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In a previous paper [1], we provided a formal definition  for the concept
of  computational  irreducibility  (CIR),  that  is,  the  fact  that  for  a  func-
tion  f  from  N  to  N  it  is  impossible  to  compute  f (n)  without  following
approximately  the  same  path  as  computing  successively  all  the  values
f (i) from i = 1 to n. Our definition is based on the concept of enumerat-
ing  Turing  machines  (E-Turing  machines)  and  on  the  concept  of  ap-
proximation  of  E-Turing  machines,  for  which  we  also  gave  a  formal
definition.  Here,  we  make  these  definitions  more  precise  through  some
modifications  intended  to  improve  the  robustness  of  the  concept.  We
then  introduce  a  new  concept:  the  computational  analogy,  and  prove
some  properties  of  the  functions  used.  Computational  analogy  is  an
equivalence relation that allows partitioning the set of computable func-
tions  in  classes  whose  members  have  the  same  properties  regarding
their CIR and their computational complexity.

Introduction1.

The  notion  of  computational  irreducibility  (CIR)  seems  to  have  been
first  put  forward  by  Wolfram.  Given  a  physical  system  whose  be-
havior can be calculated by simulating explicitly each step of its evolu-
tion, is it always possible to predict the outcome without tracing each

step?  Is  there  always  a  shortcut  to  go  directly  to  the  nth  step?
Wolfram conjectured [2–4] that in most cases the answer is no. While
many computations admit shortcuts that allow them to be performed
more rapidly, others cannot be sped up. Computations that cannot be
sped  up  by  means  of  any  shortcut  are  called  computationally
irreducible.

This  question  has  been  widely  analyzed  in  the  context  of  cellular
automata by Wolfram [3, 5]. A cellular automaton is computationally
irreducible  if  in  order  to  know  the  state  of  the  system  after  n  steps
there  is  no  way  other  than  to  evolve  the  system  n  times  according  to
the  equations  of  motion.  The  intuition  behind  this  definition  is  that
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there  is  no  way  to  reach  the  nth  state  other  than  to  go  through  the

n - 1 previous ones. Figures 1 and 2 show the behavior of the linear

cellular  automaton  following  rule  110.  Figure  1  shows  the  first  25
steps, while Figure 2 shows a much larger number of steps. The behav-
ior of this automaton seems computationally irreducible.

Figure 1. The first 25 steps following rule 110.

Figure 2. A large number of steps following rule 110.

In this context, Israeli and Goldenfeld [6] have shown that some au-
tomata  that  are  apparently  computationally  irreducible  nevertheless
have properties that are predictable. But these properties are obtained
by  coarse  graining  and  do  not  account  for  small-scale  details.  More-
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over,  some  automata  (e.g.,  rule  30)  seem  to  be  impossible  to  coarse
grain.

Reisinger et al. [7] show that CIR seems to be contingent upon the
representation of a given problem. To do so, they consider a game for
which  the  initial  rules  are  computationally  reducible,  and  they  build
an  isomorphic  representation  leading  to  a  process  that  appears  to  be
computationally  irreducible.  As  they  notice,  a  more  definitive  claim
would be to take one of Wolfram’s computationally irreducible cellu-
lar  automata,  formulate  an  isomorphic  representation  of  it,  and  then
determine  whether  transition  rules  of  the  equivalent  system  are  com-
putationally reducible.

Whatever the answers to the questions raised by Israeli and Golden-
feld or by Reisinger et al. are, what is of interest for us in this paper is
to  provide  a  robust  formal  definition  of  the  very  concept  of  CIR,
which  is  lacking.  Indeed,  as  we  explained  in  [1],  Wolfram’s  intuition
needs  to  be  rigorously  formalized,  since  as  stated,  it  is  not  robust.
There are two underlying intuitions that seem to be equally important
in  the  concept  of  CIR.  The  first  one  is  the  question  of  the  speed  of
computation.  If  a  process  is  computationally  irreducible,  then  it

should not be possible to compute its nth  state in a time shorter than

the time needed to compute successively the n - 1 previous states be-

fore computing the nth. The second one is even more demanding. Af-

ter all, it could well be possible that the time to compute the nth  state
is  not  shorter  than  the  sum  of  the  times  needed  to  compute  succes-

sively all the previous states, but that the computation of the nth  state
does  not  really  need  to  go  through  the  computation  of  these  states.
But  for  a  process  to  be  computationally  irreducible,  the  necessity  to
actually compute these previous states is required. Of course, the sec-
ond  condition  implies  the  first  one.  In  the  following,  we  will  address
both conditions.

In [1], we provided a first  formal definition  for the concept of CIR,
which  we  reexpressed  in  the  more  general  framework  of  functions  f
from N to N as the fact that it is impossible to compute f(n) without
following  approximately  the  same  path  as  computing  successively  all
the values f(i) from i = 1 to n. Our definition  is based on the concept
of enumerating Turing machines (E-Turing machines) and on the con-
cept  of  approximation  of  E-Turing  machines,  for  which  we  also  gave
a formal definition. 

In  the  present  paper,  we  make  these  definitions  more  precise  and
add  some  modifications  intended  to  improve  the  robustness  of  the
concept. We refer the reader to the original paper for the motivations
of  the  initial  definitions.  Here,  we  also  introduce  a  new  concept:  the
computational analogy. 
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In  Section  2,  we  justify  the  computation  model  we  use  throughout
this  paper.  In  Section  3,  we  make  the  definition  of  the  E-Turing  ma-
chines and their approximations precise, and we give more details on
the definition  of the concept of CIR. In Section 4, we introduce com-
putational analogy, discuss its meaning, and prove some theorems for
functions  that  are  computationally  analogous,  relative  to  their  CIR
and their computational complexity.

The Computational Model2.

In this paper, we adopt the computational model of Turing machines
[8–11]  with  k ≥ 2  tapes.  Let  us  begin  by  justifying  our  choice  to  use
the  k-tape  Turing  machines  as  a  good  computational  model.  We  are
looking  for  a  general  model  of  computation  allowing  us  to  deal  with
the questions of efficiency  and speed of computation in a robust way.
It  is  well  known  that  the  model  of  Turing  machines  is  a  powerful
though very fundamental model of computation. The main point with
the  Turing  machine  model  is  that  it  is  very  simple  and  that  through
the  Church–Turing  thesis,  it  allows  the  computation  of  any  com-
putable  function.  Several  kinds  of  Turing  machines  exist,  depending
on  the  number  of  tapes  they  have.  While  they  are  all  equivalent  re-
garding the functions they allow to be computed, they are not equiva-
lent regarding the speed of computation. For example, it is possible to

prove that the problem of deciding if a string is a palindrome is On2

in  the  1-tape  Turing  machine  model  and  O(n)  in  the  2-tape  Turing
machine  model  [9,  11].  The  first  result  comes  from  the  fact  that  it  is
possible  to  simultaneously:  (1)  prove  that  any  1-tape  Turing  machine

for  deciding  palindromes  must  take  time  n2;  and  (2)  exhibit  a  Tur-

ing  machine  doing  the  job  in  On2.  The  second  one  comes  from  the

fact  that  it  is  possible  to  exhibit  a  2-tape  Turing  machine  deciding  a
palindrome  in  O(n),  which  is  obviously  the  best  possible  time,  since
the  input  of  length  n  has  to  be  read.  Does  increasing  the  number  of
tapes allow us to improve without limit the speed of the computation
of a given problem? This answer is no. A first  result [11] says that we
cannot expect more than a quadratic saving through allowing an arbi-
trary number of tapes. See Appendix A for the definition  of the stan-
dard asymptotic notations.

Theorem 1. Given  any  k-tape  Turing  machine  M  operating  within  time
T(n), it is possible to construct a 1-tape Turing machine M′

 operating

within time OT(n)2, such that for any input x, M(x) = M′(x).

The  meaning  of  this  result  is  the  following:  assume  that  the  best
1-tape  Turing  machine  doing  a  given  computation  operates  in  a  time
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T(n).  Then,  the  best  k-tape  machine  that  can  be  designed  for  doing

the same computation will never operate in less than T (n) .

A second result [11] is known as linear speedup.

Theorem 2. For  any  k-tape  Turing  machine  M  operating  in  time  T(n),
there  exists  a  k′-tape  Turing  machine  M′

 operating  in  time
f ′(n) = ϵ T(n) + n (where ϵ is an arbitrary small positive constant) that
simulates M. 

This  linear  speedup  means  that  the  main  aspect  of  complexity  is
captured through the function T(n) irrespectively of any multiplicative

constant.  DTIMET(n)  is  the  class  of  functions,  or  class  of  decision

problems, computable by a k-tape Turing machine in T(n) steps. This

result  means  that  DTIMET(n) = DTIMEϵ T(n),  and  so  it  is  legiti-

mate  to  define  DTIMET(n)  as  the  class  of  functions  computable  by

a  Turing  machine  in  OT(n)  steps.  If  a  function  f  is  computable  in

time  T(n)  and  if  logf(n)  (the  length  of  its  binary  representation)  is

oT (n), then f  is also computable in time ϵ T(n) for every ϵ > 0.

Hence, in the k-tape Turing machine model, the speed of computa-

tion can be expressed through the OT(n) notation, which is justified.

That is what we will do throughout the paper, as is usual in the field
of computational complexity.

More  results  about  the  so-called  “speedup  theorems”  are  given  in
our previous paper [1]. 

Usually,  in  the  theory  of  computation,  we  are  only  interested  in
knowing if a function is computable, and if so, in knowing the compu-
tational  complexity  of  getting  the  output  from  the  input.  What  is
done during the computation is rarely considered, and, except for the
person  writing  the  program  itself,  the  Turing  machine  is  a  kind  of
black  box  furnishing  an  output  from  an  input.  But  in  this  paper,  we
are  interested  in  a  particular  aspect  of  computation  that  is  not  often
addressed: the intermediate results. As we stated in the introduction, a
cellular  automaton  is  computationally  irreducible  if  in  order  to  know
the  state  of  the  system  after  n  steps  there  is  no  way  other  than  to
evolve the system n times according to the equations of motion. Simi-
larly,  for  a  function  to  be  computationally  irreducible  means  that  the
computation  of  f(n)  requires  the  previous  computation  of  all  the  f(i)
for i < n. Computationally irreducible functions are defined  not by an
explicit  formula  giving  the  value  of  f(n)  directly  from  the  value  of  n,

but  by  recursive  rules  giving  the  way  to  go  from  f(i)  to  fi + 1.  Of

course,  that  does  not  mean  that  it  is  enough  for  a  function  to  be  de-
fined  by  recursive  rules  to  be  computationally  irreducible.  Following

these rules, the computation of f(n) starts by the computation of f1,
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followed  by  the  computation  of f2  from f1, then  of f3  from f2

and so on, until the computation of f(n) from fn - 1. In order to be

able  to  characterize  that  sort  of  computation,  our  computational
model  should  allow  the  intermediate  computation  steps  to  be  identi-
fied.  For that, we will consider special 3-symbols (0, 1, #) Turing ma-
chines such that each of these intermediate results will be successively
written  on  the  output  tape,  with  the  symbol  “#”  written  at  its  left.
More precisely, a program that follows a recursive rule for computing
step  by  step  through  the  iteration  of  the  same  rule  “knows”  when  it
switches to the next iteration. What we demand in our specific  model
of  computation  is  that  the  intermediate  result  that  is  the  input  of  the
next iteration be written on the output tape at the right of the symbol
“#.” The final  result will appear on the output tape at the right of the
last symbol “#.” The output tape will be a one-way tape (i.e., the head
will be allowed to go only in the right direction). We will see through-
out  the  paper  why  this  kind  of  special  Turing  machine  is  useful  for
our purpose. 

The goal is to be able to distinguish the different results when read-
ing  the  output  tape.  Instead  of  using  a  special  symbol  to  separate  the
results, an equivalent method would be to use a self-delimiting way to
write them.

In the following f , g, h, F, G, H will always be functions from N to
N, and M, P, Q will always be Turing machines as described.

Computational Irreducibility3.

Given a Turing machine M computing f(n) in time T(M(n)), let us de-
note  by  Rn,1, … ,  Rn,i, … ,  Rn,T(M(n))  the  content  of  the  output  tape

of  M  during  the  computation  of  f(n)  after  one  step  of  computa-
tion,�…�,  i  steps  of  computation,  and  T(M(n))  steps  of  computation.
So  (Rn,1, … , Rn,i, … , Rn,T(M(n)))  is  the  sequence  of  the  configura-

tions of the output tape during the computation of f(n).

Definition 1  (E-Turing  machine). A  Turing  machine  Mf  will  be  called  an

E-Turing machine for f  if:

Mf  computes f  (i.e., for every input n, Mf  computes f (n) and halts). It is

important  to  notice  that  it  is  the  same  Turing  machine  that  on  input  n
computes f (n): f  is uniformly computed by Mf .

1.

During the computation of f (n), there exist increasing kn(i) for i = 1 to
n - 1, such that f (i) is written on the output tape Rn,kn(i)  at the right of

the last symbol “#.”

2.

An E-Turing machine for a function f  (in the following we will al-
ways denote as Mf  such a Turing machine) is a program that, in a cer-
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tain  sense,  enumerates  the  successive  values  f(i)  for  i ≤ n.  So,  during

the  computation  of f(n), f1  then f2,  and  so  on  until f(n)  succes-

sively  appear  on  the  output  tape  of  Mf .  It  is  of  course  possible  to

build E-Turing machines for any computable function.
Let  f  be  a  computable  function.  Here  are  two  examples  of  an

E-Turing machine for f . 

Assume  first  that  M  is  a  Turing  machine  that  on  every  input  n  com-
putes f (n). Let us now consider the Turing machine Mf , which on every

input  n  calls  M  with  input  1,  then,  when  M  has  computed  f (1),  writes
“#” and f (1) on the output tape, calls M again with input 2, and so on
until the last call to M with input n, and which halts when M has com-
puted  f (n),  after  having  written  “#”  and  f (n)  on  the  output  tape.  Mf  is

clearly  an  E-Turing  machine  for  f .  When  computing  f (n),  Mf  will  fol-

low  exactly  the  same  initial  segments  as  the  initial  segments  followed
for all k < n when computing f (k). The computation of f (n) is the con-
tinuation of the computation of f (k) for k < n. Also notice that the com-
putation of f  for each value n starts from scratch (i.e., the values of f (k)
for  k < n  are  not  used  for  computing  f (n)).  This  way  to  build  an
E-Turing machine is possible for any computable function.

1.

Assume  now  that  f  is  such  that  it  is  possible  to  compute  f (n)  from
f (n - 1).  Let  M′

 be  a  Turing  machine  that  on  input  f (n - 1)  computes
f (n). Let us now consider the Turing machine Mf

′ , which on every input

n starts by computing f (1), writes “#” and f (1) on the output tape, then
calls M′

 to compute f (2) from the input f (1)), writes “#” and f (2) on the
output tape, and so on until f (n). Mf

′
 is an E-Turing machine for f . The

computation  of  f (n)  by  Mf  can  be  seen  as  the  successive  computations

of  f (i)  from  f (i - 1)  until  reaching  f (n).  As  in  the  first  example,  when
computing f (n), Mf

′
 follows exactly the same initial segments as the ini-

tial  segments  followed  for  all  k < n  when  computing  f (k).  Here  again,
the  computation  of  f (n)  is  the  continuation  of  the  computation  of  f (k)
for k < n.

2.

Because  the  initial  path  is  the  same  when  computing  f(n)  and  f(m)

for  n > m,  these  two  examples  of  E-Turing  machines  can  be  thought
of  as  doing  a  computation  such  that  on  any  input  n,  they  halt  after

having  run  through  an  initial  segment  of  length  TMf(n)  of  one

unique infinite  virtual computation of f(i) for i = 1 to ∞. That means
also that the kn(i) are independent of n. But this is not necessarily the
case for all E-Turing machines.

The  computation  of  f(n)  from  fn - 1  can  be  faster  than  the  com-

putation of f(n) from n. In this case, Mf
′
 will be much faster than Mf .

We will see that this is the case if f  is computationally irreducible, be-
cause a Turing machine computing a computationally irreducible func-

tion  f  does  need  to  know  fn - 1  (or  a  value  that  is  near  in  a  sense
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that we will explain) to compute f(n). We give here some examples of
functions that seem intuitively to be more and more “difficult.”

In  the  examples  that  follow,  the  arguments  given  for  assessing  the
“difficulty”  of  the  given  function  are  simply  intuitive.  We  must  stress
the  fact  that  we  do  not  know  how  to  rule  out  the  possibility  that  a
clever  algorithm  may  be  found  for  speeding  up  the  computation.  We
just do not know of such an algorithm yet.

◼ For  computing  f (n) = 3n  from  the  input  n,  a  Turing  machine  will  go
through some of the intermediate values f (i) for i < n but not necessar-

ily  all.  For  instance,  32 n  can  be  computed  as  3n ⨯3n,  and  32 n+3  will

need  the  computation  of  3n+1  or  the  computation  of  3n  and  33.  But  if
f (n - 1) is given as input, the computation of f (n) is immediate and fast.

◼ For computing f (n) = n !, a Turing machine will go through n intermedi-
ate  values  if  it  starts  either  with  n  or  with  (n - 1) !  as  input.  Indeed,
even  from  (n - 1) !  it  is  necessary  to  know  n  for  computing  n !,  and  a
natural  way  (but  not  the  only  one)  to  “extract”  the  value  n  from
(n - 1) ! is to compute all the increasing values of the factorial function
and  to  count  how  many  have  been  computed  until  reaching  (n - 1) !.
The  computation  from  n  can  be  done  in  any  possible  order,  since  the
multiplication of the n first natural numbers can be done from any com-
bination  of  these  numbers.  That  means  that  even  if  a  Turing  machine
computing n ! from n will have to perform n operations, it will not nec-
essarily compute all the k ! for k < n first.  So it seems that every natural
Turing  machine  computing  n !  with  either  n  or  (n - 1) !  alone  as  input
will  have  to  perform  n  operations  without  having  to  be  necessarily  an
E-Turing  machine.  But  that  will  not  be  the  case  with  the  input
(n, (n - 1) !),  from  which  the  computation  will  be  very  fast.  Of  course,
these considerations are not enough to rule out the possibility of a way
to compute n ! much more efficiently (which we do not know yet). 

◼ For computing f (n) defined  by: “the first  bit of the sum of the kth  bit of

3k  for all k ≤ n” from the input n, a Turing machine will go through all
the intermediate values f (i) for i < n but will be simply unable to com-
pute  f (n)  from  f (n - 1)  alone  because  there  is  no  way  to  extract  the
value of n from f (n - 1), and this value is needed to compute f (n). So it
seems that every Turing machine computing f (n) with n as input will be
an  E-Turing  machine,  and  f (n)  could  well  be  computationally  irre-
ducible. From the input (n, f (n - 1)), the computation will be fast.

The time TMf(n) to compute f(n) with an E-Turing machine Mf  is

the sum of the times between the apparition on the output tape of f(i)

and  fi + 1  (from  i = 1  to  n - 1)  plus  the  initial  time  to  get  f1

appearing.

Let us denote as ti = T fi - 1
Mf

f(i)  the time between the appari-

tion  of  fi - 1  and  the  apparition  of  f(i)  during  the  computation  of

f(n) for any n > i. 
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We  have TMf(n) = ∑i=1
n ti  (we  suppose  by  convention  that t1  is

the  time  for  f1  to  appear  on  the  output  tape).  Since  Mf  is  a  Turing

machine,  ti  is  the  number  of  steps  done  by  the  machine  and  so  is  a

strictly positive integer. So TMf(n) ≥ n. But in the following, we will

be interested only in functions f  such that TMf(n) = Ωn log n.

This seems a reasonable assumption and it is obviously true of any
function f  such that f(n) ≥ n, since writing an output n in binary or in
any  other  base  ≥ 2  needs  at  least  a  time  log n,  and  an  E-Turing
machine performs n such operations before halting. So the time for an
E-Turing  machine  to  compute  such  a  function  is  necessarily  greater

than ∑i=1 to n log i = log(n !) = Θn log n. So TMf(n) = Ωn log n.

This  is  true  in  particular  for  the  simulation  of  a  large  number  of
nontrivial  one-dimensional  elementary  cellular  automata  with  nearest

neighbors  (that  are  Ωn2)  and  in  the  majority  of  the  simulations  of

more  complex  cellular  automata.  Of  course,  we  will  consider  as  well
computationally  irreducible  functions  for  which  f(n) < n.  This  is  the
case  of  the  two  candidates  given  at  the  end  of  Section  3,  but  it  is

highly probable that they satisfy nonetheless TMf(n) = Ωn log n.

The  question  of  knowing  whether  there  is  an  asymptotically  opti-
mal  program  for  doing  a  given  computation  is  a  difficult  and  open
question  in  general.  We  mean  by  asymptotically  optimal  program,  a
program p such that for any other program p′ doing the same compu-

tation  T(p(n)) = OT(p′(n)).  On  the  one  hand,  it  is  well  known  that

the  so-called  Blum  speedup  theorem  [12]  shows  that  for  some  deci-
sion  problems,  any  program  that  solves  the  problem  will  be  much
slower  than  some  other  program  solving  the  same  problem.  In  these
cases,  there  exists  an  infinite  sequence  of  programs  solving  the  prob-
lem,  such  that  each  program  in  the  sequence  is  much  faster  than  the
program  it  follows,  and  (up  to  a  multiplicative  constant)  there  is  no
asymptotically  optimal  program.  But  these  problems  are  artificially
constructed to prove the theorem. On the other hand, Levin’s optimal
search  theorem  [13]  proves  that  for  a  wide  class  of  problems  there  is
an  asymptotically  optimal  program.  These  are  problems  for  which
verifying a solution is easy, while producing a solution might be diffi-
cult.  More  precisely,  these  are  problems  for  which  the  time  complex-
ity  of  checking  a  solution  is  asymptotically  faster  than  the  time  com-
plexity  of  producing  a  solution.  It  is  widely  thought  that  no  “natural
problem”  is  subject  to  Blum  speedup  and  that,  in  general,  asymptoti-
cally  optimal  algorithms  exist  for  them.  In  particular,  this  is  the  case
for  the  cellular  automata  that  are  the  initial  source  of  inspiration  for
the subject of this paper. Indeed, to show that a program P is asymp-
totically optimal, it is enough to show that there is a lower bound, say
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h(n),  on  the  time  complexity  of  any  program  Q  for  this  problem,

TQ(n) = Ωh(n), and to prove that T(P(n)) = Oh(n). In this case, P

is an asymptotically optimal program. For example, in the case of the
simulation  of  nontrivial  one-dimensional  elementary  cellular  au-
tomata with nearest neighbors, it is clear that any algorithm comput-
ing the n initial configurations  will have in the worst case to perform

in  Ωn2,  and  that  there  are  algorithms  performing  in  On2  (see  [1]

for details on this point). These algorithms will be asymptotically opti-
mal. Hence, any Turing machine representing these algorithms will be
an  asymptotically  optimal  program  for  the  given  cellular  automaton.
This  is  what  we  call  later  an  efficient  E-Turing  machine.  We  will
make  the  assumption  that  there  always  exists  an  asymptotically
optimal  Turing  machine  that  we  will  denote  as  Mf

*
 and  an  efficient

E-Turing  machine  that  we  will  denote  as  Mf
eff

 for  any  function  f  we

consider.  Put  differently,  let  us  say  that  we  restrict  our  scope  to  the
subset  of  the  computable  functions  set  made  of  functions  that  satisfy
this requirement (which is hopefully a very large subset).

We give now the formal definition  of an efficient  E-Turing machine
for  a  function,  which  will  be  a  fundamental  building  block  for  what
follows.

Definition 2 (efficient E-Turing machine). We will say that an E-Turing ma-

chine Mf
eff

 for f  is an efficient  E-Turing machine for f  if for any other

E-Turing  machine  Mf  for  f ,  TMf
eff(n) = OTMf(n);  that  is,  there

are constants c > 0, n0 > 0 such that ∀n > n0, TMf
eff(n) ≤c TMf(n).

As  explained,  the  intuition  is  that  asymptotically  it  is  not  possible
for an E-Turing machine to compute faster than an efficient  E-Turing
machine. 

It  is  clear  from  the  definition  that  for  any  two  efficient  E-Turing

machines  Mf
eff,  Mf

′eff,  and  for  any  two  asymptotically  optimal  Turing

machines  Mf
*,  Mf

′*,  we  have TMf
eff(n) = ΘTMf

′eff(n)  and

TMf
*(n) = ΘTMf

′*(n).  So  for  any  function  H,  H(n)=OTMf
eff(n)

is  equivalent  to  H(n) = OTMf
′eff(n),  and  H(n) = OTMf

*(n)  is

equivalent  to  H(n) = OTMf
′* f(n).  In  the  following,  Mf

eff
 will  al-

ways  denote  an  efficient  E-Turing  machine  for  f ,  and  TMf
eff(n) will

denote the time for an efficient E-Turing machine to compute f(n). Mf
*

will  always  denote  an  asymptotically  optimal  Turing  machine

computing f , and TMf
*(n) will denote the time for an asymptotically
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optimal Turing machine to compute f(n). According to this, there will
be no need to be precise about which particular efficient E-Turing ma-
chine or which asymptotically optimal Turing machine is considered. 

We always suppose that there exist an asymptotically optimal Tur-

ing machine Mf
*
 and an efficient E-Turing machine Mf

eff
 for f .

Definition 3  (approximation  of  an  E-Turing  machine). A  Turing  machine  M
will be said to be a P-approximation (or simply, approximation) of an
E-Turing machine for f  if and only if there are a function F such that

F(n) = OTMf
*(n)  n and a Turing machine P such that for every n: 

On  input  n,  M  computes  a  result  rn  such  that  P  computes  f (n)  from  n
and rn in a number of steps F(n) and halts. 

1.

During  the  computation,  there  exist  nondecreasing  kn(i)  for  i = 1  to
n - 1, such that a result rn,i

′
 is written on the output tape Rn,kn(i)  at the

right of the last symbol “#,” and P computes f (i) from n, i, and rn,i
′

 in a

number  of  steps F(i)  and  halts.  (We  will  often  omit  to  mention  again
the inputs n, i, which will be implied.) 

2.

Actually,  if  we  note  rn = rn,n
′ ,  P  always  computes  from  the  triplet

n, i, rn,i
′ , here abbreviated as n, rn when i = n.

Intuitively,  an  approximation  of  an  E-Turing  machine  for  f  is  a
Turing  machine  doing  a  computation  that  is  near  the  computation
made by an E-Turing machine for f . 

Let  us  notice  that  each  E-Turing  machine  for  f  is  of  course  an  ap-
proximation of an E-Turing machine for f . The associated Turing ma-
chine P is simply the identity (a Turing machine that computes n from

the  input  n)  under  the  condition  that  F(n) = OTMf
*(n)  n =

Ωlf(n).

An approximation P of an E-Turing machine for f  can be an E-Tur-
ing machine for r if the rn,i

′
 do not depend on n and if ri

′ = ri  for all i

(i.e.,  the  intermediate  results  are  the  values  actually  computed  by P).
But  it  is  not  necessarily  always  the  case.  In  particular,  it  can  happen
that the intermediate results rn,i

′
 from which P computes f(i) are differ-

ent for different values of n. In this case, the path that M follows for
computing rn  is different for different values of n, and the ri  for i < n
are not necessarily computed.

The  concept  of  approximation  of  an  E-Turing  machine  for  f  is  ac-
tually  a  concept  obtained  from  the  concept  of  an  E-Turing  machine
by  relaxing  the  constraints  of  the  definition  along  three  dimensions.
The  first  one  is  the  fact  that  on  input  n  an  approximation  does  not
compute  exactly  f(n)  but  a  value  r(n)  such  that  it  is  possible  to  go
from r(n) to f(n) through a very short computation. The second one is
that the intermediate results do not need to be all the f(i) for i < n but
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values  rn,i  from  which  it  is  possible  to  compute  f(i)  through  a  very

short  computation,  and  the  third  one  is  that  it  is  not  even  necessary
that the intermediate values be the same on every computation for dif-
ferent n. 

Another point to notice is that we do not claim that it is necessary
to  be  able  to  build  the  Turing  machine  P  that  is  associated  to  an  ap-
proximation through an effective means. We only ask that such a ma-
chine exist. 

We can intuitively justify the value chosen for F(n). F(n) is the time
that the computation of f(n) takes from the value rn  that is computed
by  the  approximation.  We  have  in  mind  the  case  of  computationally
irreducible  functions  for  which  computing  f(n)  demands  computing
all  the  previous  values.  For  these  functions,  since  we  want  rn  to  be
“near”  f(n)  in  a  certain  sense,  the  time  to  go  from  rn  to  f(n)  must  be
very short compared to the time to compute f(n) from n, and at most

comparable to the time to compute f(n) from fn - 1. That is the rea-

son  why  F(n) = OTMf
*(n)  n.  Indeed,  if  f  is  computationally  irre-

ducible, we will see that this is the average time to compute f(n) from

fn - 1.  The  factor  1  n  in  TMf
*(n)  n  takes  into  account  the  fact

that  there  are  n  necessary  phases  to  compute  f(n)  with  an  E-Turing
machine for f , and that we want P to compute in a time shorter than
or equal to each one of these phases.

Another way to understand the value of F(n), coming from the pic-
ture  of  cellular  automata,  is  to  think  that  rn  is  “near”  f(n)  (and  then
the  computation  of  f(n)  from  rn  is  fast)  if  there  are  only  a  bounded
number of operations to perform on some bits of rn  to go from rn  to
f(n). Indeed, in this framework, a bit of f(n) or of rn is a cell of the cel-

lular  automaton.  That  means  that  F(n)  is  Ol(rn)  where  l(rn)  is  the

length  of  rn.  A  reasonable  assumption  is  that  the  length  of  rn  should

not exceed much the length of f(n), so l(rn) = Olog f(n). That means

that  F(n)  is  Olog f(n).  Now  as  we  saw  before,  TMf
eff(n) =

Ωn log f(n),  so  log f(n) = OTMf
eff(n)  n;  then  F(n)  must  be

OTMf
eff(n)  n.  Now  for  computationally  irreducible  functions,  we

anticipate  that  TMf
eff(n) = ΘTMf

*(n),  so  F(n) = OTMf
*(n)  n  is

equivalent to F(n) = OTMf
eff(n)  n. For functions that are not com-

putationally  irreducible  but  instead  satisfy  TMf
*(n) = oTMf

eff(n),

the value F(n) = OTMf
*(n)  n is the smaller of the two.

Is it possible to be more demanding and to ask that F(n) be smaller
than  that?  The  answer  is  no,  as  it  is  easy  to  see  from  the  example  of
one-dimensional  cellular  automata.  F(n)  is  the  time  for  P  to  compute
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f(n) from rn, so in order for P to read rn  and to write f(n), F(n) must

be  at  least  equal  to lf(n).  For  nontrivial  automata, lf(n) = O(n).  If

these  automata  are  computationally  irreducible,  then  TMf
eff

 (n) =

ΘTMf
*(n) = On2,  and  so  F(n) = OTMf

*(n)  n = O(n).  It  can  be

seen  that  demanding  a  smaller  value  for  F(n)  would  result  in  no  ma-
chine P being able to exist, since the time to write f(n) is Ω(n). Notice
that  for  these  automata  that  are  not  computationally  irreducible  and

for which TMf
*(n) = on2, there will be no machine P and hence no

approximation  of  an  E-Turing  machine.  Indeed,  in  this  case

F(n) = OTMf
*(n)  n = o(n), which is too small a value for any P to

write  f(n).  Of  course,  this  is  true  only  for  functions  such  that

lf(n) > n, which is not mandatory. In particular, this is false for triv-

ial automata whose configurations  vanish after some iterations or for
which  the  successive  configurations  are  restricted  to  one  cell.  So  the
reasoning given is not a proof but only an intuitive justification  of the
value of F(n).

Definition 4  (computation  of  f(n)  based  on  an  approximation). Let  M  be  a
P-approximation  of  an  E-Turing  machine  for  f .  Let  us  consider  the
computation of f(n) done initially through M with input n and contin-
ued when M has computed rn  by P, which computes f(n) from n and
rn in a time F(n) and halts. This computation will be said to be a com-
putation of f(n) based on the P-approximation M.

Definition 5  (Turing  machine  computing  f  based  on  an  approximation). Let  M
be  a  P-approximation  of  an  E-Turing  machine  for  f ,  and  let  us  con-
sider  the  Turing  machine  M′,  which,  for  every  n,  computes  f(n)
through  a  computation  based  on  the  P-approximation  M.  M′

 will  be
said  to  be  a  Turing  machine  computing  f  based  on  the  approxima-
tion�M. 

If M is an E-Turing machine for f , M and M′
 are identical and M′

is  of  course  an  E-Turing  machine  for  f .  Otherwise,  M′
 is  also  an  ap-

proximation of an E-Turing machine for f . The Turing machine P′  as-
sociated to M′

 is the same as P; that is, P′ computes f(i) from n, i, and
rn,i
′

 in  a  number  of  steps F(i),  except  that  for  the  computation  on  in-

put n, n, and rn,n
′ , P′ is the identity, while P computes f(n).

As shown in Theorem 3, the important point is that it is possible to
build an E-Turing machine for f  from any approximation of an E-Tur-
ing machine for f . 

Theorem 3. From  any  M  approximation  of  an  E-Turing  machine  for  f ,
it is possible to build an E-Turing machine M′

 for f  (we will call it the

daughter of M), computing in a time T(M′(n)) = ΘT(M(n)).
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Proof.  Since  M  is  an  approximation  of  an  E-Turing  machine  for  f ,
there  are  a  Turing  machine  P  and  a  function  F  associated,  as  men-
tioned  in  Definition  3.  Let  us  consider  the  Turing  machine  built  ac-
cording  to  the  following  way:  on  input  n,  M′

 does  exactly  the  same
computation as M, but for each i < n, after having computed rn,i, M′

computes  f(i)  through  P  with  input  n,  i,  rn,i  in  a  time  F(i),  writes  “#”

and f(i) on its output tape, resumes the computation, and finally, com-
putes  f(n)  from  n  and  rn.  It  is  clear  that  M′

 is  an  E-Turing  machine
for f . M′

 computes in a time: 

T(M′(n)) =

T(M(n)) +
i=1

n

F(i) +O1 = T(M(n)) +
i=1

n

O
TMf

*(i)

i
+O1.

Now it is possible to compute f(n) by M followed by P (i.e., a com-
putation of f  based on the approximation M) so: 

TMf
*(n) =OT(M(n)) + F(n)

TMf
*(n) =O T(M(n)) +O

TMf
*(n)

n
.

Hence

TMf
*(n) =OT(M(n)).

Then

T(M′(n)) =T(M(n)) +
i=1

n

O
T(M(i))

i
.

Now  ∑i=1
n F(i) / i = O(F(n))  if  F  is  a  convex  function  and

F(n) = Ωlog n  (see  Appendix  B).  Since  any  function  OT(M (i))  is  a

convex function Ωlog n, we have

T(M′(n)) = T(M(n)) +OT(M(n)) = OT(M(n)).

As T(M(n)) < T(M′(n)), we get T(M(n)) = ΘT(M′(n)). □ 

We will denote as ⊗ this particular form of composition of the two
Turing machines M and P. So M′ = P⊗M. The composition ⊗ is de-
fined  for  a  pair  (P, M)  when  the  second  argument  is  an  approxima-
tion of an E-Turing machine for a given function f  and the first  one is
the  associated  Turing  machine  computing  f(i)  from  the  intermediate
results  of  M.  Of  course,  this  composition  is  not  to  be  confused  with
the usual composition P∘M, which runs first  the program M and then
the  program  P,  with  the  result  of  the  computation  of  M  as  input.  An
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important  difference  is  the  computation  time.  The  computation  time
of P∘M is the sum of the respective computation times:

T((P∘M) (n)) = TPoutput ofM(n) +T(M(n)),

while the computation time of P⊗M is

T((P⊗M) (n)) =


i=1

n

T(P(rn,i)) +T(M(n)) +O1 = 
i=1

n

F(i) +T(M(n)) +O1.

Theorem 4. No  approximation  of  an  E-Turing  machine  for  f  can  com-
pute faster than an efficient  E-Turing machine for f . More precisely, if
M  is  an  approximation  of  an  E-Turing  machine  for  f ,  then

TMf
eff(n) = OT(M(n)). 

Proof. Let M′
 be the daughter of M. Since M′

 is an E-Turing machine

for  f ,  TMf
eff(n) = OT(M′(n)).  By  Theorem  3  we  have  T(M′(n)) =

ΘT(M(n)). So TMf
eff(n) = OT(M(n)). □

Theorem 5. Let  M′
 be  a  Turing  machine  computing  f  based  on  an  ap-

proximation M. Then T(M′(n)) = ΘT(M(n)).

Proof. M′
 will compute in a time T(M′(n)) such that

T(M(n)) ≤ T(M′(n)) ≤ T(M(n)) + F(n) =

T(M(n)) +O
TMf

*(n)

n
=

T(M(n)) +O
T(M(n))

n
= OT(M(n)).

So T(M(n)) = ΘT(M′(n)). □ 

In summary, we can say that an approximation of an E-Turing ma-
chine  for  f ,  its  daughter,  and  any  Turing  machine  computing  f  based
on this approximation all compute in the same time.

Definition 6 (strong CIR (resp. simple CIR) functions). A function f(n) from N
to N will be said to have strong CIR (resp. simple CIR) if and only if
for any Turing machine M computing f  there is a P-approximation of
an  E-Turing  machine  for  f,  M′

 such  that  for  every n  (resp.  for  in-
finitely many n), the computation of f(n) by M is based on M′.

The  intuition  is  that  if  a  function  is  strongly  computationally  irre-
ducible, for each n there is no way to compute f(n) other than to first
compute  all  the  values  f(i)  for  i < n  (or  values  that  are  near  in  the
sense  given  in  Definition  3).  There  is  no  shortcut  to  directly  get  the
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value of f(n) without having first  computed fn - 1 or a value that is

near fn - 1 and so forth for the previous values. If a function is com-

putationally  irreducible  (but  not  strongly  computationally  irre-
ducible),  for  infinitely  many  n  there  is  no  way  to  compute  f(n)  other
than  to  first  compute  all  the  values  f(i)  for  i < n  (or  values  that  are
near).

The  reason  it  is  useful  to  introduce  this  distinction  between  strong
CIR and simple CIR can be explained through the following example.
Assume  that  f  is  strongly  computationally  irreducible.  So  there  is  no
way to compute f(n) other than to first  compute all the values f(i) for
i < n (or values that are near), and that is true for every n. Let us now

consider  the  function  g  such  that  g2 i - 1 = f (i)  and  g2 i = 1.  It  is

clear  that  computing  g  for  any  even  value  is  very  easy  and  does  not
imply  having  to  compute  any  other  result  first.  So  g  is  not  strongly
computationally  irreducible.  But  the  intuition  is  nevertheless  that  g  is
irreducible in some way. The notion of strong CIR needs to be weak-
ened to cover functions like g and many others that similarly need in-
finitely  often  (but  not  always)  to  go  through  the  computation  of  all
the previous values in order to be computed. It is worth noticing that
if  a  function  is  computationally  irreducible  but  not  does  not  have
strong  CIR,  then  the  computation  of  f(n)  will  require  fewer  than  n
steps. In the example of the function g, the computation made by any
Turing  machine  computing  g  can  be  based  on  a  Turing  machine  that

computes g2 i - 1 in i steps through a P-approximation of an E-Tur-

ing machine for f  and g2 i in one step (since it is equal to 1). So the

computation of g will require at most n  2 steps. This example can of

course  be  extended  to  any  other  value  of  the  required  number  of
steps, as long as this number is a growing unbounded function of n.

Theorem 6. If  a  function  f  has  strong  CIR,  then  no  Turing  machine
computing  f  can  compute  f(n)  faster  than  an  efficient  E-Turing  ma-

chine  for  f .  So  for  any  Turing  machine  M  computing  f ,  TMf
eff(n) =

OT(M(n)).

Proof. If f  has strong CIR, then any Turing machine M computing f  is
based  on  an  approximation  of  an  E-Turing  machine  for  f .  Let  M′

 be

this  approximation.  From  Theorem  4,  TMf
eff(n) = OT(M′(n)).

From Theorem 5, T(M (n)) = ΘT(M′(n)). 

So TMf
eff(n) = OT(M(n)). □ 

This result is slightly weakened in Theorem 7 if f  is simply compu-
tationally irreducible. In this case, for any Turing machine computing
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f ,  there  are  infinitely  many  values  of  f(n)  that  it  is  not  possible  to
compute  faster  than  the  computation  by  an  efficient  E-Turing  ma-
chine for f .

Theorem 7. If  a  function  f  is  computationally  irreducible,  then  for  any
Turing machine M computing f  there are constants c > 0, n0 > 0 such

that ∀ N > n0, ∃ n > N, TMf
eff(n) ≤ c T(M(n)).

Proof.  If  f  is  computationally  irreducible,  then  for  any  Turing  ma-
chine  M  computing  f  there  is  a  P-approximation  of  an  E-Turing  ma-
chine  for  f ,  M′

 such  that  for  infinitely  many  n,  the  computation  of

f(n)  by  M  is  based  on  M′.  From  Theorem 4,  TMf
eff(n) =

OT(M′(n)).  So  there  are  constants  c > 0,  n0 > 0  such  that  ∀ n > n0,

TMf
eff(n) ≤ c T(M′(n)).  But  ∀ N, ∃ n > N  such  that  the  computation

of  f(n)  by  M  is  based  on  M′.  For  such  n,  TM(n) > T(M′(n)).  So  for

those n that are superior to n0, TMf
eff(n) ≤ c T(M(n)). □

Theorem 8. If  a  function  f  has  strong  CIR,  then  TMf
*(n) =

ΘTMf
eff(n).

Proof.  If  f  has  strong  CIR,  then  by  Theorem  6  for  any  Turing  ma-

chine  M  computing  f ,  TMf
eff(n) = OT(M(n)).  So  TMf

eff(n) =

OTMf
*(n).  Because  of  the  definition  of  an  asymptotically  optimal

Turing  machine,  for  any  Turing  machine  M  computing  f ,

TMf
*(n) = OT(M(n)). So TMf

*(n) = OTMf
eff(n).

Hence TMf
*(n) = ΘTMf

eff(n). □ 

Definition  6 and  Theorems 6,  7,  and 8  address the  two key  points
of the underlying intuitions for the concept of CIR: the speed of com-
putation and the path followed during the computation.

Example 1. Let ℬ = 0, 1 and ℬ*
 be the set of all finite  strings over ℬ.

Let  ℒ  be  a  recursive  language  and  assume  an  enumeration  of  the
words of ℬ*

 (e.g., the index in the length-increasing lexicographic or-
dering).  Define  the  function  f  by  f(n)  as  the  number  of  words  wi

(for i ≤ n  in  the  chosen  enumeration)  of  ℬ*
 in  ℒ.  Then  it  seems  that,

in  general,  there  is  no  other  way  to  compute  f(n)  than  to  decide  for
each i ≤ n if the word wi  belongs or not to ℒ and to count the num-
ber of positive answers.

Example 2. Knowing  if  an  initial  configuration  of  Conway’s  Game  of
Life  will  be  eternal  or  not  is  an  undecidable  problem.  So  let  f(n)  be
the  number  of  initial  configurations  with  an  index  smaller  than  n + 1

Computational Irreducibility and Computational Analogy 165

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.2.149



in  a  given  enumeration  that  are  still  living  after  n  iterations.  Here
again, it seems that there is no way to compute f(n) other than to test
each  one  of  the  relevant  configurations  during  n  steps  and  therefore,
by so doing, to go through the computation of all the f(i) for i < n.

Computational Analogy4.

Computational analogy should not be confused with Wolfram’s prin-
ciple  of  computational  equivalence,  which  states  that  most  systems
found  in  the  natural  world  are  computationally  equivalent  because
most  of  them  can  perform  universal  computations.  Computational
analogy  concerns  functions  that  are  not  necessarily  universal  but  that
share  properties  about  their  computational  complexity  (their  asymp-
totically  optimal  programs  compute  in  the  same  time  as  well  as  their
efficient  E-Turing  machines)  and  their  computational  irreducibility
(see the comment after Theorem 13).

Let M be an approximation of an E-Turing machine for f . M com-
putes  a  function r  but  is  not  necessarily  an  E-Turing  machine  for  r.
Nevertheless, it is clear that each E-Turing machine for r is an approx-
imation of an E-Turing machine for f . But it is possible that no E-Tur-
ing  machine  for  f  is  an  approximation  of  an  E-Turing  machine  for  r.
Such  would  be  the  case  if,  while  the  time  to  go  from  n,  r(n)  to  f(n)

through P is OTMf
*(n)  n, there is no Turing machine able to com-

pute r(n) from n, f(n) in a time OT(Mr
*(n))  n, where Mr

*
 is an asymp-

totically  optimal  Turing  machine  for  r.  But  if  one  E-Turing  machine
for  f  is  an  approximation  of  an  E-Turing  machine  for  r,  then  every
E-Turing machine for f  will be an approximation of an E-Turing ma-
chine for r. In this case, each E-Turing machine for f  is an approxima-
tion  of  an  E-Turing  machine  for  r  and  vice  versa,  each  E-Turing  ma-
chine for r is an approximation of an E-Turing machine for f . So it is
possible  to  define  a  relation  of  “computational  analogy”  CA  (which
will be proved to be an equivalence relation).

Definition 7  (computational  analogy). f  and  g  will  be  said  to  be  computa-
tionally analogous (noted f CA g) if:

There exists a Turing machine M that is both an E-Turing machine for
f  and an approximation of an E-Turing machine for g.

1.

There exists a Turing machine M′
 that is both an E-Turing machine for

g and an approximation of an E-Turing machine for f .
2.

That means that there is a Turing machine Pf→g  that computes g(n)

from  n,  f(n)  for  every  n  in  a  time  F(n) = OTMg
*(n)  n  (and  vice

versa). So we have the following theorems and proofs.
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Theorem 9. f CA g  is  equivalent  to:  there  is  a  Turing  machine  Pf→g

that  computes  g(n)  from  n,  f(n)  for  every  n  in  a  time

F(n) = OTMg
*(n)  n, and there is a Turing machine Pg→f  that com-

putes f(n) from n, g(n) for every n in a time G(n) = OTMf
*(n)  n.

In  the following,  when  f CA g, we  will  always  denote by  Pg→f  and

Pf→g these Turing machines. 

Theorem 10. Let Mf
*
 (resp. Mg

*) be an asymptotically optimal Turing ma-

chine computing f  (resp. g). If f CA g, then TMf
*(n) = ΘTMg

*(n).

Proof.  The  Turing  machine  Pf→g ∘Mf
*  computes  g  in  a  time

TMf
*(n) + F(n)  with  F(n) = OTMg

*(n)  n.  Since  Mg
*

 is  an  asymp-

totically  optimal  Turing  machine  computing  g,  TMg
*(n) =

OTMf
*(n) +OTMg

*(n)  n,  so  TMg
*(n) = OTMf

*(n).  The  same

reasoning  with  Pg→f ∘Mg
*  proves  that  TMf

*(n) = OTMg
*(n).  Then

TMf
*(n) = ΘTMg

*(n). □ 

Theorem 11. Let  Mf
eff

 (resp.  Mg
eff)  be  an  asymptotically  optimal  Turing

machine  computing  f  (resp.  g).  If  f CA g,  then  TMf
eff(n) =

ΘTMg
eff(n).

Proof.  The  Turing  machine  Pf→g ⊗Mf
eff,  which  is  an  E-Turing  ma-

chine for g, computes in a time 

TPf→g ⊗Mf
eff(n) = TMf

eff(n) +
i=1

n

O
TMg

*(i)

i
.

Since  Mg
eff

 is  an  efficient  E-Turing  machine,  TMg
eff(n) =

OTPf→g ⊗Mf
eff(n).

Hence 

TMg
eff(n) = O TMf

eff(n) +
i=1

n

O
TMg

*(i)

i
.

Now 


i=1

n

O
TMg

*(i)

i
= OTMg

*(n)

(see Appendix B).
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So  TMg
eff(n) = OTMf

eff(n) +OTMg
*(n).  Now  TMg

*(n) =

ΘTMf
*(n)  by  Theorem  10,  and  TMf

*(n) = OTMf
eff(n);  then

TMg
eff(n) = OTMf

eff(n).

The same reasoning for f  shows that TMf
eff(n) = OTMg

eff(n). 

Hence TMf
eff(n) = ΘTMg

eff(n). □ 

Theorem 12. f CA g  is  equivalent  to:  any  approximation  of  an  E-Tur-

ing  machine  for  f  is  an  approximation  of  an  E-Turing  machine  for  g
and vice versa.

Proof. Consider first  the direct sense: Let M be a P-approximation of

an E-Turing machine for f. P computes in a time OTMf
*(n)  n. Ac-

cording to Theorem 9, there  is a Turing machine Pf→g  that computes

g(n) from f(n) for every n in a time F(n) = OTMg
*(n)  n. 

It is then clear that M is a Pf→g ∘P-approximation of an E-Turing

machine  for  g  because  Pf→g ∘P  computes  in  a  time

OTMf
* (n)  n +OTMg

*(n)  n = OTMg
*(n)  n,  since  by  Theo-

rem 10,  TMf
*(n) = ΘTMg

*(n).  Consider  now  the  reverse  sense:  an

E-Turing  machine  for  f  is  an  approximation  of  an  E-Turing  machine
for  f,  so  it  is  an  approximation  of  an  E-Turing  machine  for  g  (and

vice versa). □ 

The very meaning of f CA g is that f  and g share the same approxi-
mations of E-Turing machines.

Theorem 13. CA is an equivalence relation.

Proof. This is obvious by Theorem 12. □

The  quotient  set  of  the  computable  functions  set  by  this  equiva-
lence relation is made of equivalence classes of computationally analo-
gous  functions  that  share  properties  about  their  computational  com-
plexity  (their  asymptotically  optimal  programs  compute  in  the  same
time as well as their efficient  E-Turing machines, by Theorems 10 and
11) and their CIR, as we are now going to show.

Let us recall that we restrict our scope to the computable functions
that  satisfy  the  requirement  that  there  be  an  asymptotically  optimal
program and an efficient E-Turing machine for them.

Theorem 14. Assume f CA g. If f  has strong CIR, then g also has strong
CIR.

Proof.  Let  M  be  a  Turing  machine  computing  every  g(n).  Since

f CA g,  there  is  a  Turing  machine  Pg→f  that  computes  f(n)  from  n,
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g(n)  for  every  n  in  a  time  F(n) = OTMf
*(n)  n.  Pg→f ∘M  is  a  Tur-

ing machine computing every f(n). Now f  has strong CIR, so there are
a Turing machine S that is an approximation of an E-Turing machine

for  f ,  a  Turing  machine  Q,  and  a  function  H(n) = OTMf
*(n)  n

such  that  for  every  n,  the  computation  of  f(n)  made  by  Pg→f ∘M  is

based on S (i.e., is actually the same as the computation of f(n) made
by  S  followed  by  Q  that  computes  in  a  time  H(n)).  Since  f  CA g,  by
Theorem  12,  S  is  also  an  approximation  of  an  E-Turing  machine  for
g. So during the computation of f(n) there is data rn,i  (computed by S)

appearing  successively  in  an  increasing  order  from  i = 1  to  n  on  the
output string of S, such that there is a Turing machine Q′

 that on in-
put  rn,i,  computes g(i)  in  a  number  of  steps  H′(i) (where

H′(n) = OTMg
*(n)  n). Since Pg→f ∘M and Q∘S are the same Tur-

ing machine, that means that some of these rn,i appear during the com-

putation  of  M  and  some  appear  during  the  computation  of  Pg→f .  Let
us  assume  that  all  the  rn,i  for  i = 1  to  k  appear  during  the  computa-

tion of M and that all the rn,i for i = k + 1 to n appear during the com-

putation of Pg→f . Let us now consider the Turing machine Q″
 gotten

from Q′
 through the following change: 

◼ On input n, i, rn,i  for i = 1 to k, Q″
 does the same computation as Q′

(i.e., computes g(i) in a time H′(i)).

◼ On input n, i, rn,k  for i = k + 1 to n, Q″
 starts by computing rn,i, then

computes g(i) from r(i) as Q′
 does.

Since  Pg→f  computes  f(n)  from  n,  g(n)  in  a  time

G(n) = OTMf
*(n)  n,  all  the  rn,i  for  i = k + 1  to  n  will  appear  in  a

time  less  than  G(n).  So  the  computation  of  g(i)  from  n,  i,  rn,k  (for

i = k + 1  to  n)  will  be  done  in  a  time  H″(i)  smaller  than  G(n) +H′(i).

Since  G(n) = OTMf
*(n)  n,  which  is  equal  to  OTMg

*(n)  n  by

Theorem  10,  and  since  H′(n) = OTMg
*(n)  n,  we  get

H″(n) = OTMg
*(n)  n.

Let  us  notice  that  the  list  of  intermediate  results  rn,i
′

 from  which

Q″
 computes  g(i)  is  the  same  as  the  list  of  rn,i  for  i = 1  to  k  and  is

equal  to  rn,k  for  i = k  to  n.  That  means  that  M  is  based  on  a  Q″-ap-

proximation of an E-Turing machine for g (the Turing machine com-

puting all the rn,i for i = 1 to k), and so g has strong CIR. □  

Theorem 15. Assume f CA g. If f  has simple CIR, then g also has simple
CIR.
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Proof.  Let  M  be  a  Turing  machine  computing  every  g(n).  Since

f CA g,  there  is  a  Turing  machine  Pg→f  that  computes  f(n)  from  n,

g(n)  for  every  n  in  a  time  F(n) = OTMf
*(n)  n.  Pg→f ∘M  is  a  Tur-

ing  machine  computing  every  f(n).  Now  f  is  computationally  irre-
ducible, so there is an approximation S of an E-Turing machine for f

such  that  for  infinitely  many  n,  the  computation  of  f(n)  by  Pg→f ∘M

is  based  on  S.  Let  us  consider  the  function  f ′  obtained  from  f  by

f ′(n) = f(p),  where  p  is  the  nth  value  for  which  the  computation  of  f

by Pg→f ∘M is based on S. It is clear that f ′  has strong CIR, since for

every  n,  the  computation  of  f ′(n)  is  based  on  the  approximation  S′,
which  does  exactly  the  same  computation  as  S,  except  that  on  input
n,  S′  computes  the  result  that  S  computes  on  input  p,  where  p  is  the

nth  value  for  which  the  computation  of  f  by  Pg→f ∘M  is  based  on  S.

Let  g′  be  the  function  defined  similarly  from  g:  g′(n) = g(p),  where  p

is the nth  value for which the computation of f  by Pg→f ∘M is based

on S. It is clear that f′ CA g′. So g′  has strong CIR. Then g is compu-

tationally irreducible. □

Conclusion5.

We  have  provided  a  formal  definition  of  computational  irreducibility
(CIR) that clarifies  the intuition about this concept and that allows us
to understand that a function is computationally irreducible if there is
a class of close paths that it is necessary to follow in order to compute
it. In a broad sense, that means that if a function is computationally ir-
reducible, there is only one road (the width of the road being the size
of the class of the close paths that can be used) to compute this func-
tion.  In  some  sense,  all  these  paths  have  the  same  length.  This  ex-
plains the fact that it is not possible to go faster than following one of
these paths to compute the function. We have also defined  an equiva-
lence  relation  between  functions  that  share  the  same  road.  Roughly
speaking,  computational  analogy  allows  us  to  get  a  quotient  set  that
can be viewed as a map of the computable functions set (or at least a
large  subset  of  this  set  whose  elements  satisfy  the  conditions  for  the
concepts discussed to be applicable) for which classes are grouping ele-
ments  having  similar  properties  relative  to  their  time  of  computation
and their CIR.

An open problem is still to prove that one function among the pos-
sible candidates is really computationally irreducible. The cellular au-
tomaton  rule  110,  which  has  been  shown  to  be  universal  (see  [14]),
the  third  of  the  three  functions  we  mention  at  the  beginning  of  Sec-
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tion 3, or the two other examples we proposed at the end of Section 3
are good examples of functions that we would like to prove computa-
tionally irreducible. Proving that a given function f  is computationally
irreducible amounts to proving that there is no way to compute f  ex-
cept  through  an  algorithm  that  approximately  follows  the  path  of  an
enumerating Turing machine (E-Turing machine) computing f . Ruling
out  all  the  other  possible  ways  to  compute  f  would  possibly  face  the
halting problem, hence resulting in the proposition “f  is computation-
ally irreducible” being undecidable (I would like to thank one anony-
mous referee for this remark). But this remains to be proven. An even
more difficult task would be to prove that CIR is an undecidable prop-
erty. In this case, that would not mean that it is always impossible to
prove  that  a  given  function  is  computationally  irreducible,  but  that
there is no general algorithm for deciding for any function if it is com-
putationally  irreducible  or  not,  even  if  it  is  possible  to  prove  that
some particular functions are computationally irreducible. These diffi-
cult points are left for further investigation. 

From a more philosophical point of view, CIR can help clarify the
concept of emergence and can be used to understand why certain phe-
nomena  appear  to  be  emergent.  We  have  proposed  in  [15]  and  [16]
that  “understanding”  a  process  implies  having  a  mental  model  of  it
that we can use to simulate its behavior. Emergent phenomena are ef-
fects  or  properties  appearing  at  the  macro  level  (collective)  of  a  sys-
tem  and  that  are  caused  by  the  micro  level  (individual)  but  are  very
difficult and even seemingly impossible to predict, even from the com-
plete knowledge of the rules of the micro level. If the process running
at the micro level is computationally irreducible or if the rules leading
from  the  micro  level  to  the  macro  level  are  computationally  irre-
ducible,  then  the  global  behavior  of  the  system  will  be  neither  pre-
dictable (without simulating it) nor understandable. In this case, what
happens  will  be  seen  as  “emergent.”  For  example,  the  fact  that  some
patterns (e.g., pulsar, glider, glider gun, etc.) are usually considered as
emergent  in  Conway’s  Game  of  Life  could  be  explained  by  the  fact
that  the  underlying  rules  are  computationally  irreducible.  Similarly,
phenomena  that  are  sometimes  interpreted  as  downward  causation
could  be  merely  computationally  irreducible  processes  interpreted  as
causal  effects  between  the  two  levels  of  description.  That  is  a  point
that we will address at more length in a forthcoming paper.
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Appendix

The Asymptotic NotationsA.

The asymptotic notations are useful for comparing the order of magni-
tude of different functions. We recall here the standard notations.

◼ f (n) = O(g (n))  if  there  are  constants  c > 0,  n0 > 0  such  that  ∀ n > n0,

f (n) ≤ c g(n). 

◼ f (n) = o(g (n)) if limn→∞ f (n) / g(n) = 0.

◼ f (n) = Ω(g(n))  if  there  are  constants  c > 0,  n0 > 0  such  that  ∀ n > n0,

f (n) ≥ c g(n). 

◼ f (n) = ω(g(n)) if limn→∞ f (n) / g(n) = ∞.

◼ f (n) ~ g(n) if limn→∞ f (n) / g(n) = 1.

◼ f (n) = Θ(g(n))  if  there  are  constants  c > 0,  c′ > 0,  n0 > 0  such  that

∀ n > n0, cg(n) ≤ f (n) ≤ c′ g(n)). 

A Property of Convex FunctionsB.

We  prove  here  that  ∑i=1
n F(i)) / i = O(F(n))  if  F  is  a  convex  function

and F(n) = Ωlog n: 

lim
n→∞


i=1

n F(i)

i
= lim
n→∞


1

n F(x)

x
dx,

F(y) = 
1

y
F′(x) dx + F1 for y > 1,

Now if F is convex, ∫1
yF′(x) dx ≤ y - 1 F′(y) ≤ y F′(y), so

F(y)

y
≤ F′(y) +

F1

y
,


1

x F(y)

y
dy ≤ F(x) - F1 + F1 log x.
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Now if log x = O(F(x)), then


1

x F(y)

y
dy = O(F(x)).
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