
Computational Irreducibility and

Computational Analogy

Hervé Zwirn

UFR de Physique (LIED, Université Paris 7)
CMLA (ENS Cachan, France)
and
IHPST (CNRS, France)
herve.zwirn@gmail.com

In a previous paper [1], we provided a formal definition for the concept
of computational irreducibility (CIR), that is, the fact that for a func-
tion f from N to N it is impossible to compute f (n) without following
approximately the same path as computing successively all the values
f (i) from i = 1 to n. Our definition is based on the concept of enumerat-
ing Turing machines (E-Turing machines) and on the concept of ap-
proximation of E-Turing machines, for which we also gave a formal
definition. Here, we make these definitions more precise through some
modifications intended to improve the robustness of the concept. We
then introduce a new concept: the computational analogy, and prove
some properties of the functions used. Computational analogy is an
equivalence relation that allows partitioning the set of computable func-
tions in classes whose members have the same properties regarding
their CIR and their computational complexity.

Introduction1.

The notion of computational irreducibility (CIR) seems to have been
first put forward by Wolfram. Given a physical system whose be-
havior can be calculated by simulating explicitly each step of its evolu-
tion, is it always possible to predict the outcome without tracing each

step? Is there always a shortcut to go directly to the nth step?
Wolfram conjectured [2–4] that in most cases the answer is no. While
many computations admit shortcuts that allow them to be performed
more rapidly, others cannot be sped up. Computations that cannot be
sped up by means of any shortcut are called computationally
irreducible.

This question has been widely analyzed in the context of cellular
automata by Wolfram [3, 5]. A cellular automaton is computationally
irreducible if in order to know the state of the system after n steps
there is no way other than to evolve the system n times according to
the equations of motion. The intuition behind this definition is that

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

there is no way to reach the nth state other than to go through the

n - 1 previous ones. Figures 1 and 2 show the behavior of the linear

cellular automaton following rule 110. Figure 1 shows the first 25
steps, while Figure 2 shows a much larger number of steps. The behav-
ior of this automaton seems computationally irreducible.

Figure 1. The first 25 steps following rule 110.

Figure 2. A large number of steps following rule 110.

In this context, Israeli and Goldenfeld [6] have shown that some au-
tomata that are apparently computationally irreducible nevertheless
have properties that are predictable. But these properties are obtained
by coarse graining and do not account for small-scale details. More-

150 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

over, some automata (e.g., rule 30) seem to be impossible to coarse
grain.

Reisinger et al. [7] show that CIR seems to be contingent upon the
representation of a given problem. To do so, they consider a game for
which the initial rules are computationally reducible, and they build
an isomorphic representation leading to a process that appears to be
computationally irreducible. As they notice, a more definitive claim
would be to take one of Wolfram’s computationally irreducible cellu-
lar automata, formulate an isomorphic representation of it, and then
determine whether transition rules of the equivalent system are com-
putationally reducible.

Whatever the answers to the questions raised by Israeli and Golden-
feld or by Reisinger et al. are, what is of interest for us in this paper is
to provide a robust formal definition of the very concept of CIR,
which is lacking. Indeed, as we explained in [1], Wolfram’s intuition
needs to be rigorously formalized, since as stated, it is not robust.
There are two underlying intuitions that seem to be equally important
in the concept of CIR. The first one is the question of the speed of
computation. If a process is computationally irreducible, then it

should not be possible to compute its nth state in a time shorter than

the time needed to compute successively the n - 1 previous states be-

fore computing the nth. The second one is even more demanding. Af-

ter all, it could well be possible that the time to compute the nth state
is not shorter than the sum of the times needed to compute succes-

sively all the previous states, but that the computation of the nth state
does not really need to go through the computation of these states.
But for a process to be computationally irreducible, the necessity to
actually compute these previous states is required. Of course, the sec-
ond condition implies the first one. In the following, we will address
both conditions.

In [1], we provided a first formal definition for the concept of CIR,
which we reexpressed in the more general framework of functions f
from N to N as the fact that it is impossible to compute f(n) without
following approximately the same path as computing successively all
the values f(i) from i = 1 to n. Our definition is based on the concept
of enumerating Turing machines (E-Turing machines) and on the con-
cept of approximation of E-Turing machines, for which we also gave
a formal definition.

In the present paper, we make these definitions more precise and
add some modifications intended to improve the robustness of the
concept. We refer the reader to the original paper for the motivations
of the initial definitions. Here, we also introduce a new concept: the
computational analogy.

Computational Irreducibility and Computational Analogy 151

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

In Section 2, we justify the computation model we use throughout
this paper. In Section 3, we make the definition of the E-Turing ma-
chines and their approximations precise, and we give more details on
the definition of the concept of CIR. In Section 4, we introduce com-
putational analogy, discuss its meaning, and prove some theorems for
functions that are computationally analogous, relative to their CIR
and their computational complexity.

The Computational Model2.

In this paper, we adopt the computational model of Turing machines
[8–11] with k ≥ 2 tapes. Let us begin by justifying our choice to use
the k-tape Turing machines as a good computational model. We are
looking for a general model of computation allowing us to deal with
the questions of efficiency and speed of computation in a robust way.
It is well known that the model of Turing machines is a powerful
though very fundamental model of computation. The main point with
the Turing machine model is that it is very simple and that through
the Church–Turing thesis, it allows the computation of any com-
putable function. Several kinds of Turing machines exist, depending
on the number of tapes they have. While they are all equivalent re-
garding the functions they allow to be computed, they are not equiva-
lent regarding the speed of computation. For example, it is possible to

prove that the problem of deciding if a string is a palindrome is On2

in the 1-tape Turing machine model and O(n) in the 2-tape Turing
machine model [9, 11]. The first result comes from the fact that it is
possible to simultaneously: (1) prove that any 1-tape Turing machine

for deciding palindromes must take time n2; and (2) exhibit a Tur-

ing machine doing the job in On2. The second one comes from the

fact that it is possible to exhibit a 2-tape Turing machine deciding a
palindrome in O(n), which is obviously the best possible time, since
the input of length n has to be read. Does increasing the number of
tapes allow us to improve without limit the speed of the computation
of a given problem? This answer is no. A first result [11] says that we
cannot expect more than a quadratic saving through allowing an arbi-
trary number of tapes. See Appendix A for the definition of the stan-
dard asymptotic notations.

Theorem 1. Given any k-tape Turing machine M operating within time
T(n), it is possible to construct a 1-tape Turing machine M′

 operating

within time OT(n)2, such that for any input x, M(x) = M′(x).

The meaning of this result is the following: assume that the best
1-tape Turing machine doing a given computation operates in a time

152 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

T(n). Then, the best k-tape machine that can be designed for doing

the same computation will never operate in less than T (n) .

A second result [11] is known as linear speedup.

Theorem 2. For any k-tape Turing machine M operating in time T(n),
there exists a k′-tape Turing machine M′

 operating in time
f ′(n) = ϵ T(n) + n (where ϵ is an arbitrary small positive constant) that
simulates M.

This linear speedup means that the main aspect of complexity is
captured through the function T(n) irrespectively of any multiplicative

constant. DTIMET(n) is the class of functions, or class of decision

problems, computable by a k-tape Turing machine in T(n) steps. This

result means that DTIMET(n) = DTIMEϵ T(n), and so it is legiti-

mate to define DTIMET(n) as the class of functions computable by

a Turing machine in OT(n) steps. If a function f is computable in

time T(n) and if logf(n) (the length of its binary representation) is

oT (n), then f is also computable in time ϵ T(n) for every ϵ > 0.

Hence, in the k-tape Turing machine model, the speed of computa-

tion can be expressed through the OT(n) notation, which is justified.

That is what we will do throughout the paper, as is usual in the field
of computational complexity.

More results about the so-called “speedup theorems” are given in
our previous paper [1].

Usually, in the theory of computation, we are only interested in
knowing if a function is computable, and if so, in knowing the compu-
tational complexity of getting the output from the input. What is
done during the computation is rarely considered, and, except for the
person writing the program itself, the Turing machine is a kind of
black box furnishing an output from an input. But in this paper, we
are interested in a particular aspect of computation that is not often
addressed: the intermediate results. As we stated in the introduction, a
cellular automaton is computationally irreducible if in order to know
the state of the system after n steps there is no way other than to
evolve the system n times according to the equations of motion. Simi-
larly, for a function to be computationally irreducible means that the
computation of f(n) requires the previous computation of all the f(i)
for i < n. Computationally irreducible functions are defined not by an
explicit formula giving the value of f(n) directly from the value of n,

but by recursive rules giving the way to go from f(i) to fi + 1. Of

course, that does not mean that it is enough for a function to be de-
fined by recursive rules to be computationally irreducible. Following

these rules, the computation of f(n) starts by the computation of f1,

Computational Irreducibility and Computational Analogy 153

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

followed by the computation of f2 from f1, then of f3 from f2

and so on, until the computation of f(n) from fn - 1. In order to be

able to characterize that sort of computation, our computational
model should allow the intermediate computation steps to be identi-
fied. For that, we will consider special 3-symbols (0, 1, #) Turing ma-
chines such that each of these intermediate results will be successively
written on the output tape, with the symbol “#” written at its left.
More precisely, a program that follows a recursive rule for computing
step by step through the iteration of the same rule “knows” when it
switches to the next iteration. What we demand in our specific model
of computation is that the intermediate result that is the input of the
next iteration be written on the output tape at the right of the symbol
“#.” The final result will appear on the output tape at the right of the
last symbol “#.” The output tape will be a one-way tape (i.e., the head
will be allowed to go only in the right direction). We will see through-
out the paper why this kind of special Turing machine is useful for
our purpose.

The goal is to be able to distinguish the different results when read-
ing the output tape. Instead of using a special symbol to separate the
results, an equivalent method would be to use a self-delimiting way to
write them.

In the following f , g, h, F, G, H will always be functions from N to
N, and M, P, Q will always be Turing machines as described.

Computational Irreducibility3.

Given a Turing machine M computing f(n) in time T(M(n)), let us de-
note by Rn,1, … , Rn,i, … , Rn,T(M(n)) the content of the output tape

of M during the computation of f(n) after one step of computa-
tion,�…�, i steps of computation, and T(M(n)) steps of computation.
So (Rn,1, … , Rn,i, … , Rn,T(M(n))) is the sequence of the configura-

tions of the output tape during the computation of f(n).

Definition 1 (E-Turing machine). A Turing machine Mf will be called an

E-Turing machine for f if:

Mf computes f (i.e., for every input n, Mf computes f (n) and halts). It is

important to notice that it is the same Turing machine that on input n
computes f (n): f is uniformly computed by Mf .

1.

During the computation of f (n), there exist increasing kn(i) for i = 1 to
n - 1, such that f (i) is written on the output tape Rn,kn(i) at the right of

the last symbol “#.”

2.

An E-Turing machine for a function f (in the following we will al-
ways denote as Mf such a Turing machine) is a program that, in a cer-

154 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

tain sense, enumerates the successive values f(i) for i ≤ n. So, during

the computation of f(n), f1 then f2, and so on until f(n) succes-

sively appear on the output tape of Mf . It is of course possible to

build E-Turing machines for any computable function.
Let f be a computable function. Here are two examples of an

E-Turing machine for f .

Assume first that M is a Turing machine that on every input n com-
putes f (n). Let us now consider the Turing machine Mf , which on every

input n calls M with input 1, then, when M has computed f (1), writes
“#” and f (1) on the output tape, calls M again with input 2, and so on
until the last call to M with input n, and which halts when M has com-
puted f (n), after having written “#” and f (n) on the output tape. Mf is

clearly an E-Turing machine for f . When computing f (n), Mf will fol-

low exactly the same initial segments as the initial segments followed
for all k < n when computing f (k). The computation of f (n) is the con-
tinuation of the computation of f (k) for k < n. Also notice that the com-
putation of f for each value n starts from scratch (i.e., the values of f (k)
for k < n are not used for computing f (n)). This way to build an
E-Turing machine is possible for any computable function.

1.

Assume now that f is such that it is possible to compute f (n) from
f (n - 1). Let M′

 be a Turing machine that on input f (n - 1) computes
f (n). Let us now consider the Turing machine Mf

′ , which on every input

n starts by computing f (1), writes “#” and f (1) on the output tape, then
calls M′

 to compute f (2) from the input f (1)), writes “#” and f (2) on the
output tape, and so on until f (n). Mf

′
 is an E-Turing machine for f . The

computation of f (n) by Mf can be seen as the successive computations

of f (i) from f (i - 1) until reaching f (n). As in the first example, when
computing f (n), Mf

′
 follows exactly the same initial segments as the ini-

tial segments followed for all k < n when computing f (k). Here again,
the computation of f (n) is the continuation of the computation of f (k)
for k < n.

2.

Because the initial path is the same when computing f(n) and f(m)

for n > m, these two examples of E-Turing machines can be thought
of as doing a computation such that on any input n, they halt after

having run through an initial segment of length TMf(n) of one

unique infinite virtual computation of f(i) for i = 1 to ∞. That means
also that the kn(i) are independent of n. But this is not necessarily the
case for all E-Turing machines.

The computation of f(n) from fn - 1 can be faster than the com-

putation of f(n) from n. In this case, Mf
′
 will be much faster than Mf .

We will see that this is the case if f is computationally irreducible, be-
cause a Turing machine computing a computationally irreducible func-

tion f does need to know fn - 1 (or a value that is near in a sense

Computational Irreducibility and Computational Analogy 155

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

that we will explain) to compute f(n). We give here some examples of
functions that seem intuitively to be more and more “difficult.”

In the examples that follow, the arguments given for assessing the
“difficulty” of the given function are simply intuitive. We must stress
the fact that we do not know how to rule out the possibility that a
clever algorithm may be found for speeding up the computation. We
just do not know of such an algorithm yet.

◼ For computing f (n) = 3n from the input n, a Turing machine will go
through some of the intermediate values f (i) for i < n but not necessar-

ily all. For instance, 32 n can be computed as 3n ⨯3n, and 32 n+3 will

need the computation of 3n+1 or the computation of 3n and 33. But if
f (n - 1) is given as input, the computation of f (n) is immediate and fast.

◼ For computing f (n) = n !, a Turing machine will go through n intermedi-
ate values if it starts either with n or with (n - 1) ! as input. Indeed,
even from (n - 1) ! it is necessary to know n for computing n !, and a
natural way (but not the only one) to “extract” the value n from
(n - 1) ! is to compute all the increasing values of the factorial function
and to count how many have been computed until reaching (n - 1) !.
The computation from n can be done in any possible order, since the
multiplication of the n first natural numbers can be done from any com-
bination of these numbers. That means that even if a Turing machine
computing n ! from n will have to perform n operations, it will not nec-
essarily compute all the k ! for k < n first. So it seems that every natural
Turing machine computing n ! with either n or (n - 1) ! alone as input
will have to perform n operations without having to be necessarily an
E-Turing machine. But that will not be the case with the input
(n, (n - 1) !), from which the computation will be very fast. Of course,
these considerations are not enough to rule out the possibility of a way
to compute n ! much more efficiently (which we do not know yet).

◼ For computing f (n) defined by: “the first bit of the sum of the kth bit of

3k for all k ≤ n” from the input n, a Turing machine will go through all
the intermediate values f (i) for i < n but will be simply unable to com-
pute f (n) from f (n - 1) alone because there is no way to extract the
value of n from f (n - 1), and this value is needed to compute f (n). So it
seems that every Turing machine computing f (n) with n as input will be
an E-Turing machine, and f (n) could well be computationally irre-
ducible. From the input (n, f (n - 1)), the computation will be fast.

The time TMf(n) to compute f(n) with an E-Turing machine Mf is

the sum of the times between the apparition on the output tape of f(i)

and fi + 1 (from i = 1 to n - 1) plus the initial time to get f1

appearing.

Let us denote as ti = T fi - 1
Mf

f(i) the time between the appari-

tion of fi - 1 and the apparition of f(i) during the computation of

f(n) for any n > i.

156 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

We have TMf(n) = ∑i=1
n ti (we suppose by convention that t1 is

the time for f1 to appear on the output tape). Since Mf is a Turing

machine, ti is the number of steps done by the machine and so is a

strictly positive integer. So TMf(n) ≥ n. But in the following, we will

be interested only in functions f such that TMf(n) = Ωn log n.

This seems a reasonable assumption and it is obviously true of any
function f such that f(n) ≥ n, since writing an output n in binary or in
any other base ≥ 2 needs at least a time log n, and an E-Turing
machine performs n such operations before halting. So the time for an
E-Turing machine to compute such a function is necessarily greater

than ∑i=1 to n log i = log(n !) = Θn log n. So TMf(n) = Ωn log n.

This is true in particular for the simulation of a large number of
nontrivial one-dimensional elementary cellular automata with nearest

neighbors (that are Ωn2) and in the majority of the simulations of

more complex cellular automata. Of course, we will consider as well
computationally irreducible functions for which f(n) < n. This is the
case of the two candidates given at the end of Section 3, but it is

highly probable that they satisfy nonetheless TMf(n) = Ωn log n.

The question of knowing whether there is an asymptotically opti-
mal program for doing a given computation is a difficult and open
question in general. We mean by asymptotically optimal program, a
program p such that for any other program p′ doing the same compu-

tation T(p(n)) = OT(p′(n)). On the one hand, it is well known that

the so-called Blum speedup theorem [12] shows that for some deci-
sion problems, any program that solves the problem will be much
slower than some other program solving the same problem. In these
cases, there exists an infinite sequence of programs solving the prob-
lem, such that each program in the sequence is much faster than the
program it follows, and (up to a multiplicative constant) there is no
asymptotically optimal program. But these problems are artificially
constructed to prove the theorem. On the other hand, Levin’s optimal
search theorem [13] proves that for a wide class of problems there is
an asymptotically optimal program. These are problems for which
verifying a solution is easy, while producing a solution might be diffi-
cult. More precisely, these are problems for which the time complex-
ity of checking a solution is asymptotically faster than the time com-
plexity of producing a solution. It is widely thought that no “natural
problem” is subject to Blum speedup and that, in general, asymptoti-
cally optimal algorithms exist for them. In particular, this is the case
for the cellular automata that are the initial source of inspiration for
the subject of this paper. Indeed, to show that a program P is asymp-
totically optimal, it is enough to show that there is a lower bound, say

Computational Irreducibility and Computational Analogy 157

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

h(n), on the time complexity of any program Q for this problem,

TQ(n) = Ωh(n), and to prove that T(P(n)) = Oh(n). In this case, P

is an asymptotically optimal program. For example, in the case of the
simulation of nontrivial one-dimensional elementary cellular au-
tomata with nearest neighbors, it is clear that any algorithm comput-
ing the n initial configurations will have in the worst case to perform

in Ωn2, and that there are algorithms performing in On2 (see [1]

for details on this point). These algorithms will be asymptotically opti-
mal. Hence, any Turing machine representing these algorithms will be
an asymptotically optimal program for the given cellular automaton.
This is what we call later an efficient E-Turing machine. We will
make the assumption that there always exists an asymptotically
optimal Turing machine that we will denote as Mf

*
 and an efficient

E-Turing machine that we will denote as Mf
eff

 for any function f we

consider. Put differently, let us say that we restrict our scope to the
subset of the computable functions set made of functions that satisfy
this requirement (which is hopefully a very large subset).

We give now the formal definition of an efficient E-Turing machine
for a function, which will be a fundamental building block for what
follows.

Definition 2 (efficient E-Turing machine). We will say that an E-Turing ma-

chine Mf
eff

 for f is an efficient E-Turing machine for f if for any other

E-Turing machine Mf for f , TMf
eff(n) = OTMf(n); that is, there

are constants c > 0, n0 > 0 such that ∀n > n0, TMf
eff(n) ≤c TMf(n).

As explained, the intuition is that asymptotically it is not possible
for an E-Turing machine to compute faster than an efficient E-Turing
machine.

It is clear from the definition that for any two efficient E-Turing

machines Mf
eff, Mf

′eff, and for any two asymptotically optimal Turing

machines Mf
*, Mf

′*, we have TMf
eff(n) = ΘTMf

′eff(n) and

TMf
*(n) = ΘTMf

′*(n). So for any function H, H(n)=OTMf
eff(n)

is equivalent to H(n) = OTMf
′eff(n), and H(n) = OTMf

*(n) is

equivalent to H(n) = OTMf
′* f(n). In the following, Mf

eff
 will al-

ways denote an efficient E-Turing machine for f , and TMf
eff(n) will

denote the time for an efficient E-Turing machine to compute f(n). Mf
*

will always denote an asymptotically optimal Turing machine

computing f , and TMf
*(n) will denote the time for an asymptotically

158 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

optimal Turing machine to compute f(n). According to this, there will
be no need to be precise about which particular efficient E-Turing ma-
chine or which asymptotically optimal Turing machine is considered.

We always suppose that there exist an asymptotically optimal Tur-

ing machine Mf
*
 and an efficient E-Turing machine Mf

eff
 for f .

Definition 3 (approximation of an E-Turing machine). A Turing machine M
will be said to be a P-approximation (or simply, approximation) of an
E-Turing machine for f if and only if there are a function F such that

F(n) = OTMf
*(n)  n and a Turing machine P such that for every n:

On input n, M computes a result rn such that P computes f (n) from n
and rn in a number of steps F(n) and halts.

1.

During the computation, there exist nondecreasing kn(i) for i = 1 to
n - 1, such that a result rn,i

′
 is written on the output tape Rn,kn(i) at the

right of the last symbol “#,” and P computes f (i) from n, i, and rn,i
′

 in a

number of steps F(i) and halts. (We will often omit to mention again
the inputs n, i, which will be implied.)

2.

Actually, if we note rn = rn,n
′ , P always computes from the triplet

n, i, rn,i
′ , here abbreviated as n, rn when i = n.

Intuitively, an approximation of an E-Turing machine for f is a
Turing machine doing a computation that is near the computation
made by an E-Turing machine for f .

Let us notice that each E-Turing machine for f is of course an ap-
proximation of an E-Turing machine for f . The associated Turing ma-
chine P is simply the identity (a Turing machine that computes n from

the input n) under the condition that F(n) = OTMf
*(n)  n =

Ωlf(n).

An approximation P of an E-Turing machine for f can be an E-Tur-
ing machine for r if the rn,i

′
 do not depend on n and if ri

′ = ri for all i

(i.e., the intermediate results are the values actually computed by P).
But it is not necessarily always the case. In particular, it can happen
that the intermediate results rn,i

′
 from which P computes f(i) are differ-

ent for different values of n. In this case, the path that M follows for
computing rn is different for different values of n, and the ri for i < n
are not necessarily computed.

The concept of approximation of an E-Turing machine for f is ac-
tually a concept obtained from the concept of an E-Turing machine
by relaxing the constraints of the definition along three dimensions.
The first one is the fact that on input n an approximation does not
compute exactly f(n) but a value r(n) such that it is possible to go
from r(n) to f(n) through a very short computation. The second one is
that the intermediate results do not need to be all the f(i) for i < n but

Computational Irreducibility and Computational Analogy 159

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

values rn,i from which it is possible to compute f(i) through a very

short computation, and the third one is that it is not even necessary
that the intermediate values be the same on every computation for dif-
ferent n.

Another point to notice is that we do not claim that it is necessary
to be able to build the Turing machine P that is associated to an ap-
proximation through an effective means. We only ask that such a ma-
chine exist.

We can intuitively justify the value chosen for F(n). F(n) is the time
that the computation of f(n) takes from the value rn that is computed
by the approximation. We have in mind the case of computationally
irreducible functions for which computing f(n) demands computing
all the previous values. For these functions, since we want rn to be
“near” f(n) in a certain sense, the time to go from rn to f(n) must be
very short compared to the time to compute f(n) from n, and at most

comparable to the time to compute f(n) from fn - 1. That is the rea-

son why F(n) = OTMf
*(n)  n. Indeed, if f is computationally irre-

ducible, we will see that this is the average time to compute f(n) from

fn - 1. The factor 1  n in TMf
*(n)  n takes into account the fact

that there are n necessary phases to compute f(n) with an E-Turing
machine for f , and that we want P to compute in a time shorter than
or equal to each one of these phases.

Another way to understand the value of F(n), coming from the pic-
ture of cellular automata, is to think that rn is “near” f(n) (and then
the computation of f(n) from rn is fast) if there are only a bounded
number of operations to perform on some bits of rn to go from rn to
f(n). Indeed, in this framework, a bit of f(n) or of rn is a cell of the cel-

lular automaton. That means that F(n) is Ol(rn) where l(rn) is the

length of rn. A reasonable assumption is that the length of rn should

not exceed much the length of f(n), so l(rn) = Olog f(n). That means

that F(n) is Olog f(n). Now as we saw before, TMf
eff(n) =

Ωn log f(n), so log f(n) = OTMf
eff(n)  n; then F(n) must be

OTMf
eff(n)  n. Now for computationally irreducible functions, we

anticipate that TMf
eff(n) = ΘTMf

*(n), so F(n) = OTMf
*(n)  n is

equivalent to F(n) = OTMf
eff(n)  n. For functions that are not com-

putationally irreducible but instead satisfy TMf
*(n) = oTMf

eff(n),

the value F(n) = OTMf
*(n)  n is the smaller of the two.

Is it possible to be more demanding and to ask that F(n) be smaller
than that? The answer is no, as it is easy to see from the example of
one-dimensional cellular automata. F(n) is the time for P to compute

160 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

f(n) from rn, so in order for P to read rn and to write f(n), F(n) must

be at least equal to lf(n). For nontrivial automata, lf(n) = O(n). If

these automata are computationally irreducible, then TMf
eff

 (n) =

ΘTMf
*(n) = On2, and so F(n) = OTMf

*(n)  n = O(n). It can be

seen that demanding a smaller value for F(n) would result in no ma-
chine P being able to exist, since the time to write f(n) is Ω(n). Notice
that for these automata that are not computationally irreducible and

for which TMf
*(n) = on2, there will be no machine P and hence no

approximation of an E-Turing machine. Indeed, in this case

F(n) = OTMf
*(n)  n = o(n), which is too small a value for any P to

write f(n). Of course, this is true only for functions such that

lf(n) > n, which is not mandatory. In particular, this is false for triv-

ial automata whose configurations vanish after some iterations or for
which the successive configurations are restricted to one cell. So the
reasoning given is not a proof but only an intuitive justification of the
value of F(n).

Definition 4 (computation of f(n) based on an approximation). Let M be a
P-approximation of an E-Turing machine for f . Let us consider the
computation of f(n) done initially through M with input n and contin-
ued when M has computed rn by P, which computes f(n) from n and
rn in a time F(n) and halts. This computation will be said to be a com-
putation of f(n) based on the P-approximation M.

Definition 5 (Turing machine computing f based on an approximation). Let M
be a P-approximation of an E-Turing machine for f , and let us con-
sider the Turing machine M′, which, for every n, computes f(n)
through a computation based on the P-approximation M. M′

 will be
said to be a Turing machine computing f based on the approxima-
tion�M.

If M is an E-Turing machine for f , M and M′
 are identical and M′

is of course an E-Turing machine for f . Otherwise, M′
 is also an ap-

proximation of an E-Turing machine for f . The Turing machine P′ as-
sociated to M′

 is the same as P; that is, P′ computes f(i) from n, i, and
rn,i
′

 in a number of steps F(i), except that for the computation on in-

put n, n, and rn,n
′ , P′ is the identity, while P computes f(n).

As shown in Theorem 3, the important point is that it is possible to
build an E-Turing machine for f from any approximation of an E-Tur-
ing machine for f .

Theorem 3. From any M approximation of an E-Turing machine for f ,
it is possible to build an E-Turing machine M′

 for f (we will call it the

daughter of M), computing in a time T(M′(n)) = ΘT(M(n)).

Computational Irreducibility and Computational Analogy 161

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

Proof. Since M is an approximation of an E-Turing machine for f ,
there are a Turing machine P and a function F associated, as men-
tioned in Definition 3. Let us consider the Turing machine built ac-
cording to the following way: on input n, M′

 does exactly the same
computation as M, but for each i < n, after having computed rn,i, M′

computes f(i) through P with input n, i, rn,i in a time F(i), writes “#”

and f(i) on its output tape, resumes the computation, and finally, com-
putes f(n) from n and rn. It is clear that M′

 is an E-Turing machine
for f . M′

 computes in a time:

T(M′(n)) =

T(M(n)) +
i=1

n

F(i) +O1 = T(M(n)) +
i=1

n

O
TMf

*(i)

i
+O1.

Now it is possible to compute f(n) by M followed by P (i.e., a com-
putation of f based on the approximation M) so:

TMf
*(n) =OT(M(n)) + F(n)

TMf
*(n) =O T(M(n)) +O

TMf
*(n)

n
.

Hence

TMf
*(n) =OT(M(n)).

Then

T(M′(n)) =T(M(n)) +
i=1

n

O
T(M(i))

i
.

Now ∑i=1
n F(i) / i = O(F(n)) if F is a convex function and

F(n) = Ωlog n (see Appendix B). Since any function OT(M (i)) is a

convex function Ωlog n, we have

T(M′(n)) = T(M(n)) +OT(M(n)) = OT(M(n)).

As T(M(n)) < T(M′(n)), we get T(M(n)) = ΘT(M′(n)). □

We will denote as ⊗ this particular form of composition of the two
Turing machines M and P. So M′ = P⊗M. The composition ⊗ is de-
fined for a pair (P, M) when the second argument is an approxima-
tion of an E-Turing machine for a given function f and the first one is
the associated Turing machine computing f(i) from the intermediate
results of M. Of course, this composition is not to be confused with
the usual composition P∘M, which runs first the program M and then
the program P, with the result of the computation of M as input. An

162 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

important difference is the computation time. The computation time
of P∘M is the sum of the respective computation times:

T((P∘M) (n)) = TPoutput ofM(n) +T(M(n)),

while the computation time of P⊗M is

T((P⊗M) (n)) =


i=1

n

T(P(rn,i)) +T(M(n)) +O1 = 
i=1

n

F(i) +T(M(n)) +O1.

Theorem 4. No approximation of an E-Turing machine for f can com-
pute faster than an efficient E-Turing machine for f . More precisely, if
M is an approximation of an E-Turing machine for f , then

TMf
eff(n) = OT(M(n)).

Proof. Let M′
 be the daughter of M. Since M′

 is an E-Turing machine

for f , TMf
eff(n) = OT(M′(n)). By Theorem 3 we have T(M′(n)) =

ΘT(M(n)). So TMf
eff(n) = OT(M(n)). □

Theorem 5. Let M′
 be a Turing machine computing f based on an ap-

proximation M. Then T(M′(n)) = ΘT(M(n)).

Proof. M′
 will compute in a time T(M′(n)) such that

T(M(n)) ≤ T(M′(n)) ≤ T(M(n)) + F(n) =

T(M(n)) +O
TMf

*(n)

n
=

T(M(n)) +O
T(M(n))

n
= OT(M(n)).

So T(M(n)) = ΘT(M′(n)). □

In summary, we can say that an approximation of an E-Turing ma-
chine for f , its daughter, and any Turing machine computing f based
on this approximation all compute in the same time.

Definition 6 (strong CIR (resp. simple CIR) functions). A function f(n) from N
to N will be said to have strong CIR (resp. simple CIR) if and only if
for any Turing machine M computing f there is a P-approximation of
an E-Turing machine for f, M′

 such that for every n (resp. for in-
finitely many n), the computation of f(n) by M is based on M′.

The intuition is that if a function is strongly computationally irre-
ducible, for each n there is no way to compute f(n) other than to first
compute all the values f(i) for i < n (or values that are near in the
sense given in Definition 3). There is no shortcut to directly get the

Computational Irreducibility and Computational Analogy 163

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

value of f(n) without having first computed fn - 1 or a value that is

near fn - 1 and so forth for the previous values. If a function is com-

putationally irreducible (but not strongly computationally irre-
ducible), for infinitely many n there is no way to compute f(n) other
than to first compute all the values f(i) for i < n (or values that are
near).

The reason it is useful to introduce this distinction between strong
CIR and simple CIR can be explained through the following example.
Assume that f is strongly computationally irreducible. So there is no
way to compute f(n) other than to first compute all the values f(i) for
i < n (or values that are near), and that is true for every n. Let us now

consider the function g such that g2 i - 1 = f (i) and g2 i = 1. It is

clear that computing g for any even value is very easy and does not
imply having to compute any other result first. So g is not strongly
computationally irreducible. But the intuition is nevertheless that g is
irreducible in some way. The notion of strong CIR needs to be weak-
ened to cover functions like g and many others that similarly need in-
finitely often (but not always) to go through the computation of all
the previous values in order to be computed. It is worth noticing that
if a function is computationally irreducible but not does not have
strong CIR, then the computation of f(n) will require fewer than n
steps. In the example of the function g, the computation made by any
Turing machine computing g can be based on a Turing machine that

computes g2 i - 1 in i steps through a P-approximation of an E-Tur-

ing machine for f and g2 i in one step (since it is equal to 1). So the

computation of g will require at most n  2 steps. This example can of

course be extended to any other value of the required number of
steps, as long as this number is a growing unbounded function of n.

Theorem 6. If a function f has strong CIR, then no Turing machine
computing f can compute f(n) faster than an efficient E-Turing ma-

chine for f . So for any Turing machine M computing f , TMf
eff(n) =

OT(M(n)).

Proof. If f has strong CIR, then any Turing machine M computing f is
based on an approximation of an E-Turing machine for f . Let M′

 be

this approximation. From Theorem 4, TMf
eff(n) = OT(M′(n)).

From Theorem 5, T(M (n)) = ΘT(M′(n)).

So TMf
eff(n) = OT(M(n)). □

This result is slightly weakened in Theorem 7 if f is simply compu-
tationally irreducible. In this case, for any Turing machine computing

164 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

f , there are infinitely many values of f(n) that it is not possible to
compute faster than the computation by an efficient E-Turing ma-
chine for f .

Theorem 7. If a function f is computationally irreducible, then for any
Turing machine M computing f there are constants c > 0, n0 > 0 such

that ∀ N > n0, ∃ n > N, TMf
eff(n) ≤ c T(M(n)).

Proof. If f is computationally irreducible, then for any Turing ma-
chine M computing f there is a P-approximation of an E-Turing ma-
chine for f , M′

 such that for infinitely many n, the computation of

f(n) by M is based on M′. From Theorem 4, TMf
eff(n) =

OT(M′(n)). So there are constants c > 0, n0 > 0 such that ∀ n > n0,

TMf
eff(n) ≤ c T(M′(n)). But ∀ N, ∃ n > N such that the computation

of f(n) by M is based on M′. For such n, TM(n) > T(M′(n)). So for

those n that are superior to n0, TMf
eff(n) ≤ c T(M(n)). □

Theorem 8. If a function f has strong CIR, then TMf
*(n) =

ΘTMf
eff(n).

Proof. If f has strong CIR, then by Theorem 6 for any Turing ma-

chine M computing f , TMf
eff(n) = OT(M(n)). So TMf

eff(n) =

OTMf
*(n). Because of the definition of an asymptotically optimal

Turing machine, for any Turing machine M computing f ,

TMf
*(n) = OT(M(n)). So TMf

*(n) = OTMf
eff(n).

Hence TMf
*(n) = ΘTMf

eff(n). □

Definition 6 and Theorems 6, 7, and 8 address the two key points
of the underlying intuitions for the concept of CIR: the speed of com-
putation and the path followed during the computation.

Example 1. Let ℬ = 0, 1 and ℬ*
 be the set of all finite strings over ℬ.

Let ℒ be a recursive language and assume an enumeration of the
words of ℬ*

 (e.g., the index in the length-increasing lexicographic or-
dering). Define the function f by f(n) as the number of words wi

(for i ≤ n in the chosen enumeration) of ℬ*
 in ℒ. Then it seems that,

in general, there is no other way to compute f(n) than to decide for
each i ≤ n if the word wi belongs or not to ℒ and to count the num-
ber of positive answers.

Example 2. Knowing if an initial configuration of Conway’s Game of
Life will be eternal or not is an undecidable problem. So let f(n) be
the number of initial configurations with an index smaller than n + 1

Computational Irreducibility and Computational Analogy 165

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

in a given enumeration that are still living after n iterations. Here
again, it seems that there is no way to compute f(n) other than to test
each one of the relevant configurations during n steps and therefore,
by so doing, to go through the computation of all the f(i) for i < n.

Computational Analogy4.

Computational analogy should not be confused with Wolfram’s prin-
ciple of computational equivalence, which states that most systems
found in the natural world are computationally equivalent because
most of them can perform universal computations. Computational
analogy concerns functions that are not necessarily universal but that
share properties about their computational complexity (their asymp-
totically optimal programs compute in the same time as well as their
efficient E-Turing machines) and their computational irreducibility
(see the comment after Theorem 13).

Let M be an approximation of an E-Turing machine for f . M com-
putes a function r but is not necessarily an E-Turing machine for r.
Nevertheless, it is clear that each E-Turing machine for r is an approx-
imation of an E-Turing machine for f . But it is possible that no E-Tur-
ing machine for f is an approximation of an E-Turing machine for r.
Such would be the case if, while the time to go from n, r(n) to f(n)

through P is OTMf
*(n)  n, there is no Turing machine able to com-

pute r(n) from n, f(n) in a time OT(Mr
*(n))  n, where Mr

*
 is an asymp-

totically optimal Turing machine for r. But if one E-Turing machine
for f is an approximation of an E-Turing machine for r, then every
E-Turing machine for f will be an approximation of an E-Turing ma-
chine for r. In this case, each E-Turing machine for f is an approxima-
tion of an E-Turing machine for r and vice versa, each E-Turing ma-
chine for r is an approximation of an E-Turing machine for f . So it is
possible to define a relation of “computational analogy” CA (which
will be proved to be an equivalence relation).

Definition 7 (computational analogy). f and g will be said to be computa-
tionally analogous (noted f CA g) if:

There exists a Turing machine M that is both an E-Turing machine for
f and an approximation of an E-Turing machine for g.

1.

There exists a Turing machine M′
 that is both an E-Turing machine for

g and an approximation of an E-Turing machine for f .
2.

That means that there is a Turing machine Pf→g that computes g(n)

from n, f(n) for every n in a time F(n) = OTMg
*(n)  n (and vice

versa). So we have the following theorems and proofs.

166 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

Theorem 9. f CA g is equivalent to: there is a Turing machine Pf→g

that computes g(n) from n, f(n) for every n in a time

F(n) = OTMg
*(n)  n, and there is a Turing machine Pg→f that com-

putes f(n) from n, g(n) for every n in a time G(n) = OTMf
*(n)  n.

In the following, when f CA g, we will always denote by Pg→f and

Pf→g these Turing machines.

Theorem 10. Let Mf
*
 (resp. Mg

*) be an asymptotically optimal Turing ma-

chine computing f (resp. g). If f CA g, then TMf
*(n) = ΘTMg

*(n).

Proof. The Turing machine Pf→g ∘Mf
* computes g in a time

TMf
*(n) + F(n) with F(n) = OTMg

*(n)  n. Since Mg
*

 is an asymp-

totically optimal Turing machine computing g, TMg
*(n) =

OTMf
*(n) +OTMg

*(n)  n, so TMg
*(n) = OTMf

*(n). The same

reasoning with Pg→f ∘Mg
* proves that TMf

*(n) = OTMg
*(n). Then

TMf
*(n) = ΘTMg

*(n). □

Theorem 11. Let Mf
eff

 (resp. Mg
eff) be an asymptotically optimal Turing

machine computing f (resp. g). If f CA g, then TMf
eff(n) =

ΘTMg
eff(n).

Proof. The Turing machine Pf→g ⊗Mf
eff, which is an E-Turing ma-

chine for g, computes in a time

TPf→g ⊗Mf
eff(n) = TMf

eff(n) +
i=1

n

O
TMg

*(i)

i
.

Since Mg
eff

 is an efficient E-Turing machine, TMg
eff(n) =

OTPf→g ⊗Mf
eff(n).

Hence

TMg
eff(n) = O TMf

eff(n) +
i=1

n

O
TMg

*(i)

i
.

Now


i=1

n

O
TMg

*(i)

i
= OTMg

*(n)

(see Appendix B).

Computational Irreducibility and Computational Analogy 167

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

So TMg
eff(n) = OTMf

eff(n) +OTMg
*(n). Now TMg

*(n) =

ΘTMf
*(n) by Theorem 10, and TMf

*(n) = OTMf
eff(n); then

TMg
eff(n) = OTMf

eff(n).

The same reasoning for f shows that TMf
eff(n) = OTMg

eff(n).

Hence TMf
eff(n) = ΘTMg

eff(n). □

Theorem 12. f CA g is equivalent to: any approximation of an E-Tur-

ing machine for f is an approximation of an E-Turing machine for g
and vice versa.

Proof. Consider first the direct sense: Let M be a P-approximation of

an E-Turing machine for f. P computes in a time OTMf
*(n)  n. Ac-

cording to Theorem 9, there is a Turing machine Pf→g that computes

g(n) from f(n) for every n in a time F(n) = OTMg
*(n)  n.

It is then clear that M is a Pf→g ∘P-approximation of an E-Turing

machine for g because Pf→g ∘P computes in a time

OTMf
* (n)  n +OTMg

*(n)  n = OTMg
*(n)  n, since by Theo-

rem 10, TMf
*(n) = ΘTMg

*(n). Consider now the reverse sense: an

E-Turing machine for f is an approximation of an E-Turing machine
for f, so it is an approximation of an E-Turing machine for g (and

vice versa). □

The very meaning of f CA g is that f and g share the same approxi-
mations of E-Turing machines.

Theorem 13. CA is an equivalence relation.

Proof. This is obvious by Theorem 12. □

The quotient set of the computable functions set by this equiva-
lence relation is made of equivalence classes of computationally analo-
gous functions that share properties about their computational com-
plexity (their asymptotically optimal programs compute in the same
time as well as their efficient E-Turing machines, by Theorems 10 and
11) and their CIR, as we are now going to show.

Let us recall that we restrict our scope to the computable functions
that satisfy the requirement that there be an asymptotically optimal
program and an efficient E-Turing machine for them.

Theorem 14. Assume f CA g. If f has strong CIR, then g also has strong
CIR.

Proof. Let M be a Turing machine computing every g(n). Since

f CA g, there is a Turing machine Pg→f that computes f(n) from n,

168 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

g(n) for every n in a time F(n) = OTMf
*(n)  n. Pg→f ∘M is a Tur-

ing machine computing every f(n). Now f has strong CIR, so there are
a Turing machine S that is an approximation of an E-Turing machine

for f , a Turing machine Q, and a function H(n) = OTMf
*(n)  n

such that for every n, the computation of f(n) made by Pg→f ∘M is

based on S (i.e., is actually the same as the computation of f(n) made
by S followed by Q that computes in a time H(n)). Since f CA g, by
Theorem 12, S is also an approximation of an E-Turing machine for
g. So during the computation of f(n) there is data rn,i (computed by S)

appearing successively in an increasing order from i = 1 to n on the
output string of S, such that there is a Turing machine Q′

 that on in-
put rn,i, computes g(i) in a number of steps H′(i) (where

H′(n) = OTMg
*(n)  n). Since Pg→f ∘M and Q∘S are the same Tur-

ing machine, that means that some of these rn,i appear during the com-

putation of M and some appear during the computation of Pg→f . Let
us assume that all the rn,i for i = 1 to k appear during the computa-

tion of M and that all the rn,i for i = k + 1 to n appear during the com-

putation of Pg→f . Let us now consider the Turing machine Q″
 gotten

from Q′
 through the following change:

◼ On input n, i, rn,i for i = 1 to k, Q″
 does the same computation as Q′

(i.e., computes g(i) in a time H′(i)).

◼ On input n, i, rn,k for i = k + 1 to n, Q″
 starts by computing rn,i, then

computes g(i) from r(i) as Q′
 does.

Since Pg→f computes f(n) from n, g(n) in a time

G(n) = OTMf
*(n)  n, all the rn,i for i = k + 1 to n will appear in a

time less than G(n). So the computation of g(i) from n, i, rn,k (for

i = k + 1 to n) will be done in a time H″(i) smaller than G(n) +H′(i).

Since G(n) = OTMf
*(n)  n, which is equal to OTMg

*(n)  n by

Theorem 10, and since H′(n) = OTMg
*(n)  n, we get

H″(n) = OTMg
*(n)  n.

Let us notice that the list of intermediate results rn,i
′

 from which

Q″
 computes g(i) is the same as the list of rn,i for i = 1 to k and is

equal to rn,k for i = k to n. That means that M is based on a Q″-ap-

proximation of an E-Turing machine for g (the Turing machine com-

puting all the rn,i for i = 1 to k), and so g has strong CIR. □

Theorem 15. Assume f CA g. If f has simple CIR, then g also has simple
CIR.

Computational Irreducibility and Computational Analogy 169

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

Proof. Let M be a Turing machine computing every g(n). Since

f CA g, there is a Turing machine Pg→f that computes f(n) from n,

g(n) for every n in a time F(n) = OTMf
*(n)  n. Pg→f ∘M is a Tur-

ing machine computing every f(n). Now f is computationally irre-
ducible, so there is an approximation S of an E-Turing machine for f

such that for infinitely many n, the computation of f(n) by Pg→f ∘M

is based on S. Let us consider the function f ′ obtained from f by

f ′(n) = f(p), where p is the nth value for which the computation of f

by Pg→f ∘M is based on S. It is clear that f ′ has strong CIR, since for

every n, the computation of f ′(n) is based on the approximation S′,
which does exactly the same computation as S, except that on input
n, S′ computes the result that S computes on input p, where p is the

nth value for which the computation of f by Pg→f ∘M is based on S.

Let g′ be the function defined similarly from g: g′(n) = g(p), where p

is the nth value for which the computation of f by Pg→f ∘M is based

on S. It is clear that f′ CA g′. So g′ has strong CIR. Then g is compu-

tationally irreducible. □

Conclusion5.

We have provided a formal definition of computational irreducibility
(CIR) that clarifies the intuition about this concept and that allows us
to understand that a function is computationally irreducible if there is
a class of close paths that it is necessary to follow in order to compute
it. In a broad sense, that means that if a function is computationally ir-
reducible, there is only one road (the width of the road being the size
of the class of the close paths that can be used) to compute this func-
tion. In some sense, all these paths have the same length. This ex-
plains the fact that it is not possible to go faster than following one of
these paths to compute the function. We have also defined an equiva-
lence relation between functions that share the same road. Roughly
speaking, computational analogy allows us to get a quotient set that
can be viewed as a map of the computable functions set (or at least a
large subset of this set whose elements satisfy the conditions for the
concepts discussed to be applicable) for which classes are grouping ele-
ments having similar properties relative to their time of computation
and their CIR.

An open problem is still to prove that one function among the pos-
sible candidates is really computationally irreducible. The cellular au-
tomaton rule 110, which has been shown to be universal (see [14]),
the third of the three functions we mention at the beginning of Sec-

170 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

tion 3, or the two other examples we proposed at the end of Section 3
are good examples of functions that we would like to prove computa-
tionally irreducible. Proving that a given function f is computationally
irreducible amounts to proving that there is no way to compute f ex-
cept through an algorithm that approximately follows the path of an
enumerating Turing machine (E-Turing machine) computing f . Ruling
out all the other possible ways to compute f would possibly face the
halting problem, hence resulting in the proposition “f is computation-
ally irreducible” being undecidable (I would like to thank one anony-
mous referee for this remark). But this remains to be proven. An even
more difficult task would be to prove that CIR is an undecidable prop-
erty. In this case, that would not mean that it is always impossible to
prove that a given function is computationally irreducible, but that
there is no general algorithm for deciding for any function if it is com-
putationally irreducible or not, even if it is possible to prove that
some particular functions are computationally irreducible. These diffi-
cult points are left for further investigation.

From a more philosophical point of view, CIR can help clarify the
concept of emergence and can be used to understand why certain phe-
nomena appear to be emergent. We have proposed in [15] and [16]
that “understanding” a process implies having a mental model of it
that we can use to simulate its behavior. Emergent phenomena are ef-
fects or properties appearing at the macro level (collective) of a sys-
tem and that are caused by the micro level (individual) but are very
difficult and even seemingly impossible to predict, even from the com-
plete knowledge of the rules of the micro level. If the process running
at the micro level is computationally irreducible or if the rules leading
from the micro level to the macro level are computationally irre-
ducible, then the global behavior of the system will be neither pre-
dictable (without simulating it) nor understandable. In this case, what
happens will be seen as “emergent.” For example, the fact that some
patterns (e.g., pulsar, glider, glider gun, etc.) are usually considered as
emergent in Conway’s Game of Life could be explained by the fact
that the underlying rules are computationally irreducible. Similarly,
phenomena that are sometimes interpreted as downward causation
could be merely computationally irreducible processes interpreted as
causal effects between the two levels of description. That is a point
that we will address at more length in a forthcoming paper.

Acknowledgment

I am indebted to Jean-Paul Delahaye for many enlightening discus-
sions from the beginning of this work, to Serge Grigorieff for having
read a first version of this paper and given a counterexample that led

Computational Irreducibility and Computational Analogy 171

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

me to modify the initial definition of an approximation and to build
the present one, and to Jean-Michel Ghidaglia for a useful discussion
on Appendix B.

Appendix

The Asymptotic NotationsA.

The asymptotic notations are useful for comparing the order of magni-
tude of different functions. We recall here the standard notations.

◼ f (n) = O(g (n)) if there are constants c > 0, n0 > 0 such that ∀ n > n0,

f (n) ≤ c g(n).

◼ f (n) = o(g (n)) if limn→∞ f (n) / g(n) = 0.

◼ f (n) = Ω(g(n)) if there are constants c > 0, n0 > 0 such that ∀ n > n0,

f (n) ≥ c g(n).

◼ f (n) = ω(g(n)) if limn→∞ f (n) / g(n) = ∞.

◼ f (n) ~ g(n) if limn→∞ f (n) / g(n) = 1.

◼ f (n) = Θ(g(n)) if there are constants c > 0, c′ > 0, n0 > 0 such that

∀ n > n0, cg(n) ≤ f (n) ≤ c′ g(n)).

A Property of Convex FunctionsB.

We prove here that ∑i=1
n F(i)) / i = O(F(n)) if F is a convex function

and F(n) = Ωlog n:

lim
n→∞


i=1

n F(i)

i
= lim
n→∞


1

n F(x)

x
dx,

F(y) = 
1

y
F′(x) dx + F1 for y > 1,

Now if F is convex, ∫1
yF′(x) dx ≤ y - 1 F′(y) ≤ y F′(y), so

F(y)

y
≤ F′(y) +

F1

y
,


1

x F(y)

y
dy ≤ F(x) - F1 + F1 log x.

172 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

Now if log x = O(F(x)), then


1

x F(y)

y
dy = O(F(x)).

References

[1] H. Zwirn and J. P. Delahaye, “Unpredictability and Computational Irre-
ducibility,” in Irreducibility and Computational Equivalence: Wolfram
Science 10 Years after the Publication of A New Kind of Science (H. Ze-
nil, ed.), New York: Springer, 2013 pp. 273–295.

[2] S. Wolfram, “Undecidability and Intractability in Theoretical Physics,”
Physical Review Letters, 54(8), 1985 pp. 735–738.

[3] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[4] H. Zenil, F. Soler-Toscano, and J. J. Joosten, “Empirical Encounters
with Computational Irreducibility and Unpredictability.”
arxiv.org/abs/1104.3421.

[5] S. Wolfram, “Statistical Mechanics of Cellular Automata,” Reviews of
Modern Physics, 55(3), 1983 pp. 601–644.

[6] N. Israeli and N. Goldenfeld, “Computational Irreducibility and the Pre-
dictability of Complex Physical Systems,” Physical Review Letters,
92(7), 2004 p. 074105. doi:10.1103/physrevlett.92.074105.

[7] D. Reisinger et al., “Exploring Wolfram’s Notion of Computational Irre-
ducibility with a Two-Dimensional Cellular Automaton,” in Irreducibil-
ity and Computational Equivalence: Wolfram Science 10 Years after the
Publication of A New Kind of Science (H. Zenil, ed.) New York:
Springer, 2013 pp. 263–272.

[8] M. R. Garey and D. S. Johnson, Computers and Intractability, San Fran-
cisco: W. H. Freeman, 1979.

[9] O. Goldreich, Computational Complexity: A Conceptual Perspective,
New York: Cambridge University Press, 2008.

[10] R. H. Hartley, Theory of Recursive Functions and Effective Computabil-
ity, New York: McGraw-Hill, 1967.

[11] C. H. Papadimitriou, Computational Complexity, Reading, MA: Addi-
son-Wesley, 1994.

[12] M. Blum, “A Machine-Independent Theory of the Complexity of Recur-
sive Functions,” Journal of the ACM, 14(2), 1967 pp. 323–336.
doi:10.1145/321386.321395.

[13] L. A. Levin, “Universal Sequential Search Problems,” Problems of Infor-
mation Transmission, 9(3), 1973 pp. 265–266.

Computational Irreducibility and Computational Analogy 173

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

[14] M. Cook, “Universality in Elementary Cellular Automata,” Complex Sys-
tems, 15(1), 2004 pp. 1–40.
http://www.complex-systems.com/pdf/15-1-1.pdf.

[15] H. Zwirn, Les limites de la connaissance, Paris: Odile Jacob, 2000.

[16] H. Zwirn, Les systèmes complexes, Paris: Odile Jacob, 2006.

174 H. Zwirn

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.2.149

