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Vector  replacement  rules  allow  formulation  of  the  flowsnake  plane-
filling  curve  as  a  bijection  ℤ⟷ℤ2

 and  as  a  surjection  ⟶2.  The
-function visits double and triple points predicted by Netto’s theorem.
Triple points belong to a relatively simple set, while double points resist
easy  classification.  This  paper  formulates  and  analyzes  the  -function.
Methods  applied  to  the  flowsnake  also  apply  to  other  plane-filling
curves.

Introduction1.

The flowsnake belongs to a class of recursive functions—including the

Hilbert  curve  and  the  dragon  curve—that  map  from  ⟶2.  Plane-
filling  curves  are  some  of  the  earliest  examples  of  substitution  sys-
tems,  and  interest  in  these  “monsters”  dates  back  to  the  time  of
Cantor,  Peano,  and  Hilbert  [1].  The  map  between  spaces  of  different
dimensions  challenges  the  physical  notion  of  a  curve  as  “the  locus  of
points  obtained  by  moving  a  point  moving  continuously  through
space.”  Among  the  most  interesting  theorems  about  these  curves,  it

was proven by Netto that no continuous map from ⟶2
 could be

injective  [1].  To  explore  a  consequence  of  this  theorem,  we  will  take
time  in  Section  4  to  prove  theorems  about  the  flowsnake  double  and
triple points.

The flowsnake is a relatively new entry to the arena of plane-filling
curves. It was reported early by Martin Gardner in a book about frac-
tals,  Penrose  Tiles  to  Trapdoor  Ciphers  [2].  The  original  formulation
is  due  to  hacker  prototype  Bill  Gosper.  He  has  encouraged  computa-
tion  of  plane-filling  curves  since  1972,  when  the  topic  occurred  as
item 115 in Hakmem [3]. Development of the -function presented in
Section  3  is  independent  from  but  influenced  by  recent  collaboration
between Bill Gosper, Julian Ziegler Hunts, and Neil Bickford [4].

The  so-called  -function  extends  the  exactly  computable  domain
of the flowsnake from ℤ to  by associating to every rational preim-

age a well-defined complex number. The map is a surjection ⟶2.

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.275



Unlike  the  ℤ-function,  which  determines  a  bijection  ℤ⟷ℤ2,  the
-function visits some double and triple points in the complex plane.
Exploring the rational values, we find that triple points occur only for

certain  preimages  of  the  form  q = n  6d,  while  double  points  occur

over a wide variety of rational preimages. 
Reformulation  of  the  flowsnake  changes  the  context  of  this  curve

from  hobbyist  plaything  to  research  example.  In  so  doing,  we  intro-
duce techniques of formulation and analysis that apply to many other
replacement functions. 

Common Conception2.

A  set  of  Lindenmayer  substitution  rules  suffices  to  specify  the  flow-
snake  in  one  dimension.  Often  the  Lindenmayer  rules  involve  direc-
tion  symbols such  as  +  and -,  but  vector  notation leads  more  readily
to  advanced  formulations.  In  vector  notation,  the  flowsnake  requires
a six-symbol lexicon that divides into two parts: P[n] and M[n], with
n = 0, 1, 2.  These  symbols  expand  by  a  factor  of  seven  upon  every
replacement. The replacement rules are

P[n] ↦ P[n], Mn - 1, M[n],

Pn + 1, P[n], P[n]Mn + 1 ;

M[n] ↦ Pn + 1, M[n], M[n],

Mn + 1, P[n], Pn - 1, M[n] ;

(1)

where arithmetic on index n is evaluated modulo three. 

The  replacement  rules  of  equation  (1)  determine  a  replacement
function

INF[x, j] = Part[ϕ[x], j], (2)

where  x  is  a  symbol  from  the  six-element  lexicon,  and  ϕ[x]  is  the
transformation of that symbol under the map of equation (1). The in-
teger value j specifies a single part of each replacement image. A recur-
sion of INF over the positive integers defines the function FLSNℕ:

FLSNℕ1 = INFP0, 1 = P0,

FLSNℕ[x] = INF FLSNℕ

x + j

7
, 7 - j ,

x ∈ 7ℕ - j.

(3)

As a fully numeric encoding, this sequence is A261180 in the OEIS

[5]. In choosing fixed point P0, we overlook two other fixed points,

P1  and  P2.  The  sequences  generated  from  these  symbols  occur  as

276 B. Klee

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.275



translates of the sequence defined by equation (3):

P1 : FLSNℕ3 × 7 + x , x ∈ ℕ ,

P2 : FLSNℕ11 × 7 + x , x ∈ ℕ .
(4)

According to the transformation properties of equation (1), we can
use  two  of  the  fixed-point  sequences  to  extend  the  domain  to  all
integers:

FLSNℤ[x]
FLSNℕ[x] + x ∈ ℕ

Π FLSNℕ3 × 7 - x  - x ∈ ℕ
,

where  Π  is  a  parity  function  that  exchanges  heads  P⟷M.  The
ℤ-function is also called a two-way infinite sequence. 

The symbols M[n] and P[n] denote vectors, which change parity by
complex  conjugation.  Replacement  rules  for  changing  the  symbols
into vectors in the complex plane are 

P[n] ↦ + eiπ2n / 3,

M[n] ↦ - eiπ2n / 3.

These  replacements  transform  a  sequence  of  FLSNℕ  values  into  a

sequence  of  complex  numbers,  which  specifies  a  walk  through  the
complex plane, as in Figure 1. 

A finite depiction gives us an idea of what the flowsnake looks like.
The  pictures  are  intriguing  and  attractive,  but  we  need  to  go  beyond
the  commonly  available  graphics  to  truly  understand  the  curve.  Our
foray into lesser-known territory takes us to the -function. 

Figure 1. The  Gosper  curve.  These  images  are  linear  interpolations  of  the
ℤ-function with domain {0, 1, 2, . . . 7n }; n = 0, 1, 2, 3. Taking the complex
conjugate of P[n] and M[n] changes the chirality of the curve. 

The Flowsnake ℚ-Function3.

This section extends the domain of FLSN from the integers to all ratio-
nal numbers. We choose to write the -function using radix-restricted
power  series  expansions,  which  we  also  call  septenary  expansions.
This approach is similar to the approach of Sagan, where n-ary expan-
sions pair with iterated function systems [1]. We advance these calcu-
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lations  by  performing  a  periodic  analysis  that  allows  us  to  determine
the convergence of a power series to a single complex value.

A potentially infinite sequence of integer digits locates any point on
the  continuous  interval  depicted  in  Figure  2.  The  ℤ-function  joins
rotationally  equivalent  vectors  throughout  the  plane,  so  we  follow
Gosper by introducing a conventional restriction to the domain [3–5].

Considering only the rational values q ∈ 0, 1 introduces some decep-

tions  along  the  boundary,  but  those  deceptions  can  be  silenced  after
the fact. We write the integer digits of a rational number in radix-7 as
power  series  coefficients.  The  generating  function  is  determined  by  a
function-valued function 

QGF
m

o × bn
, x, b = Θ1m, n, x, b +

Θ2m, o, x, b

1 - xω[o]
,

which satisfies 

q = QGF q,
1

b
, b .

Figure 2.  Hierarchical  measurement  system.  Starting  with  seven  divisions  of
an interval, each of seven intervals is further divided into seven parts, for a to-
tal  of  49  intervals.  Iterating  this  process  recursively  produces  a 7n  geometric
number line much like the 2n number line on a United States ruler.

The  Θ1  and  Θ2  are  polynomial  functions  of  x  that  obey  a  restric-

tion imposed by choice of radix, b = 7: in the power series expansion

of  QGFq, x, b,  every  expansion  coefficient  must  belong  to  the  set

0, 1, 2 . . . 6.  Θ1  captures  only  nonrepeating  digits,  while  Θ2  captures

only  repeating  digits.  Exact  formulation  of  these  functions  is  given  in
[6],  which  contains  all  subroutines  that  compose  the  well-defined
-function.

The difficulty arises with ω[o], the period of repetition. In a practi-
cal  approach,  we  determine  this  integer  by  a  recursive  search  that  in-
crements a temporary value for ω[o] until the actual value is found by
comparing  prime  factorizations.  Other  sophisticated  methods  exist
for determining ω[o], and the values of ω[o] can also be tabulated for
a range of o. 
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After  setting  QGF,  it  becomes  possible  to  expand  the  septenary
power series 

QGF[q, x, 7] = 
n=1

∞

anx
n.

As a shorthand, we can also write the expansion in septimal form:

q = 07
• a1a2a3a4….

According to the 0, 1 restriction, a0 always equals zero.

Now recall that there exists a linear replacement function INF with
a fixed point and inflation factor seven. This permits an interpretation
of  any  septimal  number  as  selection  instructions  that  specify  a  se-
quence  of  replacement  symbols  from  the  six-element  lexicon.  Re-
peated application of INF, as in the function FLSNℕ, creates a hierar-

chical  or  branched  topology  between  successive  replacement  images.
Calling this tree a family tree, the sequence of replacement symbols de-
termined by a septimal is also an unending lineage [7].

Terms of the lineage we denote pn, and the fixed-point axiom is p0.

Under  INF,  a  parent  begets  seven  children.  Of  these  seven  children,
the next parent in the lineage is

pn = INFpn-1, an + 1,

where an is the nth digit of the septimal expansion as above.

According  to  the  restriction  of  the  domain  to  rational  numbers
only,  the  sequence  of  an  repeats  with  some  period  ω,  possibly  after  ϕ

nonrepeating  initial  values.  The  set  of  replacement  symbols  contains
only  six  elements  in  total,  so  eventually  the  sequences  an  and  pn  will

exhaust  all  nonrepeating  possibilities  and  begin  to  repeat  in  unison.
There must exist some integers j < k such that

pϕ+kω = pϕ+jω && aϕ+kω = aϕ+jω ,

which  implies  a  period  of  repetition  k - j ω.  According  to  the

mnemonic “when it repeats / then it completes,” it should be possible
to  find  a  finite-term  function  that  generates  the  infinite  symbolic  se-
quence as the coefficients of a power series expansion

g(x, q) = 
n=0

ϕ+jω-1

pnx
n+1 + 

n=ϕ+jω

ϕ+kω-1 pnx
n+1

1 - x(k-j)ω
. (5)

To this function we apply the map

pn ↦ ψTotalINF[pn, m] :m ∈ 1, 2…an+1,
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where  ψ  denotes  the  transformation  of  equation  (4).  The  complex-
valued function g


(x, q) satisfies

FLSN[q] = g(λ, q),

where λ is the complex expansion factor of the substitution system, in
our convention

λ =
ⅇ
-iArcCos5 7 14

7

.

Thoughtlessly  introducing  powers  of  such  a  complex  number  can
lead  to  poor  formatting  for  the  functional  output  and  slow  computa-
tion. For this reason it is useful to define the real and imaginary parts
of λn using two linear recurrences 

Re[λ] =
5

14
, Reλ2 =

11

98
;

Im[λ] = -
3

14
, Imλ2 = -

5 3

98
;

f[λn] =
5

7
fλn-1 -

1

7
fλn-2,

where  f  stands  in  for  either  function  Re  or  Im.  The  -function  needs
to  repeatedly compute  powers  of λ.  Algorithm  timing improves  when
the values of Re[λn] and Im[λn] are saved as they are computed. 

Improving  the  arithmetic  leads  to  a  number  of  positive  outcomes.

It becomes obvious that FLSN[q] ∈ 2
 for all rational q. The values

of FLSN[q]  follow  a  simple  reduction  procedure  to  the  form  a + bi.

The  computational  velocity,  in  complex  values  computed  per  second,
compares favorably to the velocity of an algorithm that invokes magic
simplification routines. It is worthwhile to optimize the arithmetic.

To  describe  the  septenary  expansion,  we  use  a  genealogical  anal-
ogy.  The  space-filling  property  extends  this  analogy.  FLSN  deter-

mines  a  diaspora  where  every  lineage  in  the  restricted  domain  con-
verges to a point of rest within a two-dimensional space, the complex
plane.  In  this  metaphor,  distant  relatives  sometimes  meet  at  certain
points within the diaspora. In Section 4, we study the so-called double
and triple points.

Double and Triple Points4.

According  to  the  theorem  of  Netto,  any  space-filling  curve  must  visit
some  points  in  the  complex  plane  multiple  times.  To  observe  this  be-
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havior  in  the  flowsnake,  we  need  only  compute  the  images  of  certain
rational values. We find these values by computer-aided exploration. 

It  is  convenient  to  restrict  exploration  of  function  values  to  the
images  of  rationals  belonging  to  a  well-defined  set.  For  preliminary
calculations, we choose domains of the form 

Sd = s =
x

d
: x ∈ 0, 1…d .

Evaluating FLSN  over all the values of Sd, we construct sequences

that interpolate the flowsnake according to the natural ordering given
by the < function. Except for S7 and S49, the images of Sd are unfamil-

iar, as Figure 3 shows.
Inspecting Figure 3, we make a number of observations. It is appar-

ent  that  Sd  and  S7×d  bear  a  simple  relation.  The  graphical  image  of

S7×d  is  obtained  by  scaling,  rotating,  and  combining  copies  of  the

graphical  image  of  Sd.  The  validity  of  this  construction  relates  to  the

fact  that  S7×d ⊃ S7  and  S7×d ⊃ Sd.  Practically,  this  construction  leads

us to redefine the domain sets 

Sr, n = s =
x

r7n
: x ∈ 0, 1. . . r × 7n .

Figure 3. (continues).
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Figure 3.  Graphical  images  of  the  flowsnake  -function.  Element  ti, j  of  this

graphics table corresponds to the set S5(i-1)+j. The algorithm encounters a pre-

cision  error  at  S41  and  produces  a  scribble  defect.  The  images  most  relevant

to multipoint exploration correspond to S6, S42.

With  the  extra  restriction  that  r  does  not  contain  seven  as  a  prime
factor, there is a bijection Sd⟷Sr, n.

Next  we  observe  that  the  sets  Sr, n  are  mostly  self-avoiding  walks,

with  the  exceptions  being  S3, n,  S6, n,  and  S27, n.  The  imminent  excep-

tion  is  S6, n,  which  is  apparently  the  simplest  domain  sequence  where

triple points occur. Clearly this domain sequence deserves more inves-
tigation.  Of  the  values  in  S6, 1,  we  are  particularly  interested  in  the
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subset

SA = 0,
1

6
,
4

6
,
5

6
, 1 ,

with images

FLSNSA = 0,
1

6
3 - i 3 ,

1

2
1 + i 3 , 1 + i

3

3
, 1 .

These are five of the six vertices of a hexagon in the complex plane
centered around the point with preimage

q = 07
• 24 =

14 + 4

48
=

18

48
=

3

8
,

and image 

FLSN

3

8
=

1 + e
iπ

3 λ - 2λ2

1 - λ2
=

1

6
3 + i 3 .

By analysis of various lineages we arrive at the proposition that the
missing point is obtained from the rational number 

q = 07
• 35 =

1

7
3 +

5

6
=

23

42
.

For this q ∈ S6, 2, the function value is

FLSN

23

42
=λeiπ/3 -

2λ2

1 - λ
= i

3

3
,

and indeed this is the missing hexagonal point. Now we form the com-
plete vertex set

SV, 0 = SA⋃
23

42
.

A natural ordering for SV, 0  is provided again by the function <, so

we  can  depict  FLSNSV,0  as  a  path  that  visits  all  vertices  of  a

hexagon in the complex plane, as with the fourth tile in Figure 4.
To  prove  appearances  and  enumerate  counting  sequences,  it  is  ex-

pedient to pass from FLSN  to a hybrid tiling system. The tiling sub-

stitution  system  is  computationally  fast,  easy  to  analyze,  and  easy  to
construct.  The  construction  involves  marking  one  prototile  with  a
path  determined  by  FLSN  and  specifying  a  function  DEF  for  sub-

dividing the two-dimensional space into nested configurations of tiles.
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Iteration  of  DEF  will  always  produce  another  level  of  the  hierarchy
with a greater number of smaller tiles. 

Figure 4.  Inscribed  tiles.  From  left  to  right,  tiles  corresponding  to  S1, 0,  S3, 0,

S6, 0, SV, 0, S1, 1. Endpoints at 0 and 1 are marked with a disk. Coincidence of

various  paths  with  vertices  of  the  dotted  and  dashed  triangles  determines  if
the domain sets lead to double or triple points. 

Create an axiomatic, hexagonal prototile by inscribing a path from

FLSN  onto  a  hexagonal  tile  bounded  by  the  vertices  FLSNSV, 0.

We call this tile T0. From this tile, we generate a tileset with an infi-

nite number of tiles 

τ = λnT[θ] : n ∈ 0, 1, 2…∞; θ ∈ 0, 1, 2,

where  T1  and  T2  are  obtained  from  T0  by  a  rotation  of  2  3

and  4  3  radians.  The  function  DEF  subdivides  every  tile  of  the

form  λnT[θ]  into  seven  tiles  of  the  form λn+1T[θ].  Formally,  we  write
an expression similar to equation (2):

DEF[x, i] = Part[ϕ2[x], i],

where ϕ2 is determined by a set of two-dimensional replacement rules.

It is most expedient to write ϕ2 in a pictorial language, as in Figure 5.

Figure 5.  Deflation  replacement.  This  pictorial  replacement  rule  shows  the

preimage  and  image  with  path  FLSNS1, 0  inscribed  on  the  tile.  The  other

replacement  rules  are  obtained  by  simultaneous  rotation  of  image  and
preimage. The -function allows inscription of paths from a domain set other
than�S1, 0. 

If  we  merge  the  -function  over  0, 1  and  the  ℤ-function,  we  ob-

tain a -function defined for every rational because the ℤ-function de-
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termines a placement of tiles at scale λ0  throughout the plane. By this

construction,  we  extend  each  set  S  in  the  restricted  domain  to  a  set  S


in the unrestricted domain that obeys

S ⊂ S

⊂ .

For the complete -function, iteration of DEF yields a hierarchy of
tilings  related  one  to  another  by  powers  of  λ.  Each  vertex  of  each

tiling  is  visited  by  the  path  FLSNSV, 0  inscribed  on  an  appropri-

ately transformed tile. Clearly all vertices of all tilings are multipoints,
but we make a stronger observation. 

In  a  tiling  by  hexagons,  the  vertices  are  given  by  a  union  of  two
hexagonal  point  lattices,  which  are  invariant  under  rotations  of  0,

2  3,  and  4  3  radians  about  the  center  of  any  hexagon.  The  end-

points  of  the  curve  on  a  tile  at  any  level  of  the  hierarchy  belong  to
only  one  of  these  point  lattices,  regardless  of  location  or  orientation.
When the domain of FLSN  is all rationals, the only points visited by

the  SV, 0  interpolation  will  be  at  least  a  double  point  or  at  least  a

triple point, depending on which of two point lattices they belong to,
as in the interior of Figure 6. 

Figure 6.  Double  and  triple  points.  In  this  image  of  FLSNSV, 2,  double

(triple) points are encircled by a gray (black) disk. Gosper’s convention intro-
duces deceptions along the boundary, where some triple points are inappropri-
ately marked as double.

Now it is appropriate to review the assumptions of our venture. Is
there  any  possibility  that  a  union  of  some  Sr, n  with  SV, 0  will  lead  to

additional  self-intersections?  Is  it  sufficient  to  look  at  only  49  output
images  or  are  50  needed?  As  an  answer  to  these  questions,  we  prove
the following theorems. 

Theorem 1. In  the  limit  of  n⟶∞,  the  set  S

6, n  contains  the  preimages

of all flowsnake -function values that are also exact triple points. 
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Proof. This statement is equivalent to a statement about the tiling sys-
tem determined above. Again we use the tileset marked with the path

determined  by SV, 0.  The nth  iteration  of DEF  yields FLSN[S

V, n],

which is a subset of the values FLSN[S

6, n+1]. If repeated application

of DEF generates a set of points containing all exact triple points, the
theorem is certainly true. 

The replacement rules of equation (1) require linear inflation factor
seven,  which  in  turn  requires  areal  inflation  factor  seven.  No  finer
division of the plane can exist. Iteration of DEF divides every hexago-
nal  region  into  seven  smaller  hexagonal  regions,  creating  a  hierarchi-
cal  structure.  Levels  of  the  hierarchy  are  scaled  by  a  length  factor  λ

such that

λ × λ* =
1

7
,

where * denotes complex conjugation. This is exactly the correct scale
factor  so  that  the  plane-filling  deformation  changes  length  into  area.
A bijection then relates a nested set of number line intervals of length

1  7nl0  to a set of nested topological discs, also regions or tiles, with

area 1  7nA0.

 At every nth  level of the hierarchy, the path carried by the tiles vis-
its  every  point  where  three  tiles  join  together.  Equivalently,  the  set  of

values  limn→∞ FLSN[S

V, n]  contains  all  points  shared  by  three  re-

gions at some level of the hierarchy.
Let  us  assume  that  a  value  of  FLSN  falls  onto  a  hexagon  vertex

somewhere  in  the  hierarchy.  As  discussed  earlier,  the  point  is  at  least
a  double/triple  point.  By  convergence  analysis,  we  show  that  these
points are exactly double/triple points. 

Place a ball of radius δ, B[δ], around the point in question. The in-
tersection of B[δ] with values of FLSN divides into three complemen-

tary  subsets.  In  each  subset,  the  preimages  fall  into  three  ranges  of
maximal length ϵ. If the point is at least triple, all three ranges are sep-
arated  by  a  minimum  length  of  σ.  If  the  point  belongs  to  the  other
hexagonal  point  lattice,  then  two  of  the  subsets  are  nearly  connected
and  separated  from  the  third  by  a  length  σ.  The  images  of  all  values
in each subset approximate the point in question. 

Now we proceed through the limit δ⟶0 by a discontinuous proce-
dure. Define a sequence of radii 

δn+1 =
7

7
δn,

which  enacts  the  limiting  procedure  as  n⟶∞.  To  avoid  complica-
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tions introduced by fractal boundaries, choose δ0  such that B[δ0] falls

well within the boundaries of three coincident hexagonal tiles at hier-
archy level λm. According to the transformation properties of the hier-
archy,  B[δn]  falls  well  within  the  boundaries  of  a  trefoil  at  hierarchy

level  λm+n.  Iterating  n,  we  progress  toward  infinitesimal  but  discrete
units  of  the  tiling  hierarchy.  In  the  one-dimensional  space,  we  have  a
sequence of ϵn and σn that obeys the recurrence equations 

ϵn+1 =
1

7
ϵn, 1 ⩾ σn+1 ⩾ σn,

with limiting behavior

limn→∞ ϵn = 0, limn→∞ σn = qσ > 0,

where  constant  rational  qσ  is  simply  the  distance  between  the  closest

double-  or  triple-point  preimages,  measured  along  the  number  line.
Then  the  point  in  question  has  exactly  three  or  exactly  two  preim-
ages, depending on the hexagonal point lattice that it belongs to. Fig-
ure  7  shows  the  first  few  iterations  of  a  graphical  convergence  analy-

sis for the triple point 5 / 7 + 4 3  21i .

Figure 7.  Convergence  analysis.  The  two-dimensional  graph  shows  a  succes-

sion  of  hexagonal  trefoils  that  converge  toward  5 / 7 + 4 3   21i.  These

trefoils  entirely  enclose  a  ball  B[δ]  as  the  radius  δ  approaches  0.  The  one-
dimensional  graph  shows  a  succession  of  intervals.  The  intervals  have  length
less than ϵ, and they are separated by regions of length greater than σ. The in-
tervals converge to three separate preimage values 13 / 42, 31 / 42, 37 / 42.

Now it remains only to show that all triple points must fall onto a
hexagon  vertex  somewhere  in  the  hierarchy.  According  to  the  topol-
ogy  of  the  two-dimensional  hierarchy,  a  point  that  does  not  fall  ex-
actly onto the intersection of three regions must fall exactly within the
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two-dimensional  interior  of  a  sequence  of  hexagonal  regions  or  ex-
actly  onto  the  one-dimensional  boundary  between  two  hexagonal  re-
gions. There is no possibility for anomalous triple points. 

By  convergence  analysis,  we  show  that  a  point  is  exactly  a  triple

point if and only if it is at least a triple point. Our set limn∞ S

6, n con-

tains all rationals whose images are at least triple, therefore the theo-

rem is proven. □

The left image of Figure 8 shows a flowsnake path that visits dou-
ble points that also fall onto hexagon vertices somewhere in the hier-
archy.  The  topology  of  the  two-dimensional  hierarchy  allows  double
points to also exist along any of the one-dimensional boundaries sepa-
rating two regions of the hierarchy. Along the one-dimensional bound-
aries, double points fall into a wide variety of domain sets.

Figure 8.  Multipoint  tilings.  The  paths  FLSNS3, 2  and  FLSNS6, 2  visit

points  with  more  than  one  preimage.  The  interpolated  path  also  divides  the
plane  into  a  finite  set  of  polygon  tiles  with  exactly  defined  vertices.  Both
tilings must be aperiodic.

Theorem 2. Every set S7ω-1,δ—for all valid ω and δ—contains the preim-

age of a flowsnake -function value that is also an exact double point.

Proof. In order to prove the theorem, we need only to show that it is
possible to write a rational number qβ  with a septimal expansion that

meets two conditions: 

The  expansion  digits  must  repeat  according  to  an  arbitrary  period
ω ∈ ℕ after δ nonrepeating initial values.

1.

The  expansion  digits  must  determine  a  path  that  converges  toward  a
boundary between two regions of the hierarchy.

2.

Consider a number qβ  with a radix-7 septimal such that all integer

digits an  are drawn from the set 4, 5. Inspecting Figure 5, it is clear

that  the  lineage  for  qβ  obeys  pn = p0  for  all  n  because  the  fifth  and

sixth tiles, counting left-to-right, are both of type p0. 
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From Figure 5, we also see that FLSNqβ converges to the bound-

ary. The fifth and sixth tiles in the deflation image are connected by a

single  edge  of  the  preimage  E0,  which  is  an  approximation  of  the

fractal boundary. Under deflation, the edge obeys a Lindenmayer rule 

E[n] ↦ E[n]En + 1E[n], (6)

where arithmetic on index n is evaluated modulo six, and the index n
determines the direction of a vector in the complex plane. 

The  occurrences  of  E0  at  positions  one  and  three  in  the  replace-

ment image of E0 according to equation (6) are also boundary edges

along  the  fifth  and  sixth  tiles,  respectively.  Any  number  of  replace-

ments following the digits of qβ  leads to a hexagon with an edge E0

along the boundary, so qβ converges to the boundary.

Now the only restriction on the digits of qβ  is that each an ∈ 4, 5

for  all  n.  We  are  free  to  choose  the  sequence  an  to  have  δ  nonre-

peating initial digits followed by a sequence of digits that repeats with
arbitrary period ω:

qβ = 07
• a1a2…aδaδ+1…aδ+ω. (7)

Every qβ ∈ S7ω-1, δ that conforms to equation (7) converges to a re-

gional boundary at hierarchy level λδ, thus the theorem is proven. □ 

According to Theorem 1, it is easy to locate triple points in the do-
main. Theorem 2 says the opposite about double points. The union of
all  valid  sets  S7ω-1,δ  is  ,  which  implies  that  the  Sr, n  may  not  be  the

best  partitioning  for  capturing  double  points.  Although  we  find  some
double  points  as  in  Figure  9,  we  leave  the  task  of  clearly  formulating
the double-point domain for future research.

Figure 9. A double point along the edge. The path FLSNS48,1 visits a num-

ber  of  double  points,  including  FLSN[11 / 112] = FLSN[143 / 336] =

171 + 61 3 i  546, which is marked along the path by a disk. This partic-

ular double point falls between just two regions of hierarchy level λ1.
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Surjection and Bijection5.

From Theorems 1 and 2, we already know that the -function is not
an  injection.  Now  we  prove  another  important  property  of  the
-function.

Theorem 3. The flowsnake -function is a surjection ⟶2.

Proof. We need to show that every rational image has at least one ra-

tional preimage, but we limit considerations to domain 0, 1 without

loss of generality. 
Recall that DEF determines a hierarchical coordinate system in two

dimensions, as depicted in Figure 10. 

Figure 10.  Hierarchical  2
 coordinate  system.  The  hexagonal  geometry  in  the

left  image  transforms  into  the  Cartesian  geometry  in  the  right  image,  where
black  cells  remain  undefined.  The  Cartesian  geometry  permits  a  ternary  ex-
pansion. 

A  pair  of  rationals  q1, q2  that  falls  into  the  hexagonal  hierarchy

also  belongs  to  a  subspace  of  a  Cartesian  hierarchy.  It  is  easier  to
think  in  terms  of  the  Cartesian  coordinates.  In  this  setting,  vectors  of
the hexagonal hierarchy become the normal x  and y . We expand all co
ordinates in radix-3:

q1 = 03
•a1a2a3… , q2 = 03

•b1b2b3… ,

with  the  restrictions  if  ai = 2  then  bi ≠ 2  and  vice  versa.  Both  q1, q2
are rational, so the integer digits eventually repeat with period ω1  and

ω2, which requires a combined period of ω = LCM[ω1, ω2]. As in pre-

vious  sections,  the  sequence  of  ai, bi  determines  a  sequence  of  par-

ents pi. The sequence pi draws values from a finite lexicon. Eventually

the possibilities become exhausted, and the sequences repeat in unison
with period kω. 
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Now,  “when  it  repeats/then  it  completes,”  and, as  in  equation  (5),
we  obtain  at  least  one  finite-term  function  for  the  point  determined
by {q1, q2}. Actually we can obtain a set of finite-term functions when

{q1, q2} is a multipoint, because each unique ternary expansion deter-

mines  a  unique  finite-term  function.  There  are  many  relations  of  the
form 

03
• a1a202 = 03

• a1a2012,

which make possible the existence of double and triple points. 

In  any  case,  each  unique  finite-term  function  obtained  via  two-
dimensional  expansion  corresponds  to  exactly  one  finite-term  func-
tion  determined  by  equation  (5),  and  thus  to  a  rational  number  q.

Finally, every element of 2
 has a preimage in , so the -function is

a surjection. □ 

We would like to specify a set S

DT  containing all double and triple

points, such that

S

inj = \S


DT

is  a  restricted  domain  over  which  the  -function  is  an  injection  and
thus  a  bijection.  According  to  the  difficulties  introduced  by  Theo-

rem�2,  we  cannot  yet  complete  the  specification  of  S

DT  or  S


inj.  With-

out  specifying  these  sets,  we  can  still  ask  the  exploratory  question,
what  are  the  noteworthy  domains  where  a  flowsnake  path  avoids  all
double and triple points? 

Let us propose one simple answer. Starting with set 

Sc, 0 =
3

8
,

we generate sets Sc, n  by repeated application of DEF, and sets S

c, n  by

combination  with  the  ℤ-function.  Convergence  analysis  shows  that

Sc, 0  is  a  single  point,  the  centroid  of  the  region  at  hierarchy  level  λ0.

Convergence analysis is similar for all points in S

c, n, so we know that

S

inj ⊃ S


c,n,

though  we  do  not  have  an  explicit  formulation  of  S

inj.  Figure  11  de-

picts Sc,2.

A Pit of Flowsnakes 291

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.275



Figure 11. Other flowsnake paths. The left image depicts FLSNSC, 2, which

is  a  bijective  path  that  visits  only  single  points.  The  right  image  depicts

FLSNSC, 2 ⋃ S1, 2,  which  is  not  a  bijective  path,  because  it  alternates  be-

tween single and double points.

Now  we  make  an  artistic  observation  that  the  path  FLSNSc, n,

like  many  other  paths,  is  a  branching  double  spiral.  The  meaning  of
this  observation  becomes  more  clear  if  we  prune  the  path.  The  prun-
ing  procedure  creates  a  new  domain  as  follows.  At  each  hierarchy

level λn+1, take the six vertices from FLSNSc, n+1 that belong to the

region of level λn containing FLSN3  8 but do not belong to the re-

gion of level λn+1  containing FLSN3  8. Create a path by ordering

the  preimages  according  to  the  <  function.  The  output  of  this  proce-
dure is depicted in Figure 12.

Figure 12. Flowsnake double spiral. The density of points distributed in space
becomes  greater  as  the  spiral  approaches  the  centroid  of  the  λ0  region  at
FLSN[3 / 8]. 

After  pruning,  we  see  clearly  that  the  spiral  first  traverses  down-
ward  through  the  hierarchy,  ultimately  converging  on  point

FLSN3  8.  After  reaching  this  point,  the  spiral  begins  to  move

upward  through  the  hierarchy  until  it  returns  to  level  λ0  at

FLSN1 = 1. 
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Conclusion6.

In  this  paper,  we  review  and  extend  common  formulations  of  the
flowsnake  plane-filling  curve.  We  provide  a  -function  with  well-
defined  values,  which  is  equivalent  to  but  fundamentally  different
from  the  formulation  Gosper  et  al.  use  to  determine  triple  points  of
the  dragon  curve  [5,  A260482].  Our  formulation  for  the  flowsnake
finds double and triple points. 

Though this article does present positive results regarding the multi-
points of the -function, the whole story remains untold. It remains a
challenge to formulate a domain of the double points. Also, it remains
to  formulate—if  it  exists—a  halting  algorithm  that  computes  the  im-
ages  of  irrational  preimages  taken  from  a  subset  of  the  reals,  such  as

 x .  Proofs  in  this  paper  do  not  rule  out,  for  example,  the  possi-

bility that multipoints exist in a hypothetical  x -function.

In general, the analysis provided here extends to other space-filling
curves  whenever  a  few  basic  conditions  are  met.  We  assume  the
ℤ-function can be written using a lexicon containing symbols that ad-
mit  interpretation  as  vectors.  The  dragon  curve  also  falls  within  this
purview.  By  methods  similar  to  those  applied  herein,  we  have  also
proven that the dragon curve -function contains only single, double,
and triple points in its range. Relaxing conditions, it is possible to gen-
eralize the analysis until it applies to most substitution systems.

Acknowledgments

The  author  would  like  to  thank  R.  W.  Gosper  et  al.  for  generously
sharing  -function  computations  for  the  flowsnake  and  dragon
curves,  E.  O.  Harriss  and  C.  Goodman-Strauss  for  comments  on  an
earlier  draft,  and  N.  J.  A.  Sloane  et  al.  for  maintaining  OEIS  and  the
seqfans mailing list. This work was supported in part by a doctoral fel-
lowship awarded by the University of Arkansas.

References

[1] H. Sagan, Space-Filling Curves, New York: Springer-Verlag, 1994. 

[2] M. Gardner, Penrose Tiles to Trapdoor Ciphers: And the Return of Dr.
Matrix,  rev.  ed.,  Cambridge,  MA:  The  Mathematical  Association  of
America, 1997.

A Pit of Flowsnakes 293

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.275



[3] M.  Beeler,  R.  W.  Gosper,  and  R.  Schroeppel,  Hakmem,  Cambridge,
MA:  Massachusetts  Institute  of  Technology,  Technical  Report:
AIM-239, 1972. http://hdl.handle.net/1721.1/6086.

[4] R. W. Gosper, private communication. 

[5] N. J. A. Sloane. “The On-Line Encyclopedia of Integer Sequences.” (Oct
7, 2015). http://oeis.org/A260482.

[6] B.  Klee.  “Flowsnake  Q-Function”  from  the  Wolfram  Demonstrations
Project—A Wolfram Web Resource.
http://demonstrations.wolfram.com/FlowsnakeQFunction.

[7] C. Goodman-Strauss, private communication. 

294 B. Klee

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.275

http://hdl.handle.net/1721.1/6086
http://oeis.org/A260482
http://demonstrations.wolfram.com/FlowsnakeQFunction



