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In  this  paper,  periodic  and  aperiodic  patterns  on  hexagonal  lattices  are
developed and studied using a given set of constraints. On exhaustively
enumerating all possible two-color patterns for up to a combination of
four constraints, 106 distinct periodic tilings are obtained. Only one set
of four constraints out of a total of 24 157  possible sets generated a pat-
tern that is aperiodic in nature.

Introduction1.

The  appearance  of  periodic  patterns  on  a  flat  surface  when  subjected
to  constraints  of  various  kinds  is  what  is  known  as  constraint  tiling
[1,  2].  When  the  applied  constraints  give  rise  to  a  pattern  that  shows
no periodicity, the pattern is said to exhibit a non-repetitive behavior.

In this paper, the technique of constraint tiling has been applied to
hexagonal  lattices  [3].  A  single  hex  cell,  along  with  its  six  nearest
neighbors, forms a constraint. In this single constraint

,

the  color  of  the  middle  hex  cell  is  determined  by  the  color  of  its  six
nearest  neighbors.  Starting  from  the  top  left  in  a  clockwise  direction,

the colors of the surrounding hex cells are 0, 0, 0, 0, 0, 1, where 0 is

white  and  1  is  black.  In  this  case,  the  color  of  the  middle  hex  cell  is
black.  However,  it  is  seen  that  this  constraint  with  rule  number
16 777216 is unable to tile a plane either periodically or aperiodically.

Given a constraint or a set of constraints, we use the backtracking
algorithm to determine whether the constraint or the given set of con-
straints will form a pattern that is either periodic or aperiodic. 

For  each  iteration,  the  backtracking  algorithm  starts  with  a  single
white  hex  cell  as  the  initial  condition.  It  then  scans  its  six  nearest
neighbors. If the pattern of the six nearest neighbors matches any one
of the given constraints, where the given constraints are allowed to ro-
tate,  a  single  white  hex  cell  is  added  to  the  already  existing  hexagon
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in  a  clockwise  spiral.  This  process  continues  until  the  pattern  of  the
six  nearest  neighbors  fails  to  satisfy  either  of  the  constraints.  Back-
tracking occurs at this stage, and the single white hex cell at this posi-
tion is replaced with a black hex cell. This process continues and is a
very useful way of determining whether a given set of constraints will
form a pattern that may be either periodic or aperiodic.

With these constraints

  ,

the pattern shown in Figure 1 is seen to emerge.

Figure 1. The periodic tiling generated on applying the four constraints shown.

In  our  endeavor  to  find  and  analyze  aperiodic  patterns,  which  is
motivated  by  Stephen  Wolfram’s  study  of  simple  systems  based  on
constraints  [4],  the  backtracking  algorithm  is  first  applied  to  square
lattices.  The  resulting  graphic  is  then  transformed  into  a  hexagonal
lattice.

The square lattices used here are very much like a Moore neighbor-
hood after eliminating its two extreme sides. 

In the Moore neighborhood, X is the innermost cell, whose color is
to  be  determined.  If  we  label  the  nearest  neighbors  as  northwest
(NW),  north  (N),  northeast  (NE),  east  (E),  southeast  (SE),  south  (S),
southwest  (SW),  and  west  (W),  the  Moore  neighborhood  will  look
something like Table 1. The color of X depends on the colors of all its
eight nearest neighbors.

NW N NE

∖

W -X - E

∖

SW S SE

Table 1. The Moore neighborhood.
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If  we  further  replace  the  NW  and  SE  sides  of  the  already  existing
Moore neighborhood with _, where the color of _ can be either 0 or 1
(black  or  white),  the  Moore  neighborhood  changes  as  shown  in
Table�2.

If the above-mentioned procedure is then applied to hexagonal lat-
tices  where  i, j  indicates  the  position  of  the  innermost  hex  cell  whose
color is to be determined, along with a function F that determines the
color of the hex cell at that particular position by taking into consider-
ation the colors of the six nearest neighbors, then

a(i, j) = Fa(i, j+1), a(i+1, j+1), a(i+1, j), a(i, j-1), a(i-1, j-1), a(i-1, j).

_ N NE

∖

W -X - E

∖

SW S _

Table 2. The six nearest neighbor constraints.

Rule Space2.

For two colors, there can be a total of 

340282366920938463463374607431768211456

or  22
7
  constraints  on  a  single  hexagonal  lattice.  After  rotating  all

128  constraints  and  taking  the  union  of  the  resulting  constraints,  the
rule space is left with the 28 constraints shown in Figure 2.

Figure 2. The set of all 28 possible constraints in the rule space.
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The  numbering  scheme  for  any  rule  is  developed  in  the  following
way.  Initially,  there  exists  a  list  of  28  zeros.  For  any  given  constraint
or  group  of  constraints,  the  position  of  the  given  constraints/
constraint in the template shown in Figure 2 is noted, and the zeros at
those  positions  in  the  list  are  changed  to  ones.  The  resulting  binary
number converted to its decimal form gives the rule number.

For example, with the constraints

 and ,

the corresponding rule number will be 40.

Two-Color Periodic Tilings3.

Out  of  28  constraints  shown  in  Figure  2,  26  of  them  fail  to  generate
any  periodic  tiling.  The  remaining  two  shown  in  Figure  3  generate
tilings that are either all black or all white.

���� � ���� ���������

Figure 3.On taking all possible combinations of two constraints from the two-
color rule space, there was a total of 378 combinations. Out of these, only 64
could tile the plane periodically. The remaining 314 combinations of two con-
straints were unable to tile the plane either periodically or aperiodically. 

On  enumerating  all  64  possible  combinations  of  two  constraints,
only the 11 distinct patterns shown in Figure 4 were obtained.

On  taking  all  possible  combinations  of  three  constraints  from  the
two-color rule space, there was a total of 3276 combinations. Out of
these,  only  968  could  tile  the  plane  periodically.  The  remaining  2308
combinations  of  three  constraints  were  unable  to  tile  the  plane  either
periodically or aperiodically. On enumerating all 968 possible combi-
nations  of  three  constraints,  the  20  distinct  periodic  tilings  shown  in
Figure 5 were obtained, along with the complete set of periodic tilings
obtained for two constraints as shown in Figure 4.
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Figure 4. These  11  periodic  tilings,  along  with  the  tilings  that  generate  an  all-
white  or  all-black  pattern,  are  the  complete  collection  of  tilings  that  are
needed to satisfy two constraints. If none of these periodic tilings satisfy a par-
ticular pair of two constraints, then it follows that no tiling, either periodic or
aperiodic, will satisfy that pair of two constraints. Here the backtracking algo-
rithm uses a single white hex cell as the initial condition.
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Figure 5. (continues).
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Figure 5. These  20  periodic  tilings,  together  with  the  previously  shown  collec-
tion  of  one-  and  two-constraint  tilings,  are  complete  for  three  constraints.  If
none  of  these  periodic  tilings  satisfy  a  particular  combination  of  three  con-
straints, then it follows that no tiling, either periodic or aperiodic, will satisfy
that  combination  of  three  constraints.  The  initial  condition  used  is  a  single
white cell. 

On  taking  all  possible  combinations  of  four  constraints  from  the
two-color  rule  space,  there  was  a  total  of  20 475  combinations.  Out
of  these,  only  4834  could  tile  the  plane  periodically.  The  remaining
15 641 combinations of four constraints were unable to tile the plane
either periodically or aperiodically. On enumerating all 4834 possible
combinations  of  four  constraints,  the  73  distinct  patterns  shown  in
Figure 6 were obtained.

���� � ������ ���� �� ������ ���� � ������

Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. (continues).
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Figure 6. This  collection  of  73  periodic  tilings,  together  with  the  previously
shown  collection  of  one-,  two-,  and  three-constraint  tilings,  is  complete  for
four constraints. If none of these periodic tilings satisfy a particular combina-
tion of four constraints, then it follows that no tiling, either periodic or aperi-
odic, will satisfy that combination of four constraints. Here the backtracking
algorithm uses a single white hex cell as the initial condition.

The  periodic  tilings  in  Figure  6  marked  with  a  *  are  divided  into
separate  regions  and  are  repetitive  in  that  particular  section.  Let  us
take  the  example  of  rule  16883712  in  a  square  lattice  shown  in
Figure�7.
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When  looking  closely  at  the  edges  of  the  hexagonal  lattices  gener-
ated after applying a given set of constraints,  irregularities can be no-
ticed  at  the  boundaries  for  certain  tilings.  These  irregularities  arise
from  the  fact  that  the  backtracking  algorithm  used  to  generate  pat-
terns has been iterated for a certain number of steps and continues to
be an ongoing process. When the number of steps is increased, the ir-
regularities  disappear  from  the  old  lattice  sites  and  reappear  at  the
newly generated boundary, owing to the action of the backtracking al-
gorithm, which retraces its steps when a particular condition fails.

For further information on periodic tilings, see [1, 2, 5, 6].

��������������

Figure 7. This pattern with rule 16883 712 exhibits different repetitive behav-
ior in different sections.

An Aperiodic Pattern4.

With the constraints

,

the aperiodic pattern that emerges is shown in Figure 8.
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Figure 8. The  only  aperiodic  pattern  generated  after  evaluating  all  possible
combinations up to four constraints.

After  running  the  backtracking  algorithm  for  900000  times,  no
periodicity is noticed in the pattern, as shown in Figure 9.

Figure 9. The  four  constraints  of  rule  7172  force  this  pattern  that  exhibits  a
nonrepetitive  behavior  [4].  On  increasing  the  number  of  steps,  the  pattern
continues to grow, although at a very slow rate. Gray is used to indicate cells
whose colors have not been determined yet. The initial condition uses a single
white hex cell. 
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