
i0∈{0,1}n

σB i0 Pr(i0)  
i0∈B

Pr(i0), (9)

so σB is clearly dependent upon how i0 is chosen. We continue by as-

suming that this happens uniformly at random; that is, Pr(i0)  1  2n

for every i0, whence we obtain

σB 
B

2n
. (10)

Thus,  σB  results  trivially  from  the  uniform  distribution  over  all  CA
states (we simply add it up for all states in basin B).

Obtaining  πB  for  every  basin  B  requires  the  system  π  π P  to  be

solved,  subject  to  the  constraints  that  πi > 0  for  all  i ∈ 0, 1n  and

∑i∈{0,1}n πi  1,  for  each  desired  combination  of  n,  CA  rule,  and

p > 0.  We  have  used  the  solver  that  is  freely  available  as  part  of  the
Tangram-II  modeling  tool  [23].  This  solver  employs  state-of-the-art
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techniques for the above determination of π given P, but in our case P
is  a  2n⨯2n  matrix  with  no  zeros  and  no  facilitating  symmetries  or
structure.  Thus  the  solution  process  has  been  very  time-consuming,
which  has  constrained  n  to  the  modest  values  of  10  through  12.  For
the  record,  we  mention  that  depending  on  the  CA  rule  at  hand,  step-
ping  up  to  n  13  would  demand  nearly  two  months  per  run  on  an
Intel Xeon E5-1650 at 3.2GHz with enough memory to store the en-
tire  8192⨯8192  system  at  all  times.  This,  unfortunately,  has  proven
infeasible. 

Results4.

Henceforth we let ℬ denote the set {B1, B2, … , Bm} of all basins for a
given  CA  rule  and  a  fixed  value  of  n.  We  compare  the  distributions
πB1

, πB2
, … , πBm  and  σB1

, σB2
, … , σBm  by  means  of  the  Hellinger

distance between them, denoted by H(π, σ) and given by

H(π, σ)  1 - 
B∈ℬ

πB σB . (11)

Using  the  Hellinger  distance  to  compare  the  two  distributions  is  con-
venient  not  only  because  it  truly  is  a  distance  function,  but  also  be-
cause  it  is  always  such  that  0 ≤ H(π, σ) ≤ 1.  In  fact,  clearly
H(π, σ)  0  if  and  only  if  πB  σB  for  all  B ∈ ℬ,  and  H(π, σ)  1  if
and only if πB σB  0 for all B ∈ ℬ. The latter, however, can never be
achieved  in  our  context  because  both  πB  and  σB  are  strictly  positive
for all B ∈ ℬ.

We  also  compare  the  mean  and  standard  deviation  of  basin  sizes,
as  they  vary  from  one  distribution  to  the  other.  To  this  end,  we  use
the ratios 

ρmean 
∑B∈ℬ πB B

∑B∈ℬ σB B
(12)

and

ρs.d. 
∑B∈ℬ πB B2 - ∑B∈ℬ πB B )2

∑B∈ℬ σB B2 - ∑B∈ℬ σB B )2
. (13)

Clearly,  comparing  ρmean  to  1  lets  us  detect  increases  or  decreases  in
the  mean  basin  size  as  we  move  from  using  the  probabilities
σB1

, σB2
, … , σBm  to  using  πB1

, πB2
, … , πBm ,  and  likewise  for  ρs.d.

with respect to the standard deviation of basin sizes.
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This  data  is  given  in  Tables  1  and  2,  the  former  containing
Hellinger  distances,  the  latter  containing  mean  and  standard-devia-
tion  ratios.  All  data  refers  to  elementary  CAs  [24],  which  in  the  pre-
sent context corresponds to setting a cell’s neighborhood size (δ) to 2,
and  to  an  arrangement  of  cells  that  is  one  dimensional  with  periodic
boundaries  (i.e.,  the  first  and  last  cells  in  the  arrangement  are  neigh-
bors).  Moreover,  our  data  encompasses  all  combinations  of  a  unique

rule,  a  CA  size  n ∈ 10, 11, 12,  and  a  probability  p ∈ 0.001, 0.01.

By  unique  rule  we  mean  one  that  is  not  equivalent  to  any  other  se-
lected  rule  by  negation  or  reflection.  Of  the  256  possible  elementary
CA  rules,  88  are  unique  in  this  sense  but  group  with  the  remaining
168 rules into equivalence classes of size at most 4, or into larger clus-
ters  of  size  at  most  8  as  two  equivalence  classes  of  pairwise  comple-
mentary rules are joined. Each of the equivalence classes might be rep-
resented in our tables by any of its members, but we follow Wuensche
and Lesser, who in their atlas [25] use one or two rules of each larger
cluster, viz. the rule of least number (in the customary Wolfram sense
[24])  and  its  complement  if  not  already  in  the  first  rule’s  equivalence
class. Each table also informs a rule’s class (1 through 4) according to
Wolfram’s well-known qualitative scheme [26]. 

H (π, σ) for n  10 H (π, σ) for n  11 H (π, σ) for n  12

Rule Class p  0.001 p  0.01 p  0.001 p  0.01 p  0.001 p  0.01

0 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
248 1 0.248956 0.248918 0.223216 0.223206 0.200278 0.200274
249 1 0.091299 0.091276 0.073387 0.073380 0.059551 0.059549
250 1 0.176776 0.176729 0.015626 0.015626 0.125000 0.124995
251 1 0.031257 0.031224 0.000000 0.000000 0.015626 0.015623
252 1 0.022100 0.022100 0.015626 0.015626 0.011049 0.011049
253 1 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
254 1 0.022100 0.022100 0.015626 0.015626 0.011049 0.011049

1 2 0.237315 0.239354 0.260833 0.261584 0.283045 0.283760
2 2 0.214709 0.203996 0.224895 0.223983 0.234612 0.233671
3 2 0.121415 0.124573 0.136260 0.136566 0.150518 0.150766
4 2 0.198416 0.178198 0.207861 0.206196 0.216913 0.215180
5 2 0.122062 0.123784 0.136260 0.136566 0.151784 0.152007
6 2 0.145932 0.099881 0.153279 0.140815 0.178978 0.167294
7 2 0.570014 0.073262 0.600195 0.477705 0.627823 0.494088
9 2 0.127448 0.058579 0.198415 0.169627 0.130059 0.112595

10 2 0.104076 0.102039 0.088408 0.086590 0.106435 0.104504
11 2 0.339538 0.265903 0.290900 0.238953 0.543483 0.346141
12 2 0.084915 0.083186 0.088408 0.086590 0.091966 0.090065
13 2 0.561884 0.436485 0.298189 0.248901 0.620558 0.469093
14 2 0.296465 0.245507 0.335487 0.266519 0.492403 0.338750
15 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
19 2 0.665262 0.455025 0.687454 0.466017 0.706507 0.476426
23 2 0.649786 0.504885 0.674805 0.517551 0.699909 0.532909
24 2 0.151170 0.145988 0.162003 0.156480 0.163455 0.157906
25 2 0.178794 0.142287 0.205302 0.166376 0.240752 0.184615

Table 1. (continues).
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H (π, σ) for n  10 H (π, σ) for n  11 H (π, σ) for n  12

Rule Class p  0.001 p  0.01 p  0.001 p  0.01 p  0.001 p  0.01

26 2 0.096811 0.087081 0.092313 0.081963 0.082902 0.073380
27 2 0.078410 0.075206 0.078149 0.075674 0.088139 0.084074
28 2 0.507050 0.293820 0.276705 0.187250 0.554002 0.304611
29 2 0.042041 0.041289 0.044401 0.043618 0.046283 0.045463
33 2 0.128619 0.124749 0.102505 0.099605 0.131497 0.128095
35 2 0.112197 0.095522 0.108425 0.093326 0.136032 0.100919
36 2 0.210118 0.202473 0.212746 0.204591 0.218307 0.209832
37 2 0.217930 0.128618 0.130832 0.085161 0.153067 0.127335
38 2 0.053281 0.051025 0.060564 0.058097 0.058462 0.055931
43 2 0.299150 0.254258 0.340329 0.279313 0.499819 0.357524
46 2 0.176524 0.167568 0.186924 0.177534 0.196353 0.186419
50 2 0.621971 0.428828 0.434170 0.334403 0.667557 0.448039
51 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
57 2 0.271948 0.093908 0.095220 0.034859 0.287305 0.079804
58 2 0.230614 0.194367 0.401245 0.276011 0.410814 0.410734
62 2 0.197845 0.138003 0.132255 0.122913 0.215650 0.117917
73 2 0.294481 0.182849 0.120781 0.107784 0.181444 0.151175
77 2 0.649786 0.504885 0.447864 0.375344 0.699909 0.532909
94 2 0.306439 0.269040 0.277744 0.242535 0.569790 0.280718

178 2 0.649786 0.504885 0.447864 0.375344 0.699909 0.532909
197 2 0.529675 0.345739 0.285589 0.211139 0.581408 0.362983
198 2 0.522388 0.330289 0.282790 0.203589 0.572138 0.344295
201 2 0.220405 0.209932 0.217887 0.207934 0.221112 0.209812
204 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
205 2 0.081927 0.080898 0.082447 0.081349 0.083984 0.082815
210 2 0.007328 0.006725 0.000000 0.000000 0.010027 0.008364
212 2 0.299150 0.254258 0.340329 0.279313 0.499819 0.357524
214 2 0.104722 0.100715 0.138109 0.122696 0.112897 0.094736
217 2 0.120698 0.115389 0.130762 0.125581 0.126279 0.121099
218 2 0.266122 0.259242 0.221638 0.214302 0.265582 0.258562
220 2 0.092624 0.090070 0.092633 0.089882 0.094236 0.091322
222 2 0.081912 0.081363 0.081185 0.080555 0.084533 0.084083
226 2 0.170992 0.148976 0.079509 0.075465 0.196928 0.168250
227 2 0.128235 0.089781 0.076123 0.065573 0.109403 0.072279
228 2 0.322168 0.308522 0.308795 0.298360 0.299346 0.290927
229 2 0.101086 0.096509 0.134254 0.119041 0.115874 0.108862
230 2 0.238324 0.230492 0.258104 0.250046 0.277262 0.268729
232 2 0.649786 0.504885 0.674805 0.517551 0.699909 0.532909
233 2 0.370172 0.311163 0.404103 0.341928 0.420107 0.357435
236 2 0.767929 0.677742 0.790184 0.701010 0.810056 0.722260
237 2 0.511025 0.446457 0.532280 0.465832 0.551887 0.483901
240 2 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
241 2 0.161638 0.159585 0.169371 0.167225 0.176764 0.174527
242 2 0.219813 0.216880 0.229854 0.226784 0.239672 0.236473
243 2 0.084915 0.083186 0.088408 0.086590 0.091966 0.090065
244 2 0.253371 0.248050 0.265043 0.259493 0.276340 0.270564
246 2 0.123588 0.121820 0.126632 0.124803 0.133269 0.131387

18 3 0.177219 0.171971 0.098671 0.095609 0.216715 0.200709
22 3 0.051738 0.044548 0.090170 0.077895 0.250064 0.134211
30 3 0.034544 0.016889 0.020255 0.007665 0.038162 0.009492
45 3 0.016456 0.010594 0.000000 0.000000 0.056506 0.004097
60 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000

Table 1. (continues).
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H (π, σ) for n  10 H (π, σ) for n  11 H (π, σ) for n  12

Rule Class p  0.001 p  0.01 p  0.001 p  0.01 p  0.001 p  0.01

90 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
105 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
126 3 0.114009 0.110473 0.158805 0.146309 0.140149 0.125633
150 3 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
161 3 0.213897 0.142957 0.046676 0.018741 0.145264 0.101305
182 3 0.118028 0.098982 0.037891 0.030647 0.110355 0.095368

41 4 0.120070 0.097433 0.115620 0.106492 0.150240 0.107285
54 4 0.250242 0.160801 0.078368 0.060045 0.285840 0.138826

193 4 0.066972 0.049254 0.057118 0.030831 0.096156 0.052231
225 4 0.034380 0.020135 0.062034 0.018674 0.488660 0.119769

Table 1. Hellinger distances.

n  10 n  11 n  12

ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule Class I II I II I II I II I II I II

0 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
248 1 1.13 1.13 0.00 0.00 1.11 1.11 0.00 0.00 1.09 1.09 0.00 0.00
249 1 1.02 1.02 0.00 0.00 1.01 1.01 0.00 0.00 1.01 1.01 0.00 0.00
250 1 1.06 1.06 0.00 0.00 1.00 1.00 0.00 0.00 1.03 1.03 0.00 0.00
251 1 1.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00
252 1 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00
253 1 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
254 1 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00

1 2 0.41 0.40 0.74 0.74 0.35 0.35 0.68 0.68 0.30 0.30 0.62 0.62
2 2 0.75 0.80 0.98 0.99 0.72 0.73 0.93 0.93 0.67 0.67 0.88 0.88
3 2 0.91 0.88 0.93 0.94 0.85 0.85 0.90 0.90 0.80 0.80 0.86 0.85
4 2 0.49 0.53 0.72 0.75 0.45 0.46 0.68 0.68 0.42 0.43 0.64 0.65
5 2 0.70 0.65 0.76 0.71 0.63 0.63 0.71 0.70 0.59 0.58 0.66 0.65
6 2 0.88 0.95 1.05 1.03 0.85 0.87 1.12 1.12 0.84 0.85 1.02 1.02
7 2 1.40 1.07 0.14 1.00 1.49 1.44 0.15 0.50 1.43 1.38 0.16 0.51
9 2 1.11 1.04 0.97 1.00 0.84 0.86 1.58 1.53 0.99 0.98 0.98 0.99

10 2 0.90 0.90 0.98 0.98 0.92 0.92 1.02 1.02 0.90 0.90 1.04 1.04
11 2 1.08 1.08 0.88 0.90 1.11 1.09 0.90 0.92 2.37 1.92 0.39 0.91
12 2 0.93 0.93 1.01 1.01 0.92 0.92 1.01 1.01 0.91 0.92 1.00 1.00
13 2 1.93 1.83 0.18 0.54 1.17 1.16 0.08 0.26 2.33 2.14 0.24 0.71
14 2 1.03 1.03 0.99 0.99 1.42 1.37 0.71 0.77 1.91 1.71 0.26 0.68
15 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
19 2 3.68 2.95 0.48 1.16 4.28 3.27 0.58 1.33 4.97 3.61 0.70 1.51
23 2 3.33 3.01 0.26 0.75 3.89 3.43 0.32 0.88 4.57 3.92 0.38 1.02
24 2 1.01 1.01 1.23 1.21 0.97 0.97 1.03 1.02 0.97 0.98 0.98 0.98
25 2 1.00 0.99 0.99 1.00 0.87 0.89 1.27 1.22 1.21 1.17 0.99 1.01
26 2 0.92 0.92 1.03 1.03 0.94 0.94 0.98 0.98 0.89 0.90 0.94 0.94
27 2 0.95 0.95 0.97 0.97 0.93 0.93 0.94 0.94 0.94 0.94 0.98 0.98
28 2 2.16 1.78 0.35 0.85 1.22 1.18 0.16 0.48 2.72 2.04 0.46 1.03
29 2 1.03 1.03 1.03 1.03 1.04 1.04 1.06 1.06 1.04 1.04 1.05 1.05
33 2 0.77 0.77 0.85 0.86 0.79 0.79 0.84 0.84 0.77 0.77 0.83 0.83
35 2 1.15 1.13 1.01 1.01 1.00 1.00 0.97 0.97 1.10 1.07 1.00 1.00
36 2 0.57 0.59 0.90 0.90 0.54 0.56 0.86 0.87 0.50 0.52 0.82 0.83

Table 2. (continues).
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n  10 n  11 n  12

ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule Class I II I II I II I II I II I II

37 2 0.86 0.92 1.18 1.10 0.96 0.99 1.14 1.09 1.03 1.03 0.96 0.96
38 2 0.96 0.97 1.02 1.02 0.96 0.96 1.04 1.03 0.95 0.95 1.00 1.00
43 2 1.06 1.05 0.86 0.87 1.42 1.38 0.68 0.74 2.08 1.87 0.24 0.65
46 2 0.96 0.96 1.09 1.08 0.97 0.97 1.14 1.13 0.92 0.93 1.03 1.03
50 2 3.29 2.74 0.37 0.94 1.58 1.52 0.14 0.43 4.49 3.43 0.52 1.22
51 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
57 2 1.28 1.12 0.34 0.83 1.03 1.01 0.28 0.78 1.35 1.12 0.41 0.89
58 2 0.97 0.98 1.00 0.99 1.36 1.30 0.18 0.52 1.35 1.31 0.43 0.43
62 2 1.24 1.17 0.61 0.77 1.31 1.30 1.17 1.16 0.85 0.96 1.04 1.01
73 2 1.08 1.02 1.16 1.09 0.93 0.93 0.90 0.90 0.91 0.86 0.98 0.92
77 2 3.33 3.01 0.26 0.75 1.58 1.55 0.10 0.32 4.57 3.92 0.38 1.02
94 2 0.84 0.87 1.13 1.12 0.90 0.92 1.04 1.03 2.04 1.30 0.66 1.08

178 2 3.33 3.01 0.26 0.75 1.58 1.55 0.10 0.32 4.57 3.92 0.38 1.02
197 2 1.91 1.70 0.28 0.75 1.17 1.15 0.13 0.39 2.30 1.92 0.37 0.94
198 2 2.17 1.85 0.30 0.80 1.22 1.19 0.14 0.42 2.75 2.17 0.41 0.98
201 2 0.91 0.91 1.16 1.15 0.90 0.91 1.12 1.11 0.97 0.96 1.22 1.19
204 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
205 2 0.97 0.97 1.02 1.01 0.97 0.97 1.00 1.00 0.97 0.97 1.01 1.01
210 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
212 2 1.04 1.04 0.91 0.91 1.56 1.50 0.85 0.89 2.08 1.87 0.24 0.65
214 2 0.96 0.96 1.05 1.05 0.79 0.82 1.09 1.09 0.97 0.97 0.96 0.97
217 2 0.94 0.94 1.37 1.36 0.92 0.92 1.37 1.35 0.90 0.90 1.12 1.11
218 2 0.59 0.60 0.80 0.81 0.55 0.56 0.79 0.80 0.50 0.52 0.73 0.74
220 2 0.93 0.93 1.02 1.02 0.92 0.92 1.01 1.01 0.91 0.92 1.01 1.01
222 2 0.85 0.85 0.91 0.91 0.83 0.84 0.89 0.89 0.82 0.81 0.88 0.88
226 2 1.08 1.07 0.96 0.97 0.99 0.99 1.00 1.00 1.09 1.08 0.98 0.98
227 2 1.07 1.04 1.00 1.00 1.07 1.05 1.04 1.04 1.08 1.05 1.02 1.01
228 2 0.72 0.74 1.05 1.05 0.69 0.70 0.98 0.98 0.66 0.68 0.91 0.91
229 2 0.96 0.96 1.03 1.03 0.89 0.90 1.01 1.01 0.80 0.81 0.86 0.86
230 2 0.70 0.71 0.86 0.87 0.73 0.74 0.90 0.91 0.70 0.71 0.80 0.81
232 2 3.33 3.01 0.26 0.75 3.89 3.43 0.32 0.88 4.57 3.92 0.38 1.02
233 2 1.39 1.37 0.09 0.28 1.48 1.46 0.09 0.28 1.53 1.51 0.09 0.29
236 2 5.40 5.11 0.24 0.72 6.39 6.01 0.27 0.82 7.57 7.08 0.31 0.92
237 2 1.88 1.84 0.10 0.31 2.00 1.95 0.10 0.32 2.13 2.07 0.11 0.33
240 2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
241 2 0.80 0.80 0.94 0.94 0.77 0.77 0.90 0.90 0.76 0.76 0.88 0.89
242 2 0.78 0.78 0.96 0.96 0.68 0.68 0.81 0.81 0.69 0.69 0.86 0.86
243 2 0.94 0.94 1.04 1.04 0.92 0.92 1.02 1.02 0.92 0.93 1.00 1.00
244 2 0.96 0.96 0.98 0.98 0.96 0.96 0.99 0.99 0.96 0.96 1.00 1.00
246 2 0.88 0.88 1.10 1.10 0.89 0.90 1.17 1.16 0.92 0.92 1.07 1.07

18 3 0.86 0.86 0.94 0.94 0.90 0.90 1.04 1.04 0.81 0.82 0.64 0.65
22 3 0.94 0.95 0.98 1.00 0.97 0.96 0.99 0.98 0.60 0.79 1.01 1.05
30 3 0.98 0.99 1.05 1.04 0.98 0.99 1.02 1.01 0.99 1.00 1.10 1.04
45 3 0.99 0.99 1.01 1.01 1.00 1.00 1.00 1.00 0.98 1.00 1.00 1.00
60 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
90 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

105 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
126 3 0.91 0.91 1.07 1.07 0.88 0.88 1.02 1.02 0.87 0.88 0.75 0.78
150 3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
161 3 0.97 0.98 1.16 1.12 1.02 1.00 0.98 1.02 0.93 0.94 1.05 1.05
182 3 1.02 1.02 0.87 0.88 1.02 1.02 0.95 0.96 1.01 1.00 0.87 0.86
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n  10 n  11 n  12

ρmean ρs.d. ρmean ρs.d. ρmean ρs.d.
Rule Class I II I II I II I II I II I II

41 4 1.04 1.03 0.95 0.97 1.16 1.15 1.12 1.12 0.83 0.89 0.97 1.01
54 4 0.86 0.90 0.84 0.89 1.03 1.04 1.06 1.05 1.41 1.17 0.86 0.98

193 4 1.03 1.02 0.99 1.00 1.07 1.03 0.92 0.97 0.95 0.97 1.05 1.03
225 4 0.99 0.99 1.02 1.02 1.03 0.99 0.88 1.04 0.39 0.92 1.24 1.14

Table 2. Mean and standard-deviation ratios (I: p  0.001; II: p  0.01).

Discussion5.

As we have seen, disobeying a CA rule independently at each cell with
probability  p  makes  the  CA  dynamics  stochastic  and  puts  them  be-
tween two extremes that in a sense are equivalent. One extreme is the
p  0  case,  that  is,  the  case  in  which  the  rule  is  not  disobeyed  at  all
and  the  customary  deterministic  dynamics  are  followed.  In  this  case,
the  long-run  probability  that  a  randomly  chosen  CA  state  is  in  some
basin  B  is  σB  and  stems  from  the  uniform  distribution  on  the  CA
states,  provided  the  initial  state  is  itself  chosen  uniformly  at  random.
The other extreme is that of p  0.5, in which case the long-run prob-
ability that the CA is found in basin B is πB, now stemming from CA-
state probabilities that are again uniform but now by virtue of the un-
derlying Markov chain’s stationary distribution.

Comparing these two distributions as indicated in Section 4 clearly
yields  H(π, σ)  0  and  consequently,  ρmean  ρs.d.  1,  regardless  of

the  particular  CA  rule  and  CA  size  being  considered.  Although  these
values  may  look  like  what  we  seek  (stochastic  CA  dynamics  that,
while  allowing  occasional  transitions  between  basins,  let  the  CA
states be found in the same basin for long stretches of time), they are
only  the  product  of  erratic  transitions  between  the  CA  states.  In  fact,
for  p  0.5,  all  CA  states  are  equally  likely  candidates  for  where  the
CA is to move next, regardless of where it is currently. 

It  is  instructive  to  contrast  this  p  0.5  extreme  with  the  case  of
any  p  such  that  0 < p < 0.5.  We  first  rewrite  the  transition  probabil-
ity pi,j of equation (2) as 

pi,j  1 - pn
1 - p

p

-Dj,ki
, (14)

which  for  0 < p < 0.5  leaves  it  clear  that  pi,j  decays  exponentially

with  the  Hamming  distance  between  j  and  ki  from  the  maximum

value  of  1 - pn.  This  maximum,  as  we  have  noted,  is  achieved  for

j  ki,  so  evolving  toward  i’s  deterministic  successor  in  a  single  time
step  is  always  exponentially  more  likely  than  doing  it  toward  any
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other  CA  state.  Intuitively,  we  might  then  expect  the  occurrence  of
H(π, σ) ≈ 0  to  be  commonplace,  but  we  have  found  this  to  be  far
from the truth. In fact, it all depends on the great richness of detail we
can  always  expect  from  CA  behavior,  particularly  on  how  the  basins
are laid out on the attractor field  and whether the CA switches basins
in the event that some j ≠ ki is picked when the current CA state is i.

We  proceed  by  singling  out  some  rules  for  a  more  detailed  discus-
sion. Most of these are highlighted in Tables 1 and 2 with a bold type-
face.  We  occasionally  mention  specific  characteristics  of  a  rule  or  its
basins,  and  for  these  the  reader  is  referred  to  one  of  the  available  at-
lases [25, 27]. 

First  note  that  though  not  commonplace,  rules  do  exist  for  which
H(π, σ) is indistinguishable from 0 within the six decimal places used
in  Table  1  and  for  all  six  combinations  of  n  and  p  values.  These  are
class 1 rules 0 and 253; class 2 rules 15, 51, 204, and 240; and class 3
rules 60, 90, 105, and 150. For two of these rules, namely 0 and 253,
the value of H(π, σ) is precisely 0, since each of them gives rise to ex-
actly  one  basin  of  attraction—call  it  B1—whence  it  follows  that
πB1

 σB1
 1  no  matter  what  the  stationary  CA-state  probabilities

that  make  up  πB1
 turn  out  to  be.  The  value  of  H(π, σ)  is  precisely  0

also  for  six  other  rules,  namely  15,  51,  105  (except  when  n  12),
150 (except when n  12), 204, and 240, but for an entirely different
reason.  What  happens  in  these  cases  is  that  the  transition-probability
matrix is doubly stochastic, which, as we have noted, implies that the
stationary distribution over the CA states is uniform. For rules 51 and
204  in  particular,  double  stochasticity  is  a  consequence  of  the  matri-
ces  being  symmetric  (i.e.,  pi,j  pj,i  for  all  CA  states  i  and  j).  As  for

the  exceptions  and  rules  60  and  90,  H(π, σ)  is  only  approximately
equal to 0, since the matrices are not doubly stochastic. 

Making  the  requirement  on  H(π, σ)  less  stringent,  for  example  by
replacing indistinguishability from 0 with H(π, σ) < 0.1, turns up fur-
ther  rules:  class  1  rules  249,  251,  252,  and  254;  class  2  rules  12,  26,
27, 29, 38, 205, 210, 220, 222, and 243; class 3 rules 30 and 45; and
even one of the elusive class 4 rules, namely rule 193 (more widely rec-
ognized through its equivalent by both negation and reflection, the cel-
ebrated  rule  110,  known  to  be  capable  of  universal  computation).
The  class  1  additions  to  the  list  are  not  really  surprising,  since  in  all
four cases nearly all CA states cluster into one single basin, and there-
fore  our  argument  above  for  rules  0  and  253  essentially  continues  to
hold  (though  approximately).  As  for  the  remaining  additions  (the
class  2  through  class  4  rules),  no  readily  discernible  characteristic
seems  to  stand  out  that  might  help  explain  the  relative  proximity  of
the  two  distributions,  not  even  inside  each  class,  except  for  rules  45
and 210, whose matrices are doubly stochastic for n  11. 
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Aside  from  these  27  zero  or  near-zero  cases  of  the  Hellinger  dis-
tance, the remaining 61 rules in Tables 1 and 2, at least for our small
sample of n and p values, all give rise to stationary basin probabilities
that  differ  from  those  of  the  deterministic  case  (with  initial  CA  states
chosen uniformly at random) to some substantial extent. Singling out
some rules on the higher extreme of distance values is not as clear-cut
a  task  as  picking  the  zeros.  As  we  mentioned  earlier,  the  theoretical
maximum  distance  of  1  can  never  be  achieved  for  distributions  that
are  strictly  positive  everywhere,  so  figuring  out  the  actual  maximum
for elementary CAs is far from a trivial task. 

What  we  do  then  is  to  highlight  those  rules  that,  across  our  small
sample  of  n  and  p  values,  are  on  the  far  side  of  the  (admittedly  arbi-
trary)  threshold  of  H(π, σ)  0.45. Doing  this  yields  four  rules,  all  in
class  2  and  italicized  in  the  tables:  rules  19,  23,  232,  and  236.  Once
again  it  is  hard  to  discern  any  explanatory  characteristics,  but  from
Table  2  it  is  clear  that  all  four  rules  have  in  common  the  facts  that
ρmean  is  substantially  larger  than  1  (but  less  so  as  p  is  increased)  and
that ρs.d.  is often smaller than 1 (but growing as p is increased). That

is,  for  small  p  the  distribution  is  more  concentrated  on  larger  basins,
all relative to the basin-size distribution arising from the uniform dis-
tribution on CA states. This becomes less so as p is increased and the
already-discussed limit, as p is driven toward 0.5, is approached. 

Immunity as Computation6.

The  present  study  has  hinged  on  equation  (1),  a  simple  probabilistic
expression  of  a  cell’s  ability  to  alter  its  state  differently  than  the  CA
rule  in  use  directs  it  to,  at  every  time  step  and  independently  of  all
other  cells.  If  we  view  the  CA  states  as  states  of  the  body,  including
the  portion  of  it  known  as  the  immune  system,  then  the  evolution  of
CA  states  in  time  stands  not  only  for  the  natural  succession  of  body
states but also for the computation of such states by the immune sys-
tem.  Given  this  context,  the  adoption  of  the  spatially  and  temporally
local  probabilistic  alterations  to  the  CA  rule  given  in  equation  (1)  is
an attempt to summarize several phenomena originating from the un-
certainty that is inherent to every biological process. Such uncertainty
drives  adaptation,  gives  rise  to  diversity  as  well  as  disease,  and  fuels
the  appearance  of  idiotypes  never  before  seen  in  the  body  and  with
them the possibility of better immunity through learning. 

Though  inherently  stochastic,  our  model  is  also  inherently  depen-
dent  on  a  fixed  CA  rule.  This  is  clear  already  in  equation  (1)  itself,
where we recall that b stands precisely for the cell’s next state accord-
ing to such a fixed  rule. Moreover, although equation (1) makes every
state update of every cell nondeterministic, globally it is always expo-
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nentially more likely to evolve to the CA state the rule mandates than
to  any  other  CA  state.  This  means  that  the  clustering  of  CA  states
into  basins,  though  no  longer  unbreachable,  is  still  meaningful  and
can be exploited as we adopt the modified CAs as metaphors of immu-
nity as computation. For example, each basin can be viewed as encom-
passing  CA  states  that  are  equivalent  from  the  perspective  of  the  im-
mune  system  as  it  computes  the  state  of  the  body.  Some  possibilities
that  come  to  mind  are  basins  representing  a  healthy  or  unhealthy
body,  others  representing  a  body  under  recovery  through  the  action
of  the  immune  system,  and  still  many  others  as  details  are  brought
into the picture. 

In  such  a  setting,  changes  in  the  CA  state  other  than  those  man-
dated  by  the  underlying  CA  rule  can  be  interpreted  in  a  variety  of
ways:  for  example,  inter-basin  transitions  may  stand  for  the  appear-
ance of or the recovery from diseases, as well as for adaptation into a
distinct,  though  still  healthy,  set  of  states;  intra-basin  transitions,  in
turn,  may  represent  change  that  nevertheless  does  not  fundamentally
alter the state of the body as far as being healthy is concerned. So far
we  have  explored  this  landscape  by  simply  asking  what  the  effects  of
equation  (1)  might  be  in  terms  of  fundamentally  deviating  the  CA
from  its  traditional  excursion  into  the  field  of  attractor  basins  under
the  CA  rule  in  question.  We  have  discovered  CA  rules  in  all  four  of
Wolfram’s  classes  for  which  no  fundamental  deviation  exists,  while
still  allowing  the  CAs  to  occasionally  drift  in  and  out  of  the  field’s
basins. 

It  is  telling  that  we  should  find  such  behavior  already  in  the  sim-
plest of CAs, viz. elementary CAs, and already for the very small ones
we  investigate  in  this  paper.  Moving  forward  will  require  the  investi-
gation  of  more  complex  CAs,  at  the  same  time  higher  dimensional,
larger,  and  governed  by  larger-neighborhood  rules.  We  expect  that
these enriched scenarios will provide many useful possibilities to char-
acterize  immunity  as  computation.  In  our  view,  the  importance  of
characterizations  such  as  this  can  hardly  be  overstated:  immunother-
apy  has  been  hailed  as  a  fundamental  breakthrough  in  cancer  treat-
ment  (see  [28],  as  well  as  [29]  and  related  content),  and  theoretical
modeling is bound to be instrumental in better understanding this and
other applications. 

Concluding Remarks7.

Our findings  thus far are closely related to several aspects of the state-
of-the-art  knowledge  on  cellular  automata  (CAs)  and  their  applica-
tions,  which  is  then  expected  to  have  some  influence  on  how  we
progress  with  our  modeling  of  immunity  as  computation.  Important
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examples  of  such  knowledge  are  the  sources  of  randomness  in  CAs
[11,  p.  323],  the  robustness  of  certain  cellular  automaton  (CA)  rules
in  the  face  of  random  behavior  [11,  pp.  947  and  1002],  and  the  na-
ture of random events in the immune system [11, pp. 970 and 1184].
In  a  similar  vein,  it  seems  reasonable  to  expect  our  findings  to  come
to  have  an  impact  also  beyond  the  immune-related  context  of  this
work. For example, the possibility of transit between basins is crucial
not only to the notion of learning that is so central to acquired immu-
nity,  but  also  to  various  other  systems  when  modeled  by  CAs  (e.g.,
[11, pp. 341 and 1101]).

An important characteristic of our model is its reliance on one sin-
gle parameter, the probability p. Assuming that it acts at each cell in-
dependently  of  all  others  has  allowed  the  transition  probability  pi,j,

from CA state i to CA state j in a single step, to be written as in equa-
tion  (2),  which  in  turn  implies  the  ergodicity  of  the  corresponding
Markov  chain  whenever  p > 0.  The  model  is  then  conceptually
simple,  but  studying  it  requires  the  Markov  chain’s  stationary  proba-
bilities to be found, which by virtue of the model’s inherent combina-
torial  growth  in  the  general  case  quickly  becomes  computationally
burdensome if not downright intractable. 

Further research should then first  concentrate on looking for those
CA  rules,  if  any  exist,  for  which  the  transition  matrix  can  somehow
be  simplified  so  that  some  facilitating  structure  emerges.  We  already
know  that  for  p < 0.5  the  dominant  probability  on  any  of  the  ma-

trix’s  rows,  say  the  ith,  is  pi,ki  1 - pn.  Not  only  this,  but  pi,j  for

any j ≠ ki  is smaller than pi,ki  by the exponentially decaying factor of

1 - p  p-Dj,ki .  The  key  to  solving  the  Markov  chain  associated

with certain rules may lie precisely in ignoring such vanishingly small
probabilities,  but  to  our  knowledge  substantial  further  research  is
needed to ascertain this. 
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