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An  exploratory  study  is  made  of  the  dynamics  of  quaternion  iterative
maps  endowed  with  memory  of  past  states.  Particular  attention  is  paid
to the quadratic map.

Introduction: Quaternion Maps with Memory1.

Quaternions1.1

Quaternions are a class of hypercomplex numbers with four real com-
ponents  [1].  By  analogy  with  the  complex  numbers  being  repre-
sentable as a sum of real and imaginary parts (z  a + bi), quaternions
can also be written as a linear combination:

q  a + bi + cj + dk, (1)

where 1, i, j, k make a group and satisfy the noncommutative rules: 

i2  j2  k2  -1, ij  - ji  k, jk  -kj  i, ki  - ik  j.

The quaternions were introduced in 1843 by W. R. Hamilton. The
controversy about them grew in the late 1800s so that, despite Hamil-
ton’s  supporters,  who  opposed  the  growing  field  of  vector  algebra,
vector notation and calculus largely replaced the “space-time” quater-
nions  in  science  and  engineering  by  the  mid-twentieth  century.  It  has
been  said  that  quaternions  are  a  “solution  in  search  of  a  problem.”
The  reader  interested  in  the  historic  evolution  of  the  role  played  by
quaternions in science may find  particularly interesting [2], which de-
scribes its “strange passage from glory to decay,” albeit “a number of
applications went on appearing from time to time.” Thus, quaternions
have  been  used  in  both  theoretical  and  applied  sciences,  in  particular
for  calculations  involving  three-dimensional  rotations  (and  interpola-
tion), alongside other methods, such as Euler angles and rotation ma-
trices,  or  as  an  alternative  to  them,  depending  on  the  application.
Their  capability  to  succinctly  represent  three-dimensional  rotations
about  an  arbitrary  axis  has  motivated  researchers  to  employ  quater-
nions in rotational kinematics equations. As a result, new applications
involving  quaternion-based  algorithms  emerged;  these  include  fields
such as robotics, orbital mechanics, aerospace technologies, computer

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.3.223



graphics,  computer  vision  and  games,  animation,  and  virtual  reality
[3, 4]. 

Discrete Maps with Memory1.2

Conventional  discrete  dynamical  systems  are  memoryless;  that  is,  the
next state depends solely on the current one: 

zT+1  f(zT).

Two  seemingly  natural  ways  of  implementing  an  explicit  depen-
dence on the dynamics of the past states are: 

zT+1  f 
t1

T

ptzt , (2)

and

zT+1  
t1

T

ptf(zt). (3)

The  weights  p  fulfill  the  probabilistic-like  normalization  condition

∑t1
T pt  1, pt ≥ 0. Initially, z2  f(z1) in both scenarios. 

The memory implementation given by equation (2) will be referred
to  as  embedded  memory  [5],  whereas  the  memory  implementation
given by equation (3) will be referred to as delay memory. 

We  have  explored  the  effect  of  memory  on  the  quadratic  complex

map  zT+1  zT
2 + zc  in  previous  work  [6–9].  Attention  will  be  paid

here to the quaternion quadratic iterative map [10–14]: 

qT+1  qT
2 + qc, q0  0, qc  cr, ci, cj, ck. (4)

Unlimited Trailing Memory2.

We will consider first the effect of average memory with geometric de-

cay based on the memory factor α lying in the 0, 1 interval: 

qT+1 

f
qT +∑t1

T-1 αT-tqt

ΩT
≡

ωT

ΩT


qT + αωT - 1

ΩT

f(qT) +∑t1
T-1 αT-tf(qt)

ΩT
≡

ωT

ΩT


f(qT) + αωT - 1

ΩT

, (5)

where the first  line applies for embedded memory and the second one
for delay memory. In both scenarios, Ω stands for the sums of the pon-

dering factors; that is, ΩT  1 +∑t1
T-1 αT-t.
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The  Mandelbrot  set  is  the  set  of  all  qc  for  which  the  iterative  map

(equation  (4)),  starting  from  q  0,  does  not  diverge  to  infinity  ([15,
16,  Chapter  14]).  In  the  computer  implementation  here,  convergence

is  assumed  if  qT  aT
2 + bT

2 + cT
2 + dT

2
 remains  below  a  given  δ  af-

ter  a  given  number  of  iterations.  This  is  similar  to  the  method  in  the
study of the effect of memory in the complex plane in [7–9]. 

Figures  1–6  show  the  effect  of  memory  on  the  Mandelbrot  set,
with  simulations  that  run  up  to  either  T  100  or  divergence,  pre-
cisely  up  to  q  reaching  the  breakout  value  δ  8.0.  Thus,  red  indi-
cates  the  Mandelbrot  set,  blue  indicates  divergence  at  an  even  time
step number, and white indicates divergence at an odd time step num-
ber.  The  region  of  the  complex  plane  shown  in  these  figures  is

-3.9, 2.5⨯-3.2, 3.2.  The  graphics  shown  in  Figures  1–6  remain

symmetrical around the real axis with memory, as in the conventional
scenario. 

Figure  1  shows  the  effect  of  α-memory  on  the  Mandelbrot  set  for
cj  ck  0.5  fixed.  Both  the  embedded  and  delay  memory  scenarios

are addressed in Figure 1. In both scenarios, as a result induced by the
inertial  effect  that  α-memory  exerts,  M  grows  as  α  increases,  though
it  remains  inside  the  region  bounded  by  the  outer  blue  band  (points
that  diverge  at  T  2),  which,  in  turn,  is  not  very  much  altered.  The
sophisticated  aspect  of  the  proximity  of  M  is  fairly  preserved  with
very low memory charge, but tends to vanish as α increases. 

(a) (b)

Figure 1. The  Mandelbrot  set  with  unlimited  α-memory.  cj  ck  0.5.

(a)�Embedded memory. (b) Delay memory. 
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In  the  ahistoric  model  of  Figure  1, the  area  of  the  Mandelbrot  set,
estimated  by  pixel  counting,  turns  out  as  small  as  0.175.  When  in-
creasing  α  as  in  Figure  1,  the  area  of  the  Mandelbrot  set  grows  pro-
gressively  in  the  embedded  memory  scenario  as  the  series  0.558,
1.399, 2.844, 6.367, 10.385, 8.511, 12.851, 13.780; and in the delay
memory  scenario  as  the  series  0.175,  1.894,  2.488,  3.225,  4.567,
5.249, 5.967, 7.481, 8.240. 

The  center  of  gravity  of  M  stays  in  the  real  axis  in  all  the  simula-
tions here. It slowly drifts progressively to lower values in the simula-
tions of Figure 1. The estimation by pixel counting of the real coordi-
nate  of  the  center  of  gravity  evolves  as  -0.125,  -0.227,  -0.286,
-0.439,  -0.636,  -0.714,  -0.788,  -0.871,  -0.908;  and  -0.125,
-0.375,  -0.430,  -0.514,  -0.542,  -0.540,  -0.533,  -0.527,  -0.525
with embedded and delay memory, respectively. 

Figure  2  also  shows  the  effect  of  unlimited  α-memory,  but  now
with cj  ck  1.0 instead of cj  ck  0.5 as in Figure 1. As a result

of  such  an  increase  in  the  levels  fixed  in  the  hypercomplex  compo-
nents, the Mandelbrot set turns out empty. In the embedded memory
scenario (Figure 2(a)), the Mandelbrot set emerges with α ≥ 0.5, with
much  the  same  appearance  as  expected  in  Figure  1.  At  variance  with
this,  with  delay  memory  (Figure  2(b)),  the  Mandelbrot  set  emerges
from α  0.1 and adopts a fairly curious aspect. 

(a) (b)

Figure 2. The  Mandelbrot  set  with  unlimited  α-memory.  cj  ck  1.0.

(a)�Embedded memory. (b) Delay memory. 
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Limited Trailing Memory3.

Limited trailing memory would keep a memory of only the last τ time
steps. Thus:

qT+1 
f(∑t1

⊤ δtqt)

∑t1
⊤ δtf(qt)

,

with ⊤  max1, T - τ + 1.

Limiting  the  trailing  memory  would  make  the  model  approach  the

ahistoric model τ  1. 

In  the  geometric  decay  memory  type  of  equation  (5),  the  lower
memory charge is achieved with τ  2: 

qT+1 

f
qT + αqT-1

1 + α

f(qT) + αf(qT-1)

1 + α

. (6)

This  kind  of  memory  implementation  will  be  referred  to  as  τ  2
α-memory. 

We  will  also  consider  memory  of  only  the  last  two  states  imple-

mented in the general form 0 ≤ ϵ ≤ 1: 

qT+1 
f1 - ϵqT + ϵqT-1

1 - ϵf(qT) + ϵf(qT-1)
. (7)

Figure  3  shows  the  effect  of  τ  2  α-memory  on  the  Mandelbrot
set.  The  outer  blue  band  is  not  appreciably  altered  in  Figure  3(b)
(delay memory), much as it was not with unlimited memory in Figure
1. With embedded memory (Figure 3(a)), an appreciable alteration of
the  outer  band  is  found.  In  both  scenarios,  the  proximity  of  M  to
τ  2  α-memory  increases  its  sophisticated  aspect  as  memory  in-
creases.  The  area  of  the  Mandelbrot  set  in  Figure  3  increases  with
memory,  but  not  to  such  a  large  extent  as  with  unlimited  trailing
memory.  The  corresponding  series  of  the  area  values  are  0.175,
0.484,  1.106,  1.837,  3.279,  3.473,  3.311,  2.330,  2.047  (embedded
memory);  0.175,  0.414,  0.868,  1.275,  2.173,  2.373,  2.346,  2.138,
1.966  (delay  memory).  The  real  coordinate  of  the  center  of  gravity
drifts  to  the  left  in  Figure  3  as  -0.125,  -0.226,  -0.311,  -0.505,
-0.784,  -0.818,  -0.824,  -0.596,  -0.542  (embedded  memory);
-0.125, -0.212, -0.270, -0.336, -0.488, -0.516, -0.565, -0.569,
-0.541 (delay memory). 

A  magnification  of  Figure  3  in  the  -1.0, 1.0⨯0.0, 2.0  region  is

shown  in  Figure  4.  The  vicinity  of  M  with  τ  2  α-memory  becomes
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increasingly intricate with memory. Detailed study of magnified  views
with different memory implementations is due.

(a) (b)

Figure 3. The  Mandelbrot  set  with  τ  2  α-memory.  cj  ck  0.5.  (a)  Em-

bedded memory. (b) Delay memory.

(a) (b)

Figure 4. Zoom  of  Figure  3  in  the  [-1.0, 1.0]⨯ [0.0, 2.0]  region  of  the  com-
plex plane.

Figure  5  shows  the  effect  of  τ  2  α-memory  for  fixed

cj  ck  1.0.  The  same  high  levels  of  the  hypercomplex  components
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of  Figure  2  are  fixed  in  Figure  5,  but  the  short  range  (only  τ  2)  of
the trailing memory implemented in Figure 5 disables the capacity for
the Mandelbrot set to emerge as in the unlimited trailing memory sce-
nario of Figure 2. 

(a) (b)

Figure 5. The  Mandelbrot  set  with  τ  2  α-memory.  cj  ck  1.0.  (a)  Em-

bedded memory. (b) Delay memory. 

Figure  6  shows  the  effect  of  ϵ-memory  on  the  Mandelbrot  set.  In
both scenarios, the outer blue band is highly altered in Figure 6, tend-
ing  to  vanish  as  the  memory  factor  increases.  The  Mandelbrot  set  is
appreciably altered by ϵ-memory up to ϵ  0.70, but tends to recover
the  original  configuration  for  higher  values  of  ϵ.  The  scenario  of
ϵ  0.5  coincides  with  that  of  τ  2  α  1.0-memory,  as  can  be
checked here in Figures 3 and 6. In parallel to the effect of ϵ-memory
on  M  itself,  the  sophisticated  aspect  of  the  proximity  of  M  is  fairly
preserved up to ϵ  0.80 but shrinks with higher values of ϵ and fairly
disappears with ϵ  0.95. The area of the Mandelbrot set in Figure 6
evolves  as  0.175,  2.047,  1.643,  1.303,  1.025,  0.726,  0.358,  0.131,
0.1444  (embedded  memory);  0.175,  1.966,  1.586,  1.219,  0.956,
0.688,  0.344,  0.121,  0.1444  (delay  memory).  The  real  coordinate  of
the  center  of  gravity  of  M  evolves  in  Figure 6  as  -0.125,  -0.542,
-0.464,  -0.398,  -0.358,  -0.293,  -0.220,  -0.101,  -0.097
(embedded  memory);  -0.125,  -0.541,  -0.452,  -0.380,  -0.342,
-0.275, -0.224, -0.096, -0.097 (delay memory). 
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(a) (b)

Figure 6. The  Mandelbrot  set  with  ϵ-memory.  cj  ck  0.5.  (a)  Embedded

memory. (b) Delay memory. 

Partial Memory3.1

The  quaternion  quadratic  map  equation  (4)  is  equivalent  to  the  four-
dimensional real map:

aT+1  aT
2 - bT

2 + cT
2 + dT

2  + cr (8a)
bT+1  2aTbT + ci (8b)
cT+1  2aTcT + cj (8c)
dT+1  2aTdT + ck (8d)

The  dynamics  defined  by  equations  (8)  may  then  be  partially  en-
dowed  with  memory  in  its  coordinates.  For  example,  with  embedded
memory only in the real a component it would be: 

aT+1  aT
2 - bT

2 + cT
2 + dT

2  + cr
bT+1  2aTbT + ci
cT+1  2aTcT + cj
dT+1  2aTdT + ck

with  aT  denoting  a  summary  of  the  values  of  a  up  to  time  step  T.

Thus,

aT 
aT +∑t1

T-1 αT-tat

ΩT

in the unlimited α-memory scenario, and aT  1 - ϵaT + ϵaT-1  in the

ϵ-memory scenario. Partial memory induces peculiar alterations in the
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Mandelbrot  set  (see  [8]  regarding  the  complex  plane).  They  are  not
presented here to avoid increasing the number of images in this paper.

Conclusion and Future Work4.

This  paper  provides  an  exploratory  study  on  the  effect  of  memory  of
the  past  states  on  the  dynamics  of  quaternion  quadratic  iterative
maps.  Two-dimensional  projections  of  the  Mandelbrot  set  on  the  hy-
percomplex  components  of  the  quaternion  space  have  been  scruti-
nized  in  order  to  assess  the  effect  of  memory  in  a  fairly  qualitative
manner.

Further  study  of  the  effect  of  memory  on  quaternion  maps  is  due.
Two possible areas of study are (1) a more detailed scrutiny of the ge-
ometry;  and  (2)  mathematical  foundation.  In  the  area  of  geometry,
three-dimensional  visualization  tools  [17–23]  implementing  ad  hoc
rendering  techniques  (as  in  [24]  and  [25])  are  to  be  enriched  to  deal
with memory. The second task does not seem easy: adding memory to
nonlinear  dynamics  in  the  hypercomplex  space.  Let  us  point  out  that
fractional  calculus  has  been  applied  in  the  analysis  of  discrete  maps
with memory [26]. Fractional calculus extends the definition of deriva-
tive and integral, allowing for noninteger orders. Thus, the integral of
order  α,  according  to  the  Riemann–Liouville  approach,  is  calculated
in the time-domain as

DαfT 
1

Γ(α)

0

T
T - tα-1f(t)dt. (9)

Rewriting equation (5) (supposing α > 0) as:

qT+1 
1

Ωα, T

t1

T

αT-tf(qt), (10)

the  structure  of  equation  (10)  is  reminiscent  of  that  of  equation  (9),
which  is  central  to  the  application  of  fractional  calculus  to  the  study
of systems with memory.

Quaternion  maps  have  been  used  as  a  tool  for  modeling  in  several
contexts, for example, in protein structure analysis [27] and in funda-
mental  physics  [28].  The  potential  applicability  of  the  quaternion
maps with memory is to be explored in subsequent studies. 
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