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We  characterize  the  structure  of  the  periods  of  a  neuronal  recurrence
equation.  First,  we  give  a  characterization  of  k-chains  in  0–1  periodic
sequences. Second, we characterize the periods of all cycles of some neu-
ronal  recurrence  equation.  Third,  we  explain  how  these  results  can  be
used  to  deduce  the  existence  of  the  generalized  period-halving  bifurca-
tion. 

Introduction1.

The  human  brain  can  be  viewed  as  a  set  of  interconnected  neurons.
Caianiello  [1,  2]  suggested  modeling  the  brain  using  the  following
threshold automata network:

xit + 1  1 
j1

n


s1

k

aij(s)xjt + 1 - s - θi 1 ≤ i ≤ n, t ≥ k - 1 (1)

where:

◼ xj(t + 1 - s) is the state of the neuron j at time t + 1 - s.

◼ aij(s) represents the influence of the neuron j at time t + 1 - s on the neu-

ron i at time t + 1.

◼ θi is the threshold of the excitation of the neuron i.

◼ ∑j1
n ∑s1

k aij(s)xj(t + 1 - s) is the potential of the neuron i at time t.

◼ n is the number of the neurons of the network.

◼ k is the size of the memory.

◼ 1[u]  0 if u < 0, and 1[u]  1 if u ≥ 0. 
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The  dynamics  of  this  model  have  been  studied  in  some  particular
cases: 

In equation (1), when k  1, we obtain the following equation: 1.

xi(t + 1)  1 
j1

n

aijxj(t) - θi 1 ≤ i ≤ n, (2)

which  models  the  dynamic  behavior  of  n  interconnected  neurons  of
memory  size  1.  These  networks  were  introduced  by  McCulloch  and
Pitts [3] and are quite powerful.

In equation (1), when n  1, we obtain the following equation: 2.

x(n)  1 
j1

k

ajx(n - j) - θ , (3)

introduced  by  Caianiello  and  de  Luca  [4],  which  models  the  dynamic
behavior of a single neuron with a memory, and which does not inter-
act with other neurons.

Neural networks are usually implemented by using electronic com-
ponents or are simulated by software on a digital computer. One way
in which the collective properties of a neural network may be used to
implement  a  computational  task  is  through  the  energy  minimization
concept.  The  Hopfield  network  is  a  well-known  example  of  such  an
approach.  It  has  attracted  wide  attention  in  literature  as  a  content-
addressable memory [5]. 

Caianiello  networks  have  been  studied  by  Goles  [6]  and
Ndoundam  [7].  Many  studies  have  been  devoted  to  McCulloch  and
Pitts’s  neural  networks  [5,  8–13].  Matamala  [12]  studied  McCulloch
and  Pitts’s  reverberation  neural  networks  (i.e.,  neural  networks  of
McCulloch  and  Pitts  where  each  state  of  the  system,  after  a  finite
number of steps, comes back to itself, also called hypercube permuta-
tion). 

Cosnard,  Moumida,  Goles,  and  St.  Pierre  [14]  showed  the  follow-
ing result in the case of palindromic memory:

Proposition 1. [14] If the interacting coefficients (a1, a2, …, ak) verify 

ai  ak+1-i∀ i ∈ ℕ, 1 ≤ i ≤ k,

then the length of each cycle is a divisor of k + 1.

In the case of j-palindromic memory, they also showed: 

Proposition 2.  [14]  If  the  interacting  coefficients  (a1, a2, … , ak)  are

j-palindromic, that is, verify 

a1  a2  ⋯aj  0,

ai  ak+j+1-i∀ i ∈ ℕ, j + 1 ≤ i ≤ k,

then the length of each cycle is a divisor of k + j + 1.
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When  the  memories  are  geometric  sequences,  they  showed  the  fol-
lowing results: 

Proposition 3.  [14]  If  the  interacting  coefficients  verify  ai  - bi  with

b ∈ 0, 1  2,  then  the  length  of  each  cycle  is  less  than  or  equal  to

k + 1.

In the case of positive geometric sequences, they showed:

Proposition 4.  [14]  If  the  interacting  coefficients  verify  ai  bi  with

b ∈ 0, 1  2, then the length of each cycle is 1. 

Other  results  have  been  established  on  neuronal  recurrence  equa-
tions  modeling  neurons  with  memory  [8,  14–22].  From  the  point  of
view of the period: 

◼ In [15, 18–21], the authors did not study all the cycles generated by the
neuronal recurrence equation.

◼ In  this  paper,  we  are  studying  all  the  cycles  generated  by  the  neuronal
recurrence equation {y(n) : n ≥ 0}. 

From the point of view of bifurcation:

◼ In [23], we studied the dynamics of the sequence {z(n) : n ≥ 0} from one
and  only  one  initial  configuration.  We  characterized  only  one  cycle  of
the sequence {z(n) : n ≥ 0}. 

◼ In [24], for any d (0 ≤ d ≤ ρ(m) - 1), we studied the dynamics of the se-
quence {z(n, d) : n ≥ 0} from one and only one initial configuration. We
characterized only one cycle of the sequence {z(n, d) : n ≥ 0}.

◼ In  this  paper,  for  any  d  (0 ≤ d ≤ ρ(m) - 1),  we  show  how  to  study  the
dynamics  of  the  sequence  {z(n, d) : n ≥ 0}  from  any  initial  configura-
tion.  We  show  how  to  characterize  the  length  of  all  cycles  of  the  se-
quence {z(n, d) : n ≥ 0}. 

Our  work  is  similar  to  the  work  of  Matamala  [12]  in  the  sense  that
we study all the periods.

The  paper  is  organized  as  follows:  in  Section  2,  some  previous  re-
sults  are  presented.  Section  3  presents  a  characterization  of  k-chains
in 0–1 periodic sequences. Section 4 is devoted to the characterization
of the period length of all the cycles. In Section 5, we study a bifurca-
tion. Concluding remarks are stated in Section 6. 

Previous Results2.

Given  a  finite  neural  network,  the  configuration  assumed  by  the  sys-
tem at time t is ultimately periodic. As a consequence, there is an inte-
ger  p > 0  called  the  period  (or  the  length  of  a  cycle)  and  another
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integer T ≥ 0 called the transient length such that: 

Yp +T  YT,

∄ T′and p′T′, p′ ≠ T, pT ≥

T′and p ≥ p′such that Yp′ +T′  YT′ ,

where Y(t)  x(t), xt - 1, … , xt - k + 2, xt - k + 1.  The  period

and the transient length of the sequences generated are good measures
of  the  complexity  of  the  neuron.  A  bifurcation  occurs  when  a  small
smooth change made to the parameter values (the bifurcation parame-
ters)  of  a  system  causes  a  sudden  “qualitative”  or  topological  change
in its behavior. A period-halving bifurcation in a dynamic system is a
bifurcation  in  which  the  system  switches  to  a  new  behavior  with  half
the  period  of  the  original  system  from  some  initial  configuration.  A
generalized  period-halving  bifurcation  is  a  period-halving  bifurcation
from any initial configuration. 

Cosnard, Tchuente, and Tindo [15] show the following lemma: 

Lemma 1. [15] If there is a neuronal recurrence equation with memory
length k that generates sequences of periods p1, p2, … , pr, then there

is  a  neuronal  recurrence  equation  with  memory  length  kr  that  gener-
ates a sequence of period r� lcm(p1, … , pr). 

Lemma  1  does  not  take  into  account  the  study  of  the  transient
length. Lemma 1 can be amended to obtain the following lemma: 

Lemma 2. [24] If there is a neuronal recurrence equation with memory

length  k  that  generates  a  sequence  x(n) : n ≥ 0,  1 ≤  ≤ g  of  tran-

sient  length  T  and  of  period  p,  then  there  is  a  neuronal  recurrence

equation  with  memory  length  kg  that  generates  a  sequence  of  tran-

sient length g�maxT1, T2, … , Tg and of period Per. Per is defined as

follows: 
First case: ∃ j, 1 ≤ j ≤ g such that pj ≥ 2 

Per  g�lcmp1, … , pg.

Second case: pj  1; ∀ j, 1 ≤ j ≤ g. 

Per�is�a�divisor�of�g.

Cosnard  and  Goles  [16]  studied  the  bifurcation  in  two  particular
cases of neuronal recurrence equations. 

Case 1: Geometric coefficients and bounded memory. Cosnard and
Goles completely described the structure of the bifurcation of the fol-
lowing equation: 

xn+1  1 θ - 
i0

k-1

bixn-i
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when θ varies. They showed that the associated rotation number is an
increasing number of the parameter θ.

Case  2:  Geometric  coefficients  and  unbounded  memory.  Cosnard
and Goles completely described the structure of the bifurcation of the
following equation: 

xn+1  1 θ - 
i0

n

bixn-i

when  θ  varies.  They  showed  that  the  associated  rotation  number  is  a
Devil’s staircase.

Section 3 is devoted to the study of k-chains. 

Characterization of k-Chains in 0–1 Periodic Sequences3.

We recall the concept of k-chains in 0–1 periodic sequences [8], which
is useful in the study of the limit orbits. Let Y  (y(t) : t ∈ ℕ) be a peri-
odic sequence of zeros and ones; suppose that the period γ(Y) (which

is  a  priori  unknown)  divides  T.  Thus  y(t) ∈ 0, 1  for  any  t ∈ ℤ,  and

y(t)  y(t′) when t ≡ t′mod�T. 

In  studying  period  lengths,  we  will  deal  with  sets  invariant  under
translations  [8],  so  the  following  notation  will  be  useful:  if  Γ ⊂ ℤT,

l ∈ ℤ, we write: 

Γ + l  t + lmod�T : t ∈ Γ.

Let  us  partition  the  set  ℤT  into  Γ0(Y)  t ∈ ℤT : y(t)  0  and

Γ1(Y)  t ∈ ℤT : y(t)  1,  which  is  called  the  support  of  Y.  The  pe-

riod  of  the  set  Γ1(Y)  is  the  smallest  positive  number  γ  such  that

Γ1(Y) + γ  Γ1(Y). The following result was established in [8]: the pe-

riod  of  the  sequence  (i.e.,  γ(Y))  is  equal  to  the  period  of  Γ1(Y).  It  is
shown in [8] that:

γ(Y)�divides�k�if�and�only�if�Γ1(Y) + k  Γ1(Y).

Now let us define k-chains (for k ≥ 1) contained in the support Γ1(Y).

A  subset  C ⊂ Γ1(Y)  is  called  a k-chain  if  and  only  if  it  is  of  the  form

C  t + klmod�T : 0 ≤ l ≤ s - 1  for  some  s ≥ 1.  So  a  k-chain  is  a

subset  C  t + kl ∈ ℤT : 0 ≤ l ≤ s - 1  such  that  y(t′)  1  for  any

t′ ∈ C.
We  characterize  the  0–1  sequence,  which  contains  two  different

chains. 
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Lemma 3.  If  a 0–1  sequence u(n) : n ≥ 0  contains  an ℓ1-chain  and  an

ℓ2-chain  such  that  ℓ1  and  ℓ2  are  relatively  prime,  then  ∃ t ∈ ℕ  such

that u(t)  1, u(t + ℓ1)  1, and u(t + ℓ2)  1. 

We  use  Lemma  3  to  characterize  all  the  periods  of  all  the  attrac-
tors. 

Characterization of the Periods of All the Cycles4.

Let  us  consider  a  positive  integer  m  and  a  positive  real  number
θ ≥ 2m; we note:

Notation 1.  p0, p1, … , ps-1  are  prime  numbers  taken  between  2m  and

3m  such  that  pi < pi+1,  αi  3m - pi,  0 ≤ i ≤ s - 1,  k  6m,  and  we

define the coefficients as follows:

coef1(j) 

 θ  2-αi  if�j  3m - αi, 0 ≤ i ≤ s - 1; 

 θ  2 + αi  if�j  23m - αi, 0 ≤ i ≤ s - 1; 

 -k(θ +m)  otherwise. 

(4)

The coefficients defined in equation (4) are analog to those defined
in  [21].  For  each  i,  0 ≤ i ≤ s - 1,  the  first  k  terms  of  the  sequence

xαi (n) : n ≥ 0 are defined as follows: 

xαi 0xαi 1…xαi k - 1  00…0
2αi

100…0
3m-αi

100…0
3m-αi

.
(5)

∀ n ≥ k,  the  term  xαi (n)  of  the  sequence  {xαi (n) : n ∈ ℕ},  is  defined
as follows: 

xαi (n)  1 
i1

k

coef1(i)x
αi (n - i) - θ .

By using the technique developed by Tchuente and Tindo [21], it is
easy to prove the following lemma: 

Lemma 4.  The  sequence  {xαi (n) : n ∈ ℕ}  describes  a  cycle  of  length
3m - αi of the following form: 

00…0
2αi

100…0
3m-αi

100…0
3m-αi

100…0
3m-αi

⋯100…0
3m-αi

⋯.

In  [21],  the  authors  did  not  study  all  the  cycles  generated  by  the
neuronal  recurrence  equation.  One  of  our  aims  is  to  study  all  the  cy-
cles generated by some neuronal recurrence equation. 
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We  construct  the  sequence u(n) : n ≥ 0  generated  by  the  neuronal

recurrence equation 

u(n)  1 
j1

k

coef1(j)u(n - j) - θ , n ≥ k (6)

such that the initial terms are defined as follows:

u0u1…uk - 1 ∈ 0, 1
k. (7)

Let  us  characterize  the  period  of  the  sequence  u(n) : n ≥ 0  by

showing the following proposition: 

Proposition 5.  The  sequence  u(n) : n ≥ 0  converges  to  the  null  se-

quence,  that  is,  to  00…00…00…,  or  to  one  of  the  sequences

xαi (n) : n ≥ 0, 0 ≤ i ≤ s - 1. 

Example 1. In the aim of giving an idea of the basin of attraction of the

sequence u(n) : n ≥ 0, we choose the following parameters: 

m  5, �θ  12, �p0  11, �p1  13, �and�k  30.

We build from the preceding parameters the following neuronal recur-
rence equation

u(n)  1 
j1

30

coef1(j)u(n - j) - θ , n ≥ 30 (8)

where:

coef1(j) 

2  if�j  11 

4  if�j  13 

10  if�j  22 

8  if�j  26 

 -510  otherwise. 

(9)

Let us note:

config(i)  u0u1…u28u29 : ∀ i, 0 ≤ i ≤ 29, u(i) ∈ 0, 1�

and  the  neuronal  recurrence  equation  defined  by  equation  (8)  from
the initial terms 

�0u1…u28u29

converges to a cyle of length i.

We  also  note  χ(i)  cardconfig(i).  By  numerical  simulations,  the

values of the sequence χ(i) are:
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χ(i)  0 if i ∉ 1, 11, 13,

χ1  1073 713157,

χ11  4094,

χ13  24573.

Notation 2.  Let  us  define  the  memory  length  of  some  neuronal  recur-
rence equations as follows: 

h  sk  6ms.

Let y(n) : n ≥ 0 be the sequence whose first h terms are defined as

follows: 

y(i) ∈ 0, 1, 0 ≤ i ≤ -1 + h, (10)

and  the  other  terms  are  generated  by  the  following  neuronal  recur-
rence equation:

y(n)  1 
f1

h

coef2fyn - f - θ1 ; n ≥ h (11)

where

coef2f 
 coef1(j)  if f  sj, 1 ≤ j ≤ k 

 0  otherwise;
(12)

θ1  θ. (13)

The parameters coef1(j) are those defined in equation (4).

Remark 1.  (a)  The  first  h  terms  of  the  sequence  y(n) : n ≥ 0  are  ob-

tained by taking any element of the set 0, 1
h. 

(b)  The  coefficients  coef2f  of  neuronal  recurrence  equation  (11)

are obtained by applying the construction of Lemma 1 to the parame-
ters defined by equation (4). 

Our aim is to characterize the structure of all the periods of the se-
quence  y(n)  from  a  qualitative  point  of  view.  The  next  theorem  gives

the period of the sequences y(n) : n ≥ 0. 

Theorem 1. From any initial term, the sequence y(n) : n ≥ 0 converges

to  a  cycle  of  length  s�lcmelt1, elt2, … , elts  where  elti ∈ {p0, p1, … ,

ps-1} for any i ∈ 0, 1, 2, … , s - 1, or p where p is equal to 1. 

In  Section  5,  we  show  how  to  apply  the  previous  technique  to  the

study of bifurcation of the neuronal recurrence equation zn, d. 
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Generalized Bifurcation of the Neuronal Recurrence Equation5.

Let us define the neuronal recurrence equation x (n) : n ≥ 0 by the fol-

lowing recurrence:

x (t)  1 
j1

k2

coef3(j)x

(t - j) - θ ; t ≥ k2 (14)

where coef3(j) is defined as follows:

First case: s is even and ∀ i2 ∈ ℕ, 0 ≤ i2 ≤ s - 1:

coef3(j) 

2  if�j ∈ R1αi2
�and�j ≤ 3spi2

  2, 

-2  if�j ∈ R1αi2
�and�j > 3spi2

  2, 

-4k2  otherwise.

(15)

Second case: s is odd, s ≥ 3, and ∀ i2 ∈ ℕ, 0 ≤ i2 ≤ s - 1: 

coef3(j) 

2  if�j ∈ R1αi2
�and�j ≤ 3s - 1  2pi2

, 

-2  if�j ∈ R1αi2
�and�3s + 1  2

pi2
≤ j ≤ 2s - 2pi2

,

 

-1  if�j ∈ 2s - 1pi2
, 2spi2

, 

-4k2  otherwise. 

(16)

The parameters R1(αi), θ, and k2 are defined as follows: 

R1(αi)  jpi : j  1, … , 2s 

pi, 2pi, … , -1 + 2spi, 2spi, 0 ≤ i ≤ -1 + s;
(17)

R2  i : i  1, … , k2  1, 2, … , -1 + k2, k2; (18)

R3  
i0

-1+s
R1(αi); (19)

R4  R2\R3; (20)

θ  2s; (21)

k2  6m - 1s. (22)

By  applying  the  technique  developed  in  Sections  2  and  3  and  the
one developed in [24] to the neuronal recurrence equation defined by
equation  (14),  it  is  easy  to  construct  a  family  of  neuronal  recurrence

equations zn, d : n ≥ 0 that verify the following theorem. 
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Theorem 2.  For  all  m  m ≥ e2  and  d ∈ ℕ  such  that  0 ≤ d ≤ s - 2,  we

construct  a  set  of  neuronal  recurrence  equations  whose  behavior  has
the following characteristics: 

◼ From  any  initial  configuration,  the  neuronal  recurrence  equation
{z(n, d) : n ≥ 0}  converges  to  a  cycle  of  length  s� lcm(elt1, elt2, … , elts)

where  elti ∈ {pd+1, pd+2, … , ps-1}  for  any  i ∈ {1, 2, … , s},  or  to  a  cy-

cle of length 1. 

◼ From  any  initial  configuration,  the  neuronal  recurrence  equation
{z(n, s - 1) : n ≥ 0} converges to a fixed point (i.e., the period of a cycle
is 1). 

In  other  words,  the  first  part  of  Theorem  2  can  be  interpreted  as
follows: in some cases, the length of the cycles of the neuronal recur-

rence  equation  zn, d - 1 : n ≥ 0  is  divided  by  pd  to  obtain  the

length  of  the  cycles  of  the  neuronal  recurrence  equation

zn, d : n ≥ 0. 

By  perturbation,  we  can  build  the  neuronal  recurrence  equation

zn, d : n ≥ 0  from  the  neuronal  recurrence  equation  zn, d - 1 :

n ≥ 0. 

Remark 2. The new contributions in this paper with respect to the pre-
vious works are:

First, from the point of view of the period:

◼ In [15, 18–21], the authors did not study all the cycles generated by the
neuronal recurrence equation.

◼ In this paper, we studied all the cycles generated by the neuronal recur-
rence equation {y(n) : n ≥ 0}. 

Second, from the point of view of bifurcation:

◼ In [23], we studied the dynamics of the sequence {z(n) : n ≥ 0} from one
and  only  one  initial  configuration.  We  characterized  only  one  cycle  of
the sequence {z(n) : n ≥ 0}.

◼ In [24], for any d (0 ≤ d ≤ ρ(m) - 1), we studied the dynamics of the se-
quence {z(n, d) : n ≥ 0} from one and only one initial configuration. We
characterized only one cycle of the sequence {z(n, d) : n ≥ 0}.

◼ In this paper, for any d (0 ≤ d ≤ ρ(m) - 1), we studied the dynamics of
the sequence {z(n, d) : n ≥ 0} from any initial configurations. We charac-
terized the length of all cycles of the sequence {z(n, d) : n ≥ 0}. 

Conclusion6.

We  have  given  a  characterization  of  k-chains  in  0–1  periodic  se-
quences.  This  characterization  allows  us  to  determine  the  periods  of
all  cycles  of  some  neuronal  recurrence  equations.  From  the  structure
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of  the  periods  of  all  cycles,  we  show  how  to  build  the  family  of  neu-

ronal recurrence equations zn, d : n ≥ 0 that admit a generalized pe-

riod-halving  bifurcation.  The  structure  of  the  configuration  of  neu-
ronal  recurrence  equations  can  be  used  in  steganography  (see  Second
Approach and Third Approach in [25]).
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Appendix

Proof of Lemma 3A.

From  the  hypothesis  that  the  sequence  u(n) : n ≥ 0  contains  two

chains, we can deduce that:

∃ a ∈ ℕ, 0 ≤ a < ℓ1,

∃ b ∈ ℕ, 0 ≤ b < ℓ2, 

u(a + (iℓ1))  1, ∀ i ∈ ℕ, 

ub + (jℓ2)  1, ∀ j ∈ ℕ. 

By  the  hypothesis  that  integers  ℓ1  and  ℓ2  are  relatively  prime,  and

from the definition of greatest common divisor, we can deduce:

∃ n1, n2 ∈ ℤ�such�that�n1ℓ1 + n2ℓ2  1. (A.1)

From equation (A.1), we can easily deduce:

n1b - aℓ1+n2b - aℓ2  b - a, (A.2)

a + n1b - aℓ1  b - n2b - aℓ2. (A.3)

From  equation  (A.3),  it  follows  that  ∃ i0, j0 ∈ ℕ  is  defined  as

follows:

i0  n1b - a + 1 + n1b - a + n2b - a ℓ2, (A.4)

j0  -n2b - a + 1 + n1b - a + n2b - a ℓ1, (A.5)

such that:

a + (i0ℓ1)  b + (j0ℓ2).

It suffices to choose t  a + (i0ℓ1).
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Proof of Proposition 5B.

Without loss of generality, let us choose the following initial terms:

u0u1u2…uk - 1 ∈ 0, 1
k.

We suppose that from the following initial terms:

u0u1u2…uk - 1 ∈ 0, 1
k (B.1)

the sequence u(n) : n ≥ 0 describes a transient of length T1  and a cy-

cle of length P1. We define the sequence w(n) : n ≥ 0 as follows:

∀ n ∈ ℕw(n)  un +T1.

In  other  words,  the  sequence  u(n) : n ≥ 0  converges  to  the  attractor

w(n) : n ≥ 0. The proof is divided into two parts:

First, let us suppose that the sequence w(n) : n ≥ 0 is not equal to

one of the following three sequences: 

◼ the null sequence, that is, to 0�0…0�0�0… 

◼ one of the sequences {xαi (n) : n ≥ 0}, 0 ≤ i ≤ s - 1

We can extract from the sequence w(n) : n ≥ 0 an ℓ-chain such that:

ℓ ≢ 0�mod�pi, 0 ≤ i ≤ s - 1. (B.2)

Without loss of generality, let us assume that:

w(t1)  1. (B.3)

From  the  fact  that  the  sequence  w(n) : n ≥ 0  admits  an  ℓ-chain,  we

can deduce that:

w(t1 + ℓ)  1. (B.4)

From equation (B.2), we can easily deduce that: 

coef1(ℓ)  -k(θ +m). (B.5)

From the fact that:

w(ℓ + t1) 1 
j1

k

coef1(j)w(ℓ + t1 - j) - θ ,

coef1(ℓ)-k(θ +m),

w(t1) 1,

we  deduce  that  w(ℓ + t1)  0.  It  follows  that  we  have  a  contradiction

with equation (B.4). We can deduce that there is no ℓ-chain in the se-

quence w(n) : n ≥ 0 that verifies equation (B.2).
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Second, let us suppose that on the sequence u1(n) : n ≥ 0, there ex-

ist at least two different chains. 
Without loss of generality, let us suppose that there exist on the se-

quence w(n) : n ≥ 0 an ℓ1-chain such that ℓ1  pi1, 0 ≤ i1 ≤ s - 1, an

ℓ2-chain  such  that  ℓ2  pi2, 0 ≤ i2 ≤ s - 1,  with  l1 < l2,  that  is,

pi1 < pi2. 

From the fact that the sequence w(n) : n ≥ 0 admits two chains: ℓ1-

chain  and  ℓ2-chain,  we  deduce  by  application  of  Lemma  3  that  there

exists t1 ∈ ℕ, which verifies:

w(t1)  1, (B.6)

w(t1 + ℓ1)  1, (B.7)

w(t1 + ℓ2)  1. (B.8)

We have: 2m ≤ pi1 < pi2 ≤ 3m. It follows that: 

  ℓ2 - ℓ1  pi2 - pi1 ≤ m. (B.9)

From equation (4) and equation (B.9), we deduce that: 

coef1()  -k(θ +m). (B.10)

Based on the facts that: 

w(t1 + ℓ1) 1,

coef1()-k(θ +m),

w(t1 + ℓ2) 1 
j1

k

coef1(j)w(t1 + ℓ2 - j) - θ ,

we deduce easily that w(t1 + ℓ2)  0. This is a contradiction with equa-

tion  (B.8).  We  easily  deduce  that  the  sequence  w(n) : n ≥ 0  contains

one and only one chain.

Proof of Theorem 1C.

Based on Lemma 2 and Proposition 5, we deduce the result.
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