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In this paper, periodic and aperiodic patterns on hexagonal lattices are
developed and studied using a given set of constraints. On exhaustively
enumerating all possible two-color patterns for up to a combination of
four constraints, 106 distinct periodic tilings are obtained. Only one set
of four constraints out of a total of 24 157 possible sets generated a pat-
tern that is aperiodic in nature.

I 1. Introduction

The appearance of periodic patterns on a flat surface when subjected
to constraints of various kinds is what is known as constraint tiling
[1, 2]. When the applied constraints give rise to a pattern that shows
no periodicity, the pattern is said to exhibit a non-repetitive behavior.

In this paper, the technique of constraint tiling has been applied to
hexagonal lattices [3]. A single hex cell, along with its six nearest
neighbors, forms a constraint. In this single constraint

>

the color of the middle hex cell is determined by the color of its six
nearest neighbors. Starting from the top left in a clockwise direction,
the colors of the surrounding hex cells are {O, 0,0,0,0, 1}, where 0 is
white and 1 is black. In this case, the color of the middle hex cell is
black. However, it is seen that this constraint with rule number
16 777 216 is unable to tile a plane either periodically or aperiodically.

Given a constraint or a set of constraints, we use the backtracking
algorithm to determine whether the constraint or the given set of con-
straints will form a pattern that is either periodic or aperiodic.

For each iteration, the backtracking algorithm starts with a single
white hex cell as the initial condition. It then scans its six nearest
neighbors. If the pattern of the six nearest neighbors matches any one
of the given constraints, where the given constraints are allowed to ro-
tate, a single white hex cell is added to the already existing hexagon
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in a clockwise spiral. This process continues until the pattern of the
six nearest neighbors fails to satisfy either of the constraints. Back-
tracking occurs at this stage, and the single white hex cell at this posi-
tion is replaced with a black hex cell. This process continues and is a
very useful way of determining whether a given set of constraints will
form a pattern that may be either periodic or aperiodic.

With these constraints

L we

the pattern shown in Figure 1 is seen to emerge.

Figure 1. The periodic tiling generated on applying the four constraints shown.

In our endeavor to find and analyze aperiodic patterns, which is
motivated by Stephen Wolfram’s study of simple systems based on
constraints [4], the backtracking algorithm is first applied to square
lattices. The resulting graphic is then transformed into a hexagonal
lattice.

The square lattices used here are very much like a Moore neighbor-
hood after eliminating its two extreme sides.

In the Moore neighborhood, X is the innermost cell, whose color is
to be determined. If we label the nearest neighbors as northwest
(NW), north (N), northeast (NE), east (E), southeast (SE), south (S),
southwest (SW), and west (W), the Moore neighborhood will look
something like Table 1. The color of X depends on the colors of all its
eight nearest neighbors.

NW N NE
o
W -X- E
1\
SW S SE

Table 1. The Moore neighborhood.
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If we further replace the NW and SE sides of the already existing
Moore neighborhood with _, where the color of _ can be either 0 or 1
(black or white), the Moore neighborhood changes as shown in
Table 2.

If the above-mentioned procedure is then applied to hexagonal lat-
tices where i, j indicates the position of the innermost hex cell whose
color is to be determined, along with a function F that determines the
color of the hex cell at that particular position by taking into consider-
ation the colors of the six nearest neighbors, then

5 = F["(z‘,fm’ Air1,j+1)> Nitl, > A6, -1 Ai-1,j-1) "(i—u)]-

N NE

[

W -X- E
R
S

SW

Table 2. The six nearest neighbor constraints.

I 2. Rule Space

For two colors, there can be a total of
340282366920938463463374607431768211456

or (227) constraints on a single hexagonal lattice. After rotating all

128 constraints and taking the union of the resulting constraints, the
rule space is left with the 28 constraints shown in Figure 2.
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Figure 2. The set of all 28 possible constraints in the rule space.
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The numbering scheme for any rule is developed in the following
way. Initially, there exists a list of 28 zeros. For any given constraint
or group of constraints, the position of the given constraints/
constraint in the template shown in Figure 2 is noted, and the zeros at
those positions in the list are changed to ones. The resulting binary
number converted to its decimal form gives the rule number.

For example, with the constraints

a and Q

the corresponding rule number will be 40.

I 3. Two-Color Periodic Tilings

Out of 28 constraints shown in Figure 2, 26 of them fail to generate
any periodic tiling. The remaining two shown in Figure 3 generate
tilings that are either all black or all white.

® o

Rule 1 Rule 134217728

Figure 3. On taking all possible combinations of two constraints from the two-
color rule space, there was a total of 378 combinations. Out of these, only 64
could tile the plane periodically. The remaining 314 combinations of two con-
straints were unable to tile the plane either periodically or aperiodically.

On enumerating all 64 possible combinations of two constraints,
only the 11 distinct patterns shown in Figure 4 were obtained.

On taking all possible combinations of three constraints from the
two-color rule space, there was a total of 3276 combinations. Out of
these, only 968 could tile the plane periodically. The remaining 2308
combinations of three constraints were unable to tile the plane either
periodically or aperiodically. On enumerating all 968 possible combi-
nations of three constraints, the 20 distinct periodic tilings shown in
Figure 5 were obtained, along with the complete set of periodic tilings
obtained for two constraints as shown in Figure 4.
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Figure 4. These 11 periodic tilings, along with the tilings that generate an all-
white or all-black pattern, are the complete collection of tilings that are
needed to satisfy two constraints. If none of these periodic tilings satisfy a par-
ticular pair of two constraints, then it follows that no tiling, either periodic or
aperiodic, will satisfy that pair of two constraints. Here the backtracking algo-
rithm uses a single white hex cell as the initial condition.

Complex Systems, 24 © 2015 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.24.3.235



240 L. A. Chrestien

SR FOE  BOW

Rule 1036 Rule 16396 Rule 4108

o o0 00 S0 o
fo o o e o

o
e, o
e, o8
3

PHT WBG OF

Rule 67125376 Rule 3076 Rule 35 127296

@
© 0 O '
Rule 46 137 344 Rule 58 720256 Rule 1703936
90008 Q *

B DBOE SO

Rule 100794 368 Rule 42074112 Rule 16941056

QR O QIO

Rule 18907 136 Rule 50364416 Rule 18 882560
Figure 5. (continues).
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Figure 5. These 20 periodic tilings, together with the previously shown collec-
tion of one- and two-constraint tilings, are complete for three constraints. If
none of these periodic tilings satisfy a particular combination of three con-
straints, then it follows that no tiling, either periodic or aperiodic, will satisfy
that combination of three constraints. The initial condition used is a single
white cell.

On taking all possible combinations of four constraints from the
two-color rule space, there was a total of 20475 combinations. Out
of these, only 4834 could tile the plane periodically. The remaining
15 641 combinations of four constraints were unable to tile the plane
either periodically or aperiodically. On enumerating all 4834 possible
combinations of four constraints, the 73 distinct patterns shown in
Figure 6 were obtained.
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Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. This collection of 73 periodic tilings, together with the previously
shown collection of one-, two-, and three-constraint tilings, is complete for
four constraints. If none of these periodic tilings satisfy a particular combina-
tion of four constraints, then it follows that no tiling, either periodic or aperi-
odic, will satisfy that combination of four constraints. Here the backtracking
algorithm uses a single white hex cell as the initial condition.

The periodic tilings in Figure 6 marked with a = are divided into
separate regions and are repetitive in that particular section. Let us
take the example of rule 16883712 in a square lattice shown in
Figure 7.
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When looking closely at the edges of the hexagonal lattices gener-
ated after applying a given set of constraints, irregularities can be no-
ticed at the boundaries for certain tilings. These irregularities arise
from the fact that the backtracking algorithm used to generate pat-
terns has been iterated for a certain number of steps and continues to
be an ongoing process. When the number of steps is increased, the ir-
regularities disappear from the old lattice sites and reappear at the
newly generated boundary, owing to the action of the backtracking al-
gorithm, which retraces its steps when a particular condition fails.

For further information on periodic tilings, see [1, 2, 5, 6].
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Figure 7. This pattern with rule 16 883 712 exhibits different repetitive behav-
ior in different sections.

I 4. An Aperiodic Pattern

With the constraints

wdwey

the aperiodic pattern that emerges is shown in Figure 8.
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Rule 7172

Figure 8. The only aperiodic pattern generated after evaluating all possible
combinations up to four constraints.

After running the backtracking algorithm for 900000 times, no
periodicity is noticed in the pattern, as shown in Figure 9.

Figure 9. The four constraints of rule 7172 force this pattern that exhibits a
nonrepetitive behavior [4]. On increasing the number of steps, the pattern
continues to grow, although at a very slow rate. Gray is used to indicate cells
whose colors have not been determined yet. The initial condition uses a single
white hex cell.
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