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A  new  N-person  game  solver  is  presented  in  this  paper.  It  has  superior
capabilities in at least two respects: (1) the payoff functions can be rep-
resented  by  arbitrary  functions,  even  in  parameterized  form;  and  (2)  it
is very easy to investigate the multidimensional parameter space of any
model. Several interesting experiments are also presented. 

Introduction1.

Game  theory  [1]  is  a  well-developed  discipline,  but  relatively  little  ef-
fort  has  been  devoted  to  the  theoretical  investigation  of  N-person
games [2–7]. “The Tragedy of the Commons” [8] pointed to the practi-
cal importance of such games.

Axelrod’s famous tournaments [9] have generated an enormous in-
terest  in  N-person  games.  Unfortunately,  however,  these  tournaments
are not really N-person games but series of two-person games among
N participants. Nevertheless, the interest is still alive and many papers
are devoted to the investigation of various two-person game strategies
that could be used in such tournaments. 

Agent-based simulation is a powerful tool for the study of simulta-
neous operation of a large number of participants to investigate com-
plex phenomena. Therefore, it is quite suitable for the investigation of
N-person games. 

We  represent  the  participating  players  as  autonomous  agents  that
interact  with  all  the  other  agents  directly  or  indirectly  (through  their
neighbors) [10]. In the latter case, the agents are simply cells in a cellu-
lar automaton [11–13]. 

We  developed  an  agent-based  simulation  tool  [14]  that  has  been
successfully  applied  to  the  solution  of  a  large  number  of  various
N-person  games  and  practical  problems  [10].  Our  software  is  a  gen-
uine  multi-agent  model  and  not  a  model  for  repeated  two-person
games.  It  is  a  general  framework  for  inquiry  in  which  the  properties
of  the  environment  as  well  as  those  of  the  agents  are  user-defined
parameters,  and  the  number  of  interacting  agents  is  theoretically  un-
limited.  There  are,  however,  two  issues  that  need  attention.  First,  the
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software  is  only  capable  of  handling  linear  and  quadratic  payoff
functions. Practical problems sometimes require more sophisticated in-
puts,  for  example,  exponential,  sigmoid,  or  periodic  functions.  Sec-
ond, in order to investigate the multidimensional parameter space of a
model, the user must modify the configuration  file  and run each con-
figuration separately, which is time-consuming work. 

We present a new software tool here that solves these problems. 

The Model2.

We assume that the game is uniform and iterated and that the agents
have no goals, know nothing about each other, and cannot refuse par-
ticipation  in  any  iteration.  They  are  distributed  in  and  fully  occupy  a
finite  two-dimensional space, and the updates are simultaneous. They
must  choose  between  two  options.  In  accordance  with  the  accepted
notation,  we  call  these  options  cooperation  and  defection,  but  they
can mean anything else as well.

The Pavlovian model is chosen for the representation of agents: the
probability of choosing the previously chosen action again changes by
an  amount  proportional  to  the  reward/penalty  for  the  previous  ac-
tion;  the  coefficient  of  proportionality  is  called  the  learning  rate  (of
course,  the  probabilities  always  remain  in  the  interval  between  0  and
1).  This  decision  heuristic  is  based  on  Pavlov’s  experiments  and
Thorndike’s  law  [15]:  if  an  action  is  followed  by  a  satisfactory  state
of affairs, then the tendency of the agent to produce that particular ac-
tion is reinforced. These agents are primitive enough not to know any-
thing about their rational choices, but they have enough “intelligence”
to learn a behavior according to this law. Their behavior is not deter-
mined  but  only  shaped  by  its  consequences;  that  is,  an  action  of  the
agent  will  be  more  probable  but  still  not  certain  after  a  favorable
response from the environment. Kraines and Kraines [16], Macy [17],
Flache  and  Hegselmann  [18],  and  others  used  such  agents  for  the
investigation  of  iterated  two-person  games.  Indeed,  rationality  as-
sumes  that  incredibly  smart  participants  make  decisions  in  unbeliev-
ably simple situations. In real life, just the opposite is true. Therefore,
the  simple  assumption  that  what  works  well  is  likely  to  be  repeated
and what turns out poorly is likely to be changed is a much better rep-
resentation of reality. 

The  probabilities  of  the  agents’  actions  are  updated  by  the  re-
ward/penalty received from the environment based on their and other
agents’  behavior.  Actions  are  taken  according  to  these  probabilities.
The  outputs  of  the  stochastic  environment  are  influenced  by  the  ac-
tions  of  all  participating  agents.  Behavior  is  learned  by  adjusting  the
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action probabilities to the responses of the environment. The learning
capability alters the agents’ behavior as they make repeated decisions.
The aggregate behavior of the society of agents usually converges to a
stable or oscillating state. 

Our simulation environment is a two-dimensional array of the par-
ticipating agents. The size of this environment is a user-defined param-
eter.  The  limiting  case  of  just  two  agents  makes  the  investigation  of
two-person games possible. 

The  agents  may  interact  with  all  other  agents  simultaneously  or
through their immediate neighbors as cellular automata. 

It is possible to wrap the array of agents in either the horizontal or
vertical direction or both directions. If there is no wrapping, it is possi-
ble to simulate cities or other confined environments. 

The  payoff  (reward/penalty)  functions  are  given  as  two  curves:
C(x) for cooperators and D(x) for defectors. The payoff to each agent
depends  on  its  choice  and  on  the  distribution  of  other  players  among
cooperators  and  defectors.  The  payoff  curves  are  functions  of  the  ra-
tio x of cooperators to the total number of agents or neighbors. 

In an iterative game, the aggregate cooperation proportion changes
in  time,  that  is,  over  subsequent  iterations.  The  outcome  of  the  game
depends on the values of at least the following parameters: 

◼ number of rows and columns in the array of agents

◼ depth of the neighborhood for each agent

◼ payoff curves for cooperators and defectors

◼ initial actions of individual agents at various locations in the array 

◼ initial states of individual agents at various locations in the array

If the parameters are selected appropriately, the simulations will ex-
hibit  behavior  that  is  close  enough  to  the  behavior  of  real  agents
when they are placed in a similar situation. 

Implementation3.

We  have  chosen  NetLogo  Version  5.0.5  [19]  for  the  implementation
of this project. NetLogo is a programmable modeling environment for
simulating  natural  and  social  phenomena.  It  was  authored  by  Uri
Wilensky in 1999 and has been in continuous development ever since
at the Center for Connected Learning and Computer-Based Modeling
at Northwestern University. It is particularly well suited for modeling
complex systems developing over time. Modelers can give instructions
to a large number of agents all operating independently. This makes it
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possible  to  explore  the  connection  between  the  micro-level  behavior
of  individuals  and  the  macro-level  patterns  that  emerge  from  their
interactions.

NetLogo  was  previously  used  for  the  simulation  of  a  prisoner’s
dilemma  game  of  greedy  agents  with  C(x)  x  and  D(x)  px,  where
p is the only parameter of the simulation except for the initial coopera-
tion  ratio  [20].  This  software  cannot  be  used  for  any  other  simula-
tion. 

The  most  important  feature  of  NetLogo  is  that  user  interfaces  are
built with the software. First we choose a computational grid and de-
termine  the  number  of  rows  and  columns,  the  size  of  each  cell,  and
horizontal or vertical wrapping if we need them. Then we create but-
tons,  sliders,  plots,  switches,  and  other  interface  tools  by  elementary
commands. 

We used four buttons, two switches, five  sliders, one monitor, and
one plot in this model. The setup button sets the program up accord-
ing to the setting of the initial cooperation ratio x0  with its slider and

its  alterations  by  using  the  mouse  after  clicking  the  manual  button.
The parameters of the payoff functions are set by the other four slid-
ers  (more  about  this  later).  The  cellular  switch  controls  whether  the
agents  interact  with  all  other  agents  simultaneously  or  through  their
immediate neighbors as cellular automata. The user can ask for a four-
color  display,  which  shows  the  current  and  previous  action  for  each
agent,  or  a  black-and-white  display,  which  shows  only  their  current
actions  by  using  the  colors  switch.  We  start  the  program  by  clicking
either the go or the go once button. The former continuously runs the
program until we stop it by clicking the button again. The latter pro-
duces just one iteration at a time so that it is possible to watch the re-
sult  of  each  subsequent  iteration.  The  cooperation  ratio  x  as  a  func-
tion  of  the  number  of  iterations  is  shown  in  the  plot.  We  can  also
watch  the  change  of  the  numerical  value  of  x  in  the  monitor.  This
makes  it  possible  to  immediately  see  the  final  value  of  x  when  we
stop  the  simulation.  The  interface  is  shown  in  Figure  1  for  the  case
of  41 * 41  1681  agents  with  C(x)  sin(5x),  D(x)  cos(5x),

x0  0.902 after the 1062nd iteration. The equilibrium of the coopera-

tion  ratio  was  reached  before  the  100th  iteration  at  xfinal  0.572.

The  figure  also  shows  the  graphics  output  at  this  iteration.  Coopera-
tor agents are black; defector agents are white. 

The  code  consists  of  procedures  that  contain  commands  and  re-
porters.  Once  we  define  a  procedure,  we  can  use  it  anywhere  in  the
code.  Each  button  has  a  corresponding  procedure.  The  entire  code
does not exceed 100 lines. 
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Figure 1. The  NetLogo  interface  for  the  case  of  41 * 41  1681  agents  with

C(x)  sin(5x), D(x)  cos(5x), x0  0.902 after the 1062nd  iteration. Coop-

erator agents are black; defector agents are white.

The  payoff  functions  are  determined  by  any  formula  using  com-
binations  of  basic  mathematical  functions.  For  example,

sinexp5x  cos2x  is  an  acceptable  representation.  The  freedom  of

using arbitrary functions for the determination of the payoff functions
makes it possible to simulate any N-person game. In addition, the pay-
off  functions  can  be  represented  in  parameterized  form.  The  parame-
ters  can  easily  be  changed  by  their  sliders,  and  they  can  also  be  used
for  the  investigation  of  the  multidimensional  parameter  space  of  any
model.  The  experimenter  simply  determines  which  parameters  should
be  varied  within  given  ranges  and  increments.  The  software  will  run
the simulation with each set of possible values and record the results.
It can perform sophisticated experiments. The results are presented in
the form of a table or spreadsheet. It is also possible to vary any other
parameter, including the random seed used in the code. 

The  updated  probabilities  lead  to  new  decisions  by  the  agents.
With each iteration, the software tool draws the array of agents in the
graphics output, with each agent in the array colored according to its
most  recent  (and  previous)  action.  The  experimenter  can  view  and
record the evolution of the behavior of any agent and of the society of
agents as they change in time. 

We  can  obtain  more  detailed  information  about  individual  agents.
The experimenter selects the agent to be examined in detail by point-
ing at it with the mouse. This information includes the agent’s coordi-
nates  in  the  array,  its  color,  its  two  most  recent  actions,  its  probabil-
ities of cooperation, and the last reward or punishment that the agent
received.  When  the  experimenter  stops  the  simulation,  the  history
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of�aggregate cooperation proportions for each iteration is presented as
a  list  of  numerical  values  as  well  as  an  automatically  generated  plot.
The  iterations  are  usually  stopped  by  the  user  when  the  cooperation
ratio  reaches  equilibrium  or  starts  to  oscillate  around  a  constant
value.  The  speed  of  the  iteration  can  be  controlled  by  the  built-in
speed  slider.  Naturally,  the  running  time  depends  on  many  factors,
mostly on the number of agents chosen. An iteration takes only a frac-
tion of a second, even for tens of thousands of agents. 

Verification4.

The  proper  operation  of  the  software  was  verified  by  repeating  the
simulations published in papers [14, 21–26]. We obtained the same re-
sults with the new software.

Experiments5.

Refinement of a Prisoner’s Dilemma Simulation5.1

We  investigated  in  detail  a  prisoner’s  dilemma  with  C(x)  -1 + 2x
and D(x)  -0.5 + 2x in [22]. If our formula 

xC(x)  1 - xD(x) (1)

has  two  solutions  in  the  region  0 < x < 1,  then  the  smaller  (x1)  is  a

stable  attractor,  and  the  greater  (x2)  is  an  unstable  repulsor.  In  this

case,  x1  0.180  and  x2  0.695.  Accordingly,  when  x0 < x2,  the

solution  of  the  game  converges  toward  x1  as  an  oscillation  while  it

stabilizes  at  different  xfinal  values  when  x0 > x2.  This  was  proven  by

simulations  with  the  values  of  x0  chosen  as  0.00,  0.65,  0.69,  0.71,

0.73,  0.75,  0.80,  and  0.90.  The  most  interesting  region,  however,  is
between x0  0.69 and x0  0.71, where the drastic change occurs.

It  is  very  easy  to  investigate  this  region  with  the  new  software  by
automatically  incrementing  the  value  of  x0  by  0.001  between  0.69

and  0.71.  The  values  of  xfinal  as  a  function  of  x0  are  shown  in  Fig-

ure�2.  We  see  that  the  drastic  change  occurs  at  x0  0.694.  Figures  3

and  4  show  the  evolution  of  the  game  for  the  first  100  iterations
when x0  0.69 and 0.71, respectively. 
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Figure 2. The values of xfinal  as a function of x0  in the region 0.69<x0 < 0.71

for the game with C(x)  -1 + 2x and D(x)  -0.5 + 2x.

Figure 3. The evolution of the game with C(x)-1+2x and D(x)-0.5+2x
for the first 100 iterations when x0  0.69. 
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Figure 4. The  evolution  of  the  game  with  C(x)  -1 + 2x  and
D(x)  -0.5 + 2x for the first 100 iterations when x0  0.71.

Periodic Payoff Functions5.2

In  this  experiment  we  chose  the  payoff  functions  as  C(x)  sin(5x)
and D(x)  cos(5x), as shown in Figure 5.

Figure 5. The payoff functions C(x)  sin(5x) and D(x)  cos(5x).
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When x0  is less than 0.85, this game ends with universal defection.

However,  at  x0  0.85  it  starts  growing  with  x0  and  eventually

reaches  total  cooperation.  The  values  of  xfinal  as  a  function  of  x0  in

the region 0.85 < x0 < 1.00 for this game are shown in Figure 6. 

Figure 6. The values of xfinal  as a function of x0  in the region 0.85< x0 < 1.00

for the game with C(x)  sin(5x) and D(x)  cos(5x).

Exponential Payoff Functions5.3

When  the  payoff  functions  are  expressed  as  C(x)  exp(x)  and
D(x)  exp(-x) (Figure 7), the values of xfinal  grow with x0 and reach

total  cooperation  at  x0  0.6.  Interestingly,  if  we  exchange  C(x)  and

D(x),  the  trend  remains  the  same,  with  the  only  difference  that  total
cooperation is reached only when x0 reaches 1.0.

Sigmoid Payoff Functions5.4

Sigmoid  functions  are  important  for  the  investigation  of  neural  net-

works.  We  chose  C(x)  1  1 + exp-5x - 0.5 - 0.5  and

D(x)  -C(x)  (Figure  8)  and  found  that  the  result  is  total  defection
when  x0  is  less  than  0.507  and  total  cooperation  when  it  is  greater

than 0.507.
If we exchange C(x) and D(x), the final  result is always about 0.5,

independent  of  the  initial  conditions.  This  is  a  unique  situation  be-
cause  the  solution  of  N-person  games  usually  very  strongly  depends
on the initial condition. 
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Figure 7. The payoff functions C(x)  exp(x) and D(x)  exp(-x).

Figure 8. The sigmoid payoff functions C(x)  1 / {1 + exp[-5(x - 0.5)]} - 0.5
and D(x)  -C(x).
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Parameterized Payoff Functions5.5

One of the most important features of this software is that the payoff
functions  can  be  represented  in  parameterized  form.  The  parameters
can  easily  be  changed  manually  by  moving  their  sliders,  but  they  can
also  be  used  for  the  investigation  of  the  multidimensional  parameter
space of a model. In this case, the sliders are moved automatically.

We chose linear payoff functions in the form of C(x)  ax + b and
D(x)  gx + f . This is the most general representation of linear payoff
functions  because  the  parameters  a,  b,  g,  and  f  can  have  any  values.
For simplicity, we present here only the cases when a and g are equal
to either 1 or 2, while b and f  can be -0.5 or -1. The value of x0  is

set to zero (total initial defection). This yields 16 different games. We
ran  this  experiment  for  200  iterations  in  each  case.  The  results  are
shown in Table 1. 

Run
Number b a f g

Initial
Cooperation

Ratio

Final
Cooperation

Ratio x1 Steps

1 -0.5 1 -0.5 1 0 0.466389 0.5 200

2 -0.5 1 -0.5 2 0 0.208209 0.211 200

3 -0.5 1 -1 1 0 1 complex 200

4 -0.5 1 -1 2 0 0.502082 0.5 200

5 -0.5 2 -0.5 1 0 0.988102 complex 200

6 -0.5 2 -0.5 2 0 0.240928 0.25 200

7 -0.5 2 -1 1 0 1 complex 200

8 -0.5 2 -1 2 0 0.941701 complex 200

9 -1 1 -0.5 1 0 0.246282 0.25 200

10 -1 1 -0.5 2 0 0.168947 0.167 200

11 -1 1 -1 1 0 0.506246 0.5 200

12 -1 1 -1 2 0 0.338489 0.333 200

13 -1 2 -0.5 1 0 0.326591 0.333 200

14 -1 2 -0.5 2 0 0.182035 0.18 200

15 -1 2 -1 1 0 1 complex 200

16 -1 2 -1 2 0 0.48602 0.5 200

Table 1.Results of the parametrized payoff functions experiment.

Equation  (1)  yields  two  solutions  in  the  region  0 < x < 1  in  11
cases  out  of  16.  As  we  can  see,  the  values  of  x1  and  xfinal  are  indeed

very close to each other. 
In  the  other  five  cases,  the  solutions  of  equation  (1)  are  complex.

Interestingly,  the  game  ends  at  or  very  close  to  total  cooperation  in
these cases. 
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The  actual  output  is  a  spreadsheet  that  shows  the  values  of  x  for
each  iteration  and  their  minimum,  maximum,  and  mean  values  for
each case. 

Conclusion6.

Our  new  N-person  game  solver  has  superior  capabilities  in  at  least
two respects: (1) the payoff functions can be represented by arbitrary
functions, even in parameterized form; and (2) it is very easy to inves-
tigate the multidimensional parameter space of any model. The experi-
ments  presented  confirm  these  properties.  The  results  are  interesting,
and they very strongly depend on the initial conditions. 
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