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Let  Y  be  the  solution  space  of  an  n-layer  cellular  neural  network,  and
let  Y(i)

 and  Y(j)
 be  the  hidden  spaces,  where  1 ≤ i,  j ≤ n.  (Y(n)

 is  called
the  output  space.)  The  classification  and  the  existence  of  factor  maps
between  two  hidden  spaces  that  reach  the  same  topological  entropies
are  investigated  in  [1].  This  paper  elucidates  the  existence  of  factor
maps  between  those  hidden  spaces  carrying  distinct  topological  en-
tropies. For either case, the Hausdorff dimensions dim�Y(i)

 and dim�Y(j)

can  be  calculated.  Furthermore,  the  dimensions  of  Y(i)
 and  Y(j)

 are  re-
lated by the factor map between them. 

Introduction 1.

Multilayer cellular neural networks (MCNNs) are large aggregates of
analog  circuits  presenting  themselves  as  arrays  of  identical  cells  that
are locally coupled. MCNNs have been widely applied in studying the
signal  propagation  between  neurons,  as  well  as  in  image  processing,
pattern recognition and information technology [2–11]. A one-dimen-
sional MCNN is realized as 

dxi
(ℓ)

dt
 -xi

(ℓ) + 
k≤d

ak
(ℓ)yi+k

(ℓ) + 
k≤d

bk
(ℓ)ui+k

(ℓ) + z(ℓ), (1)

for some d ∈ ℕ, 1 ≤ ℓ ≤ n ∈ ℕ, i ∈ ℤ, where 

ui
(ℓ)  yi

(ℓ-1)
 for 2 ≤ ℓ ≤ n,

ui
(1)  ui,  xi

(ℓ)0  xi,0
(ℓ) ,

(2)
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and 

y  f(x) 
1

2
x + 1 - x - 1 (3)

is the output function.

The  stationary  solutions  x  (xi
(ℓ))  of  equation  (1)  are  essential  for

understanding  the  system,  and  their  outputs  yi
(ℓ)  f(xi

(ℓ))  are  called

output patterns. A mosaic solution (xi
(ℓ)) is a stationary solution satis-

fying xi
(ℓ) > 1 for all i, ℓ, and the output of a mosaic solution is called

a mosaic output pattern. Mosaic solutions are crucial for studying the
complexity of equation (1) due to their asymptotical stability [12–23].
In an MCNN system, the “status” of each cell is taken as an input for
a cell in the next layer, except for those cells in the last layer. The re-
sults that can be recorded are the output of the cells in the last layer.
Since  the  phenomena  that  can  be  observed  are  only  the  output  pat-

terns of the nth  layer, the nth  layer of equation (1) is called the output
layer, while the other n - 1 layers are called hidden layers. 

We  remark  that  except  from  mosaic  solutions  exhibiting  key  fea-
tures  of  MCNNs,  mosaic  solutions  themselves  are  constrained  by  the
so-called “separation property” [24, 25]. This makes the investigation
more  difficult.  Furthermore,  the  output  patterns  of  mosaic  solutions
of an MCNN can be treated as a cellular automaton. For a discussion
of systems satisfying constraints and cellular automata, readers are re-
ferred  to  Wolfram’s  celebrated  book  [26].  (Constrained  systems  are
discussed in Chapter 5.) 

Suppose Y is the solution space of an MCNN. For ℓ  1, 2, … , n,
let 

Y(ℓ)  ⋯y-1
(ℓ) y0

(ℓ)y1
(ℓ)⋯

be  the  space  that  consists  of  patterns  in  the  ℓth  layer  of  Y,  and  let

ϕ(ℓ) :Y → Y(ℓ)
 be  the  projection  map.  Then  Y(n)

 is  called  the  output

space and Y(ℓ)
 is called the (ℓth) hidden space for ℓ  1, 2, … , n - 1. It

is  natural  to  ask  whether  there  exists  a  relation  between  Y(i)
 and  Y(j)

for 1 ≤ i ≠ j ≤ n. Take n  2 for instance; the existence of a map con-

necting  Y(1)
 and  Y(2)

 that  commutes  with  ϕ(1)  and  ϕ(2)  means  the  de-
coupling  of  the  solution  space  Y.  More  precisely,  if  there  exists

π12 :Y
(1) → Y(2)

 such that π12 ∘ ϕ(1)  ϕ(2), then π12  enables the inves-

tigation  of  structures  between  the  output  space  and  hidden  space.  A
serial work is contributed for this purpose. 

At the very beginning, Ban et al. [27] demonstrated that the output

space Y(n)
 is topologically conjugated to a one-dimensional sofic shift.

This  result  is  differentiated  from  earlier  research  that  indicated  that
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the  output  space  of  a  one-layer  cellular  neural  network  (CNN)  with-
out  input  is  topologically  conjugated  to  a  Markov  shift  (also  known
as a shift of finite type). Some unsolved open problems, either on the
mathematical  or  on  the  engineering  side,  have  drawn  interest  since

then.  An  analogous  argument  asserts  that  every  hidden  space  Y(ℓ)
 is

also topologically conjugated to a sofic shift for 1 ≤ ℓ ≤ n - 1, and the
solution  space  Y  is  topologically  conjugated  to  a  subshift  of  finite
type.  More  than  that,  the  topological  entropy  and  dynamical  zeta

function of Y(ℓ)
 and Y are capable of calculation. This is a novel phe-

nomenon,  the  asymmetry  of  topological  entropy.  It  is  known  that  a
nonempty insertive and extractive language ℒ is regular if and only if
ℒ  is  the  language  of  a  sofic  shift;  namely,  ℒ ⊆ ⋃i≥0 Bi(X)  for  some

sofic shift X, where 

Bi(X)  {x1x2…xi : (xk)k∈ℤ ∈ X}.

Therefore,  elucidating  sofic  shifts  is  equivalent  to  the  investigation  of
regular  languages.  Readers  are  referred  to  [28]  and  the  references
therein  for  more  details  about  the  illustration  of  languages  and  sofic
shifts. 

Followed by [1], the classification of the hidden and output spaces
is revealed for those spaces reaching the same topological entropy. No-

tably, the study of the existence of πij :Y
(i) → Y(j)

 for some i, j is equiv-

alent  to  illustrating  whether  there  is  a  map  connecting  two  sofic
shifts. Mostly it is difficult to demonstrate the existence of such maps.
The  authors  have  provided  a  systematic  strategy  for  determining

whether there exists a map between Y(i)
 and Y(j). More than that, the

explicit expression of πij is unveiled whenever there is a factor-like ma-

trix E (defined later). 
The present paper, as a continuation of [1, 27], is devoted to inves-

tigating  the  Hausdorff  dimensions  of  the  output  and  hidden  spaces.
We  emphasize  that  in  this  elucidation,  those  spaces  need  not  attain
the  same  topological  entropy.  In  addition  to  examining  the  existence

of  maps  between  Y(i)
 and  Y(j)

 (for  the  case  where  the  topological  en-
tropies  of  two  spaces  are  distinct),  the  complexity  of  the  geometrical
structure is discussed. The Hausdorff dimension of a specified space is
an  icon  that  unveils  the  geometrical  structure  and  helps  describe  the
complexity. 

Furthermore,  aside  from  the  existence  of  factor  maps  between  Y(i)

and Y(j), the correspondence of the Hausdorff dimension is of interest

to  this  study.  Suppose  there  exists  a  factor  map  πij :Y
(i) → Y(j):  then

the Hausdorff dimensions of Y(i)
 and Y(j)

 are related under some addi-
tional  conditions  (see  Theorems  2  and  3).  More  explicitly,  it  is  now
known that in many examples the calculation of the Hausdorff dimen-
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sion of a set is closely related to the maximal measures (defined later)
of  its  corresponding  symbolic  dynamical  system  (cf.  [29,  Theo-
rem�13.1],  for  instance).  Theorems  2  and  3  also  indicate  that  the

Hausdorff  dimension  of  Y(j)
 is  the  quotient  of  the  measure-theoretic

entropy  hπijν(i)
Y(j)  and  the  metric  of  Y(j),  where  ν(i)  is  the  maximal

measure of Y(i). Notably, such a result relies on whether the push-for-

ward  measure  πijν
(i)

 of  ν(i)  under  the  factor  map  πij  remains  a  maxi-

mal  measure.  We  propose  a  methodology  so  that  all  the  conditions

are  verifiable,  and  the  Hausdorff  dimension  dimY(ℓ)
 can  be  formu-

lated accurately for 1 ≤ ℓ ≤ n. 
Figure 1 illustrates the fractal sets of the hidden and output spaces

(namely,  Y(1)
 and  Y(2))  of  a  two-layer  CNN.  It  is  seen  that  Y(1)

 and

Y(2)
 are two entirely different spaces. Aside from calculating the Haus-

dorff  dimensions  of  these  spaces,  it  is  interesting  to  investigate

whether  there  is  a  map  connecting  Y(1)
 and  Y(2),  and  how  dimY(1)

 is

related to dimY(2). See Example 2 for more details. 

Figure 1. The fractal sets of the hidden and output spaces of an MCNN with

templates  a(1), ar
(1), z(1)  [2.9, 1.7, 0.1]  and  a(2), ar

(2), b(2), br
(2), z(2) 

[-0.3, -1.2, 0.7, 2.3, 0.9]. Each fractal set is a subspace of [0, 1]⨯ [0, 1] and

is  derived  from  the  expansion  Φ(i)(x)  Σk≥0xk  mi
k+1, Σk≤0xk  mi

k+1


for  x ∈ Y(i),  mi  (Y(i)),  and  i  1, 2.  It  is  seen  that  the  expansion  map

Φ(i) : Y(i) → [0, 1]⨯ [0, 1] is one-to-one almost everywhere and hence does not
make  an  impact  on  the  discussion  of  the  Hausdorff  dimension.  The  figures
come  from  repeating  nine  operations  based  on  the  basic  set  of  admissible  lo-
cal patterns. See Example 2 for more discussion. 
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In  the  meantime,  we  want  to  mention  some  further  issues  that
are  related  to  our  elucidation  and  that  have  attracted  widespread
attention  recently.  One  of  them  is  the  investigation  of  the  so-called
sofic measure or hidden Markov measure. Let μ be a Markov measure

on  Y.  The  push-forward  measure  ϕ(ℓ)μ,  defined  by  ϕ(ℓ)μ 

μϕ(ℓ)
-1
 for all Borel set  in Y(ℓ), is called a sofic measure or a hid-

den Markov measure. There have been many papers about sofic mea-
sures  written  in  the  past  decades.  An  important  question  is  under
what  conditions  the  push-forward  measure  of  a  Markov  measure  re-
mains  a  Markov  measure.  To  be  more  specific,  we  are  interested  in
which  properties  a  sofic  measure  would  satisfy.  This  elucidation
focuses on the study of the measures on the hidden/output space. Re-
calling  that  the  hidden/output  space  is  a  factor  of  the  solution  space,
it follows that the investigation of the measures on the hidden/output
space is equivalent to the investigation of sofic measures. We propose
a methodology to verify when a sofic measure is reduced to a Markov
measure. In this case, the explicit form of a maximal measure and the
Hausdorff  dimension  of  the  hidden/output  space  are  formulated.  For
more  discussion  of  the  hidden  Markov  measures,  the  reader  is  re-
ferred to [28, 30, 31] and the references therein. 

It  is  known  that  the  tiling  problem  is  undecidable.  As  an  applica-
tion, it is of interest to investigate the decidability of the language of a
sofic  shift,  which  can  be  realized  as  a  hidden  or  output  space  of  an
MCNN. The related work is in preparation. 

The rest of this investigation is organized as follows. A brief recall
of  [1,  27]  and  some  definitions  and  notations  are  given  in  Section  2.
The main theorems (Theorems 2 and 3) for two-layer CNNs are also
stated  therein.  Section  3  analyzes  the  existence  of  factor  maps  that
connect  two  spaces  and  the  hidden  Markov  measures.  The  proofs  of
the  main  theorems  are  illustrated  there.  Some  examples  are  given  in
Section 4. We generalize Theorems 2 and 3 to general MCNNs in Sec-
tion  5.  Figure  8  provides  the  flow  chart  of  the  present  investigation.
Section 6 is saved for the conclusion and further problems. 

Main Results and Preliminaries2.

Due to this paper being a continuation of [1], the upcoming section in-
tends  to  give  a  brief  review  of  [1]  and  illustrates  the  main  results  of
our study. For the self-containment of the present investigation, we re-
call  some  definitions  and  known  results  for  symbolic  dynamical  sys-
tems and MCNNs. The reader is referred to [1, 27, 32] and the refer-
ences therein for more details. 
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Multilayer Cellular Neural Networks 2.1

Since  an  elucidation  of  two-layer  CNNs  is  essential  for  the  study  of
MCNNs,  we  compare  MCNNs  to  two-layer  CNNs  and  focus  on
them  in  the  rest  of  this  paper  unless  otherwise  stated.  A  two-layer
CNN is realized as 

dxi
(1)

dt
-xi

(1) + 
k≤d

ak
(1)yi+k

(1) + 
ℓ≤d

bℓ
(1)ui+ℓ

(1) + z(1),

dxi
(2)

dt
-xi

(2) + 
k≤d

ak
(2)yi+k

(2) + 
ℓ≤d

bℓ
(2)ui+ℓ

(2) + z(2),

(4)

for some d ∈ ℕ, and ui
(2)  yi

(1)
 for i ∈ ℤ; ℕ denotes the positive inte-

gers and ℤ denotes the integers. The prototype of equation (4) is 

dxi

dt
 -xi + 

k≤d

akyi+k + 
ℓ≤d

bℓui+ℓ + z.

Here  A  [-ad, … , ad],  B  -bd, … , bd  are  the  feedback  and

controlling  templates,  respectively.  z  is  the  threshold,  and

yi  f(xi)  1  2xi + 1 - xi - 1 is the output of xi. The quantity xi
represents  the  state  of  the  cell  at  i  for  i ∈ ℤ.  The  output  of  a  station-
ary solution x  (xi)i∈ℤ  is called an output pattern. A mosaic solution

x  satisfies  xi > 1,  and  its  corresponding  pattern  y  is  called  a  mosaic

output pattern. Consider the mosaic solution x, the necessary and suf-
ficient condition for state “+” at cell Ci, that is, yi  1, is 

a - 1 + z > - 
0<k≤d

akyi+k + 
ℓ≤d

bℓui+ℓ , (5)

where  a  a0.  Similarly,  the  necessary  and  sufficient  condition  for

state “-” at cell Ci, that is, yi  -1, is 

a - 1 - z > 
0<k≤d

akyi+k + 
ℓ≤d

bℓui+ℓ. (6)

For  simplicity,  we  denote  yi  by  yi  and  rewrite  the  output  patterns

y-d…y0…yd coupled with input u-d…u0…ud as 

y-d…y-1y0y1…yd
u-d…u-1u0u1…ud

≡ y-d…yd ⋄ u-d…ud ∈ -1, 1
ℤ2d+1⨯2 . (7)

Let 

Vn  v ∈ n : v  (v1, v2, … , vn), and�vi  1, 1 ≤ i ≤ n,
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where n  4d + 1; equations (5) and (6) can be rewritten in a compact
form by introducing the following notation. 

Denote α  (a-d, … , a-1, a1, … , ad), β  b-d, … , bd.  Then, α

can be used to represent A′, the surrounding template of A without a
center, and β can be used to represent the template B. The basic set of
admissible local patterns with “+” state in the center is defined as 

ℬ+ , A, B, z  v ⋄w ∈ Vn : a - 1 + z > -(α · v + β ·w), (8)

where “·” is the inner product in Euclidean space. Similarly, the basic
set  of  admissible  local  patterns  with  “-”  state  in  the  center  is  de-
fined�as 

ℬ- , A, B, z  v′ ⋄w′ ∈ Vn : a - 1 - z > α · v + β ·w. (9)

Furthermore, the admissible local patterns induced by A, B, z can be

denoted by 

ℬA, B, z  ℬ+ , A, B, z, ℬ- , A, B, z. (10)

It  is  shown  that  the  parameter  space  can  be  partitioned  into  finite
equivalent subregions; that is, two sets of parameters induce identical
basic sets of admissible local patterns if they belong to the same parti-
tion  in  the  parameter  space.  Moreover,  the  parameter  space  of  an
MCNN is also partitioned into finite equivalent subregions [27]. 

Suppose  a  partition  of  the  parameter  space  is  determined;  that  is,
the templates 

A(ℓ)  a-d
(ℓ) , … , ad

(ℓ), B(ℓ)  b-d
(ℓ) , … , bd

(ℓ), z(ℓ)ℓ  1, 2

are given. A stationary solution 

x  x(2) ⋄ x(1) 
xi
(2)

xi
(1)

i∈ℤ

is called mosaic if xi
(ℓ) > 1 for ℓ  1, 2 and i ∈ ℤ. The output 

y  y(2) ⋄ y(1) 
yi
(2)

yi
(1)

i∈ℤ

of a mosaic solution x is called a mosaic pattern. 

Suppose  ℬ  is  the  basic  set  of  admissible  local  patterns  of  an
MCNN.  Since  equation  (4)  is  spatial  homogeneous,  that  is,  the  tem-
plates  of  equation  (4)  are  fixed  for  each  cell,  the  solution  space

Y ⊆ -1, 1ℤ∞⨯2
 is determined by ℬ as 

Y 

y(2) ⋄ y(1) : yi-d
(2) …yi

(2)…yi+d
(2) ⋄ yi-d

(1) …yi
(1)…yi+d

(1) ∈ ℬ for i ∈ ℤ.
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Moreover,  the  output  space  Y(2)
 and  the  hidden  space  Y(1)

 are  de-
fined�by 

Y(2)  y ∈ -1, 1ℤ : y ⋄ u ∈ Y for some u

and 

Y(1)  u ∈ -1, 1ℤ : y ⋄ u ∈ Y for some y,

respectively. In [1, 27], the authors demonstrated that Y is a shift of fi-

nite  type  (SFT)  and  Y(1), Y(2)
 are  both  sofic  shifts.  In  general,  for

i  1, 2,  the  factor  ϕ(i) :Y → Y(i)
 is  not  even  a  finite-to-one  surjective

map.  Furthermore,  for  i  1, 2,  there  is  a  covering  space  W(i)
 of  Y(i)

and  a  finite-to-one  factor  ϕ(i) :W(i) → Y(i),  with  W(i)
 being  an  SFT.

(We  abuse  the  finite-to-one  factor  ϕ(i)  rather  than  ϕ
 (i)

 to  ease  the  use
of  notation.)  For  a  topological  space  Y,  we  say  that  X  is  a  covering
space of Y  if there exists a continuous onto map ϕ :X → Y  that is lo-
cally homeomorphic. 

A quantity that describes the complexity of a system is topological
entropy.  Suppose  X  is  a  shift  space.  Denote  Γk(X)  the  cardinality  of

the  collection  of  words  of  length  k.  The  topological  entropy  of  X  is
then defined by 

h(X)  lim
k→∞

log�Γk(X)

k
.

Whenever  the  hidden  space  Y(1)
 and  the  output  space  Y(2)

 reach  the

same  topological  entropy,  Y(1)
 and  Y(2)

 are  finite  shift  equivalent
(FSE)  [1].  Herein  two  spaces  X  and  Y  are  FSE  if  there  is  a  triple
(Z, ϕX, ϕY)  such  that  Z  is  an  SFT  and  ϕX :Z → X, ϕY :Z → Y  are

both  finite-to-one  factors.  Ban  et  al.  [1]  asserted  that  the  existence  of
a  factor-like  matrix  helps  in  determining  whether  or  not  there  is  a

map  between  Y(1)
 and  Y(2).  A  non-negative  m⨯n  integral  matrix  E  is

called factor-like if, for each fixed row, the summation of all entries is
equal to 1. 

Proposition 1. (See [1, Proposition 3.15, Theorem 3.17].) Let T(i)
 be the

transition  matrix  of  W(i)
 for  i  1, 2.  Suppose  E  is  a  factor-like  ma-

trix  such  that  T(i)E  ET(i);  then  there  is  a  map  π :W(i) → W(i)
 that

preserves topological entropy, where i + i  3. Furthermore, if ϕ(i)  is a

conjugacy, then there is a map π :Y(i) → Y(i)
 that preserves topological

entropy. 

Proposition 1 implies a criterion for the existence of maps between

W(1), W(2)
 and  Y(1), Y(2)

 when  Y(1)
 and  Y(2)

 are  FSE.  Figure  2  illus-

trates  a  triangular  structure  between  W(i)
 and  Y(i).  The  structures  of
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the hidden and output spaces are related if the dashed lines can be re-
placed by solid lines. Some natural questions follow immediately. 

Figure 2. For  the  case  that  h(Y(1))  h(Y(2)),  we  get  a  triangular  structure.
Whether  the  dashed  lines  can  be  replaced  by  solid  lines  implies  whether  the
structures of the hidden and output spaces are related. 

Problem 1. Suppose π :W(i) → W(i)
 exists. 

Let  μ  be  a  Markov  measure  on  W(i).  Is  πμ  a  Markov  measure  on  W(i),
where πμ := μ ∘ π-1 is the push-forward measure of μ? 

1.

Suppose π is surjective. For each Markov measure μ′ on W(i), does there
exist a μ on W(i)

 such that πμ  μ′? 
2.

How  is  the  Hausdorff  dimension  dim�W(i)
 related  to  the  Hausdorff  di-

mension dim�W(i)? 
3.

Problem 1 considers whether or not a topological map connects the
measures  and  the  Hausdorff  dimension  of  two  spaces.  Notably,

W(1), W(2)
 are  topological  Markov  chains.  It  gets  more  complicated

when investigating the hidden and output spaces. 

Problem 2. Suppose π :Y(i) → Y(i)
 exists. 

Let ν be a maximal measure on Y(i). Is πν a maximal measure on Y(i)? 1.

Suppose π is surjective. For each Markov measure ν′  on Y(i), does there
exist a ν on Y(i)

 such that πν  ν′? 
2.

Is the Hausdorff dimension dim�Y(i)
 related to the Hausdorff dimension

dim�Y(i)? 
3.

Shift Spaces and Hausdorff Dimension 2.2

In  this  subsection,  we  recall  some  definitions  and  properties  of  shift
spaces  and  the  Hausdorff  dimension  for  the  reader’s  convenience.
The  detailed  information  is  referred  to  in  [29,  32].  Let    be  a  finite
set  with  cardinality    n,  which  we  consider  to  be  an  alphabet
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of  symbols.  Without  the  loss  of  generality,  we  usually  take

  0, 1, … , n - 1.  The  full -shift ℤ
 is  the  collection  of  all  bi-

infinite sequences with entries from . More precisely, 

ℤ  α  (αi)i∈ℤ : αi ∈  for all i ∈ ℤ.

The shift map σ on the full shift ℤ
 is defined by 

σ(α)i  αi+1�for�i ∈ ℤ.

A  shift  space  X  is  a  subset  of  ℤ
 such  that  σ(X) ⊆ X.  ℤ

 is  a  com-
pact metric space endowed with the metric 

d(x, y)  
i∈ℤ

xi - yi

ni+1
, �x, �y ∈ ℤ.

Two  specific  types  of  shift  spaces  that  are  related  to  our  investiga-
tion are subshifts of finite type and sofic shifts. First we introduce the
former. For each k ∈ ℕ, let 

k  w0w1…wk-1 :wi ∈ , 0 ≤ i ≤ k - 1

denote  the  collection  of  words  of  length  k  and  let  0  denote  the

empty set. A cylinder I ⊂ ℤ
 is 

I  x ∈ ℤ : xixi+1…xi+k-1  ω0ω1…ωk-1,

for  some  i ∈ ℤ, k ∈ ℕ,  and  ω0ω1…ωk-1 ∈ k.  (Sometimes  we  also

write  I  [ω0, ω1, … , ωk-1].)  If  X  is  a  shift  space  and  there  exists

L ≥ 0 and ℱ ⊆ ⋃0≤k≤L k such that 

X  (αi)i∈ℤ : αiαi+1…αi+k-1 ∉ ℱ �for�k ≤ L, i ∈ ℤ,

then  we  say  that  X  is  an  SFT.  The  SFT  is  L-step  if  words  in  ℱ  have
length at most L + 1. 

Notably,  it  is  known  that  without  the  loss  of  generality,  SFTs  can
be  defined  by  0, 1  transition  matrices.  For  instance,  let  T  be  an  n⨯n

matrix with rows and columns indexed by  and entries from 0, 1.

Then 

X  x ∈ ℤ :T(xi, xi+1)  1�for�all�i ∈ ℤ

is a one-step SFT. (It is also known as a topological Markov chain by
Parry.)  A  topological  Markov  chain  is  called  irreducible/mixing  if  its
transition matrix is irreducible/mixing. 

An extended concept of SFTs is called sofic shifts. A sofic shift is a
subshift  that  is  the  image  of  an  SFT  under  a  factor  map.  Suppose  X
and  Y  are  two  shift  spaces.  A  factor  map  is  a  continuous  onto  map
π :X → Y  such  that  π ∘ σX  σY ∘ π.  A  one-to-one  factor  map  is

called a topological conjugacy. A sofic shift is irreducible if it is the im-
age of an irreducible SFT.
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In Section 2.1 we mentioned that the topological entropy illustrates
the  complexity  of  the  topological  behavior  of  a  system.  Aside  from
the topological entropy, the Hausdorff dimension characterizes its geo-
metrical  structure.  The  concept  of  the  Hausdorff  dimension  general-
izes the notion of the dimension of a real vector space and helps to dis-
tinguish  the  difference  of  measure  zero  sets.  We  recall  the  definition
of the Hausdorff dimension for the reader’s convenience. 

Given ϵ > 0, an ϵ-cover {Ui} of X is a cover such that the diameter

of Ui is less than ϵ for each i. Hence 

ℋs(X)  liminf
ϵ→0


i1

∞

δ(Ui)
s, (11)

where  δ(Ui)  denotes  the  diameter  of  Ui.  The  Hausdorff  dimension  of

X is defined by 

dim�X  infs :ℋs(X)  0. (12)

For  subsets  that  are  invariant  under  a  dynamical  system,  we  can
pose  the  problem  of  the  Hausdorff  dimension  of  an  invariant  mea-
sure.  To  be  precise,  let  us  consider  a  map  g :X → X  with  invariant
probability measure μ. The stochastic properties of g are related to the
topological  structure  of  X.  A  relevant  quantitative  characteristic,
which can be used to describe the complexity of the topological struc-
ture  of  X,  is  the  Hausdorff  dimension  of  the  measure  μ.  The  Haus-
dorff dimension of a probability measure μ on X is defined by 

dim�μ  infdim�Z :Z ⊂ X�and� μ(Z)  1.

μ  is  called  a  measure  of  full  Hausdorff  dimension  (MFHD)  if
dim�μ  dim�X.  An  MFHD  is  used  for  the  investigation  of  the  Haus-
dorff dimension dim�X, and the computation of the Hausdorff dimen-
sion  of  an  MFHD  corresponds  to  the  computation  of  the  measure-
theoretic  entropy,  an  analogous  quantity  since  it  is  the  topological
entropy that illustrates the complexity of a physical system of X with
respect to the MFHD [29, 33]. This causes the discussion of measure-
theoretic entropy to play an important role in this elucidation. 

Given a shift space (X, σ), we denote by ℳ(X) the set of σ-invari-
ant  Borel  probability  measures  on  X.  Suppose  P  is  an  irreducible
stochastic matrix and p a stochastic row vector such that pP  p; that
is, the summation of entries in each row of P is 1, and the summation
of the entries of p is 1. Notably such p is unique due to the irreducibil-
ity of P. Define a 0, 1 matrix T by T(i, j)  1 if and only if P(i, j) > 0.
(The matrix T  is sometimes known as the incidence matrix of P.) De-
note the space of right-sided SFT XT

+
 by 

XT
+  x ∈ ℤ+

:T(xi, xi+1)  1�for�all�i ≥ 0.

MCNN Structure: Complexity between Two Layers 321

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.311



It is seen that XT
+

 is embedded as a subspace of XT. The metric on XT
+

is endowed with 

d+(x, y)  
i≥0

xi - yi

ni+1
, x, y ∈ XT

+.

Then (p, P) defines an invariant measure μ+ on XT
+
 as 

μ+([ω0, ω1, … , ωk-1])  p(ω0)P(ω0, ω1)…P(ωk-2, ωk-1)

for  each  cylinder  set  I+  [ω0, ω1, … , ωk-1] ⊂ XT
+

 by  the  Kol-

mogorov  extension  theorem.  Moreover,  a  measure  μ+  on  XT
+

 is  a

Markov  measure  if  and  only  if  it  is  determined  by  a  pair  (p, P)  as
above. 

Similarly to the above, we define the left-sided SFT XT
-
 by 

XT
-  x ∈ ℤ-

:T(x-i, x-i+1)  1�for�all�i ∈ ℕ.

Then XT
-
 is a subspace of XT, and the metric on XT

-
 is endowed with 

d-(x, y)  
i≤0

xi - yi

n-i+1
, x, y ∈ XT

-.

Let Q be the transpose of P, and q be the stochastic row vector such

that qQ  q. Then q, Q defines an invariant measure μ- on XT
-
 as 

μ-([ω-k+1, … , ω-1, ω0])  q(ω0)Q(ω0, ω-1)…Q(ω-k+2, ω-k+1)

for each cylinder set I-  [ω-k+1, … , ω-1, ω0] ⊂ XT
-. 

Notice  that  given  a  cylinder  I  [ω-ℓ+1, … , ω0, … , ωk-1] ⊂ XT,

ℓ, k ≥ 1,  I  can  be  identified  with  the  direct  product  I+⨯I-,  where
I+  [ω0, … , ωk-1] ⊂ XT

+
 and  I-  [ω-ℓ+1, … , ω0] ⊂ XT

-.  Further-

more,  (p, P)  defines  an  invariant  measure  μ  on  XT  as

μ(I) ≈ μ+(I+)μ-(I-)  for  any  cylinder  I ⊂ XT.  To  be  precise,  there  exist

positive  constants  A1  and  A2  such  that  for  integers  k, ℓ ≥ 0,  and  any

cylinder I  [ω-ℓ+1, … , ω0, … , ωk-1] ⊂ XT, 

A1 ≤
μ(I)

μ+(I+)μ-(I-)
≤ A2. (13)

Combining  equation  (13)  with  the  fact  that  every  cylinder  I ∈ XT  is

identified  with  I+⨯I-  implies  that  the  study  of  the  measure-theoretic
entropy  of  one-sided  subspace  XT

+ /XT
-

 is  significant  for  investigating

the  measure-theoretic  entropy  of  XT.  What  is  more,  the  computation

of the Hausdorff dimension of X is closely related to the computation
of the Hausdorff dimension of XT

+ /XT
-. The reader is referred to [34]

for more details. 
Now  we  are  ready  to  introduce  the  general  definition  of  the  mea-

sure-theoretic  entropy.  Given  a  shift  space  X ⊆ ℤ
 and  an  invariant
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probability  measure  μ  on  X,  the  measure-theoretic  entropy  of  X  with
respect to μ is given by 

hμ(X)  - lim
n→∞

1

n

I∈Xn

μ(I)�log�μ(I),

where Xn denotes the collection of cylinders of length n in X. The con-

cepts  of  the  measure-theoretic  and  topological  entropies  are  con-
nected by the variational principle: 

h(X)  suphμ(X) : μ ∈ ℳ(X).

μ  is  called  a  measure  of  maximal  entropy  (also  known  as  maximal
measure)  if  hμ(X)  h(X).  Notably,  suppose  XT

+/XT
-/XT  is  an  SFT  de-

termined by T, which is the incidence matrix of an irreducible stochas-
tic  matrix  P.  It  is  well-known  that  the  Markov  measure  μ+/μ-/μ,  de-
rived from the pair (p, P), is the unique measure of maximal entropy. 

Results 2.3

This  subsection  is  devoted  to  illustrating  the  main  results  of  the  pre-
sent elucidation. First we recall a well-known result. 

Theorem 1.  (See  [34,  Theorem  4.1.7].)  Suppose  ϕ :X → Y  is  a  one-
block  factor  map  between  mixing  SFTs,  and  X  has  positive  entropy.
Then either:

ϕ is uniformly bounded-to-one.1.

ϕ has no diamond.2.

h(X)  h(Y). 3.

Or:

ϕ is uncountable-to-one on some point.4.

ϕ has a diamond.5.

h(X) > h(Y). 6.

A  diamond  for  ϕ :X → Y  is  a  pair  of  distinct  points  in  X  differing
in  only  a  finite  number  of  coordinates  with  the  same  image  under  ϕ

(see  Figure  3).  Theorem  1  reveals  that  the  investigation  of  the  exis-
tence  of  diamonds  is  equivalent  to  the  study  of  infinite-to-one  factor
maps. 

Without  the  loss  of  generality,  we  may  assume  that  every  factor
map ϕ is a one-block code. That is, there exists Φ :(X) → (Y) such
that ϕ(x)i  Φ(xi) for i ∈ ℤ. Theorem 1, in other words, indicates that

every  factor  map  is  either  finite-to-one  or  infinite-to-one.  In  [1],  the
authors  investigated  those  finite-to-one  factor  maps.  The  infinite-to-
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one factor maps are examined in this study. Once a factor map exists,
we can use it to formulate the Hausdorff dimensions of these spaces. 

Figure 3. That a factor map ϕ :X → Y has a diamond implies that there exists
a  pair  of  distinct  points  in  X  differing  in  only  finitely  many  coordinates  with
the same image under ϕ. It is named after the shape of its labeled graph repre-
sentation. 

We start with considering the case that Y(1)
 is finitely shift equiva-

lent  to  Y(2).  That  two  spaces  are  FSE  implies  that  a  factor  map  be-
tween them, if it exists, is finite-to-one. Let X be a shift space. A point
x ∈ X is said to be doubly transitive if, for every k ∈ ℕ and word w in

X, there exist ℓ < 0 < ℓ with ℓ, ℓ > k such that 

xℓ-w+1…xℓ  w�and�xℓ…xℓ+w-1  w.

Suppose ϕ :X → Y is a factor map. If there is a positive integer K such
that every doubly transitive point of Y  has exactly K preimages under
ϕ, such K is called the degree of ϕ, and we define dϕ  K [32]. 

Let  w  w1…wn  be  a  word  in  Y.  For  1 ≤ i ≤ n,  define  dϕ
* (w, i)  to

be  the  number  of  alphabets  at  coordinate  i  in  the  preimages  of  w.  In
other words, 

dϕ
* (w, i) 

#ui ∈ (X) : u  u1…un ∈ Xn, Φ(ui)  wi�for�1 ≤ i ≤ n.

Denote 

dϕ
*  mindϕ

* (w, i) :w ∈ B(Y), 1 ≤ i ≤ w,

where B(Y) indicates the collection of words in Y. 

Definition 1. We say that w ∈ B(Y) is a magic word if dϕ
* (w, i)  dϕ

*
 for

some i. Such an index i is called a magic coordinate. 

We say a factor map ϕ has a synchronizing word if there is a finite

block  y1y2…yn ∈ n(Y)  such  that  each  element  in  ϕ-1(y1y2…yn)

admits the same terminal entry. A finite-to-one factor map ϕ has a syn-
chronizing  word  indicating  that  the  push-forward  measure  of  a  mea-
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sure  of  maximal  entropy  under  a  finite-to-one  factor  map  is  still  a
measure of maximal entropy. The following is our first main result. 

Theorem 2.  Suppose  the  hidden  space  Y(1)
 and  the  output  space  Y(2)

are  FSE.  Let  W(i)
 be  irreducible  with  finite-to-one  factor  map

ϕ(i) :W(i) → Y(i)
 for i  1, 2. If ϕ(i) has a synchronizing word, then 

There  is  a  one-to-one  correspondence  between  ℳmax(W
(i))  and

ℳmax(Y
(i)),  where  ℳmax(X)  indicates  the  set  of  measures  of  maximal

entropy. 

1.

Let  mi  (W(i)),  ni  (Y(i)),  and  μ(i)  be  a  maximal  measure  of

W(i). Then 

2.

dim�W(i) 
hμ(i) (W

(i))

log�mi

 2
hμ(i),+ (W

(i),+)

log�mi

and 

dim�Y(i) 
hϕ(i)μ(i) (Y

(i))

log�ni


hμ(i) (W
(i))

log�ni
 2

hμ(i),+ (W
(i),+)

log�ni
,

where  μ(i),+  is  the  maximal  measure  of  the  right-sided  subspace  W(i),+

of W(i). 

Suppose  π :W(i) → W(i)
 is  a  factor  map  and  ν(i)  ϕ(i)μ(i)  for  i  1, 2,

where i + i  3. If 

3.

dim�Y(i) 
hν(i) (Y

(i))

log�ni
,

then

dim�Y(i) 
hπν(i) Y

(i)

log�ni


hν(i) Y
(i)

log�ni

for some π. 

In contrast with the map connecting π :Y(i) → Y(i), if it exists, being

finite-to-one  when  hY(1)  hY(2),  Theorem  1  indicates  that  π  must

be  infinite-to-one  for  the  case  where  hY(1) ≠ hY(2).  Intuitively,  the

number of infinite-to-one factor maps is much larger than the number
of  finite-to-one  factor  maps.  Computer-assisted  examination  gives  af-
firmative results for MCNN [35]. 

Suppose  ϕ :X → Y  is  a  factor  map  and  h(X) ≠ h(Y).  Intuitively,
there  is  a  maximal  measure  in  Y  with  infinite  preimage.  It  is  natural
to  ask  whether  these  preimages  are  isomorphic  to  one  another.  The
isomorphism  of  two  measures  demonstrates  that  their  measure-theo-
retic  entropies  coincide  with  the  same  value.  In  [36],  Boyle  and  Tun-
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cel indicated that any two Markov measures associated with the same
image  are  isomorphic  to  each  other  if  ϕ  is  a  uniform  factor.  We  say
that ϕ is uniform if ϕμ ∈ ℳmax(Y) for every μ ∈ ℳmax(X). ϕ is a uni-

form factor indicating dimY is related to dim�X. 

Theorem 3.  Assume  that  hY(1) ≠ hY(2).  Let  W(i)
 be  irreducible  with

finite-to-one factor map ϕ(i) :W(i) → Y(i)
 for i  1, 2. 

Suppose  π :W(i) → W(i)
 is  a  uniform  factor.  Let  mi  (W(i)),

ni  (Y(i)), and μ(i) be a maximal measure of W(i). If 

1.

dim�W(i) 
hμ(i) (W

(i))

log�mi

,

then

dim�W(i) 
hμ(i) W

(i)

log�mi


hπμ(i) W

(i)

log�mi

.

Furthermore,  suppose  h(Y(i)) > hY(i)  and  ϕ(i)  has  a  synchronizing

word; then 

There exists a factor map π :ℳmax(Y
(i)) → ℳmaxY

(i). 2.

If 3.

dim�Y(i) 
hν(i) (Y

(i))

log�ni
,

then

dim�Y(i) 
hπν(i) Y

(i)

log�ni
.

We  postpone  the  proof  of  Theorems  2  and  3  to  Sections  3.3  and
3.4.  In  the  meantime,  we  will  introduce  the  factor  maps  between  the
solution, hidden, and output spaces. 

Existence of Factors3.

The  existence  of  factor  maps  plays  an  important  role  in  the  proof  of
Theorems 2 and 3. First we focus on whether or not a factor map be-
tween  two  spaces  exists,  and  if  it  exists,  the  possibility  of  finding  out
an explicit form. 

Classification of Solution Spaces 3.1

To  clarify  the  discussion,  we  consider  a  simplified  case.  A  simplified
MCNN (SMCNN) is unveiled as
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dxi
(1)

dt
 -xi

(1) + a(1)yi
(1) + ar

(1)yi+1
(1) + z(1), 

dxi
(2)

dt
 -xi

(2) + a(2)yi
(2) + ar

(2)yi+1
(2) + b(2)ui

(2) + br
(2)ui+1

(2) + z(2). 

(14)

Suppose 

y 
⋯y-1

(2)y0
(2)y1

(2)⋯

⋯y-1
(1)y0

(1)y1
(1)⋯

is a mosaic pattern. For i ∈ ℤ, yi
(1)  1 if and only if 

a(1) + z(1) - 1 > -ar
(1)yi+1

(1) . (15)

Similarly, yi
(1)  -1 if and only if 

a(1) - z(1) - 1 > ar
(1)yi+1

(1) . (16)

The same argument asserts 

a(2) + z(2) - 1 > -ar
(2)yi+1

(2) - b(2)ui
(2) + br

(2)ui+1
(2)  (17)

and 

a(2) - z(2) - 1 > ar
(2)yi+1

(2) + b(2)ui
(2) + br

(2)ui+1
(2)  (18)

are the necessary and sufficient conditions for yi
(2)  -1 and yi

(2)  1,

respectively. Note that the quantity ui
(2)

 in equations (17) and (18) sat-

isfies  ui
(2)  1  for  each  i.  Define  ξ1 : -1, 1 →   and

ξ2 : -1, 1
ℤ3⨯1 →  by 

ξ1(w)  ar
(1)w, ξ2(w1, w2, w3)  ar

(2)w1 + b
(2)w2 + br

(2)w3.

Set 

ℬ(1)   y(1)yr
(1) : y(1), yr

(1) ∈ -1, 1�satisfy

equations�15�and�16,

ℬ(2) 
y(2)yr

(2)

u(2)ur
(2)

: y(2), yr
(2), u(2), ur

(2) ∈ -1, 1�satisfy�

equations�17�and�18 .
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That is, 

y(1)yr
(1) ∈ ℬ(1) ⇔

a(1) + z(1) - 1 > -ξ1yr
(1), if�y(1)  1;

a(1) - z(1) - 1 > ξ1yr
(1), if�y(1)  -1.

y(2)yr
(2)

u(2)ur
(2)

∈ ℬ(2) ⇔
a(2) + z(2) - 1 > -ξ2yr

(2), u(2), ur
(2), if�y(2)  1;

a(2) - z(2) - 1 > ξ2yr
(2), u(2), ur

(2), if�y(2)  -1.

The set of admissible local patterns ℬ of equation (14) is then 

ℬ 
yyr
uur

:
yyr
uur

∈ ℬ(2)and uur ∈ ℬ(1) .

The authors indicated in [1] that there exist 139 968 regions in the pa-
rameter space  of SMCNNs such that any two sets of templates that
are  located  in  the  same  region  imply  the  same  solution  spaces.  The
partition of the parameter space is determined as follows. 

Since

y(1), y(2), yr
(1), yr

(2), u(2), ur
(2) ∈ -1, 1,

a(1) + z(1) - 1  -ξ1yr
(1)

and

a(1) + z(1) - 1  ξ1yr
(1) 

partition  the  a(1)z(1)-plane  into  nine  regions.  The  “order”  of  lines

a(1) + z(1) - 1  -1ℓξ1yr
(1),  ℓ  0, 1  comes  from  the  sign  of  ar

(1).

Thus  the  parameter  space  a(1), ar
(1), z(1)  is  partitioned  into

2⨯9  18 regions. Similarly, 

a(2) + z(2) - 1 > -ξ2yr
(2), u(2), ur

(2)

and 

a(2) + z(2) - 1 > ξ2yr
(2), u(2), ur

(2) 

partition the a(2)z(2)-plane into 81 regions. The order of 

a(2) + z(2) - 1 > -1ℓξ2yr
(2), u(2), ur

(2) 

can be uniquely determined according to the following procedures. 

The signs of ar
(2), b(2), br

(2). 1.

The magnitude of ar
(2), b(2), br

(2). 2.

The  competition  between  the  parameters  with  the  largest  magnitude

and the others. In other words, suppose m1 > m2 > m3  represent ar
(2),

b(2),  br
(2).  We  need  to  determine  whether  m1 > m2 +m3  or

m1 < m2 +m3. 

3.
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This  partitions  the  parameter  space  a(2), ar
(2), b(2), br

(2), z(2)  into

8⨯6⨯2⨯81  7776  regions.  Hence  the  parameter  space    is  parti-
tioned into 81⨯7776  139968 equivalent subregions. 

Since the solution space Y is determined by the basic set of admissi-
ble local patterns, these local patterns play an essential role for investi-
gating  SMCNNs.  Substitute  mosaic  patterns  -1  and  1  as  symbols  -

and +, respectively. Define the ordering matrix of {- , +}ℤ2⨯2
 by 

-
-

-
+

+
-

+
+

 

-
-

-
+

+
-

+
+

--
--

--
-+

-+
--

-+
-+

--
+-

--
++

-+
+-

-+
++

+-
--

+-
-+

++
--

++
-+

+-
+-

+-
++

++
+-

++
++

 xpq1≤p, q≤4.

Notably, each entry in  is a 2⨯2 pattern, since ℬ consists of 2⨯2 lo-
cal  patterns.  Suppose  that  ℬ  is  given.  The  transition  matrix

T ≡ T(ℬ) ∈ ℳ40, 1 is defined by 

T(p, q) 
1, if�xpq ∈ ℬ;

0, otherwise.

Let   {α0, α1, α2, α3}, where 

α0  --, �α1  -+, �α2  +- �and�α3  ++.

Define ℒ(1), ℒ(2)
 by 

ℒ(1)(y0y1 ⋄ u0u1)  u0u1�and�ℒ(2)(y0y1 ⋄ u0u1)  y0y1,

respectively. It is known that T determines a graph, while T, ℒ(i) de-

termines  a  labeled  graph  for  i  1, 2.  As  we  mentioned  in  Section  2,
the  transition  matrix  T  determines  the  solution  space  Y;  T  does  not

describe  the  hidden  and  output  spaces  Y(1)
 and  Y(2),  though.  Instead,

Y(1), Y(2)
 are illustrated by the symbolic transition matrices. The sym-

bolic transition matrix S(i) is defined by 

S(i)(p, q) 
αj, if� T(p, q)  1�and�ℒ(i)xpq  αj�for�some�j;

∅, otherwise.
(19)

Herein ∅ means there exists no local pattern in ℬ related to its corre-
sponding entry in the ordering matrix. A labeled graph is called right-
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resolving  if  for  every  fixed  row  of  its  symbolic  transition  matrix,  the

multiplicity  of  each  symbol  is  1.  With  a  little  abuse  of  notations,  Y(i)

can  be  described  by  S(i),  which  is  right-resolving  for  i  1, 2.  Let  T(i)

be  the  incidence  matrix  of  S(i);  that  is,  T(i)
 is  of  the  same  size  of  S(i)

and is defined by 

T(i)(p, q) 
1, if�S(i)(p, q) ≠ ∅;

0, otherwise.

Then  W(i)
 is  determined  by  T(i)

 for  i  1, 2.  The  reader  is  referred  to
[1, 27] for more details. 

Sofic Measures and Linear Representable Measures 3.2

Theorems  2  and  3  investigate  the  Hausdorff  dimensions  of  W(i)
 and

Y(i)
 and see if they are related. The proof relies on two essential ingre-

dients:  the  existence  of  maximal  measures  and  factor  maps.  The  up-
coming subsection involves the former, while the latter is discussed in
the next two subsections separately. 

Let X and Y be subshifts and ϕ :X → Y be a factor map. Suppose μ

is  a  Markov  measure  on  X;  then  ϕμ  is  called  a  sofic  measure  (also
known as a hidden Markov measure, see [28]). Let B ∈ m⨯m

 be an ir-
reducible matrix with spectral radius ρB  and positive right eigenvector

r; the stochasticization of B is the stochastic matrix 

 := stoch(B) 
1

ρB

D-1BD,

where  D  is  the  diagonal  matrix  with  diagonal  entries  D(i, i)  r(i).  A
measure  μ  on  X  is  called  linear  representable  with  dimension  m  if
there exists a triple (x, P, y) with x being a 1⨯m row vector, y being a
m⨯1  column  vector,  and  P  (Pi)i∈(X),  where  Pi ∈ m⨯m

 such  that

for  all  I  [i0, … , in-1] ∈ Xn,  the  measure  μ  can  be  characterized  as

the following form: 

μ([I])  xPIy  xPi0
Pi1

…Pin-1
y.

The triple (x, P, y) is called the linear representation of the measure μ.
The reader is referred to [28] for more details. 

Proposition 2.  (See  [28,  Theorem  4.20].)  Let  X  be  an  irreducible  SFT
with transition matrix T ∈ m⨯m

 and ϕ :X → Y  be a one-block factor

map.  Let    stochT  and  l  be  the  probability  left  eigenvector  of

.�Then 

The Markov measure μ on X is the linear representable measure with re-
spect  to  the  triple  (l, P, 1m),  where  1m  is  the  column  vector,  with  each

entry being 1 and P  (i)i∈(X), for which

1.
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PI  i0…in-1 �for�all� I  [i0, … , in-1] ∈ Xn,

here k(i, j)  (i, j) if j  k and k(i, j)  0 otherwise.

The  push-forward  measure  ν  ϕμ  is  linear  representable  with  respect

to the triple (l, Q, 1m), where Q is generated by Qjj∈(Y)  jj∈(Y),

for which k(u, v)  (u, v) if ϕ(v)  k and k(u, v)  0 otherwise. 

2.

In  the  following  we  propose  a  criterion  to  determine  whether  a
sofic measure is actually a Markov measure. The procedure of the cri-
terion is systematic and verifiable, which makes our method practical.
Suppose  the  factor  map  ϕ :X → Y  is  a  one-block  code.  For  j ∈ (Y),
define 

Ej  {i : ϕ(i)  j}�and�ej  #Ej.

For each j1j2 ∈ Y2, let Nj1j2
∈ 

ej1
⨯ej2

 be defined by 

Nj1j2
(p, q) 

1, pq ∈ X2;

0, otherwise,

where  p ∈ Ej1
,  q ∈ Ej2

.  Set  N  Nj1j2
  if  ej1

 ej2
 for  all  j1j2 ∈ Y2.

Otherwise, we enlarge the dimension of Nj1j2
 by inserting “pseudo ver-

tices” so that Nj1j2
 is a square matrix. 

We say that N satisfies the Markov condition of order k if there ex-

ists  a  nontrivial  subspace  VJJ∈Yk+1
 such  that  for  each  J ∈ Yk+1  there

exists  mJ(0,k-1),J(1,k)  such  that  VJ(0,k-1)NJ  mJ(0,k-1),  J1, kVJ(1,k);

here  J(i1, i2)  ji1
ji1+1

…ji2
 with  J  j1j2…jk+1.  For  simplification,  we

say  that  N  satisfies  the  Markov  condition  if  N  satisfies  the  Markov
condition of order k for some k ∈ ℕ. 

At  this  point,  a  further  question  arises,  suppose  N  satisfies  the
Markov condition—what kind of Markov measure is ν? 

To  answer  this  question,  we  may  assume  mJ0,k - 1, J1,k ∈ 

such that 

VJ(0,k-1)NJ(0,k)  mJ0, k - 1, J1, kVJ(1,k). (20)

In [30], the authors illustrated what kind of Markov measure ν is. 

Theorem 4. (See [30, Theorem 4].) If N satisfies the Markov condition
of  order  k,  then  Y  is  an  SFT.  Furthermore,  ν  is  the  unique  maximal
measure of Y with transition matrix M  [m(J, J′)]J,J′∈Yk

. 

To  clarify  the  construction  of  N  and  Theorem  4,  we  introduce  an
example that was initiated by Blackwell. 
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Example 1.  (Blackwell  [37].)  Let (X)  1, 2, 3, (Y)  1, 2,  and

the  one-block  map Φ :(X) → (Y)  be  defined  by Φ1  1,

Φ2  Φ3  2. Let ϕ :X → Y  be the factor induced from Φ, and the

transition matrix of X be 

A 

0 1 1

1 1 0

1 0 1

.

This factor has been proven [28, Example 2.7] to be Markovian. Here

we use Theorem 4 to give a criterion for this property. Since E1  1

and E2  2, 3,  we  see  that m  e2  2,  and  an  extra  pseudo  vertex

is  needed  for  E1.  For  these  reasons  we  introduce  the  new  symbols,

and the corresponding sets E

1 and E


2 are as follows. 

D  1, 2⨯1, 2  1, 1, 1, 2, 2, 1, 2, 2,

E

1  1  1, 1, 2, 1, E


2  2  1, 2, 3  2, 2.

Therefore, 

B 
N11 N12

N21 N22



0 0 1 1

0 0 0 0

1 0 1 0

1 0 0 1

.

N11 
0 0

0 0
, N12 

1 1

0 0
,

N21 
1 0

1 0
, N22 

1 0

0 1
.

Taking  V1  1�0  and  V2  1�1,  we  can  easily  check  that

N  Niji,j1
2

 satisfies  the  Markov  condition  of  order  1.  Thus  Theo-

rem 4 is applied to show that the factor is a Markov map. 

Proof of Theorem 2 3.3

Proposition 1 asserts that the existence of a factor-like matrix for T(1),

T(2)
 together  with  the  topological  conjugacy  of  ϕ(i)  implies  there  is  a

map  π :Y(i) → Y(i)
 that  preserves  topological  entropy,  where  i  1, 2

and i + i  3. A natural question is whether or not we can find a map

connecting  Y(1)
 and  Y(2)

 under  the  condition  neither  ϕ(1)  nor  ϕ(2)  is
topologically  conjugated.  The  answer  is  affirmative.  First  we  define
the product of scalar and alphabet. 
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Definition 2. Suppose  is an alphabet set. Let A be the free Abelian ad-

ditive group generated by ⋃ ∅; here ∅ is the identity element. For

k ∈ ℤ, a ∈ ⋃ ∅, we define a commutative operator * by

a * k  k * a 
ka, if�a ≠ ∅�and�k ≠ 0;

∅ otherwise.

Suppose  S  is  an  m⨯n  symbolic  matrix  and  A  is  an  n⨯k  integral

matrix.  The  product S *A  is  defined  by S *A(p, q) 

∑i1
n S(p, i) *A(i, q)  for  1 ≤ p ≤ m,  1 ≤ q ≤ k.  For  simplicity  we  de-

note S *A by SA. Similarly, we can define A * S and denote by AS for
m⨯n integral matrix A and n⨯k symbolic matrix S. 

The following proposition, which is an extension of Proposition 1,
can  be  verified  with  a  little  modification  of  the  proof  of  Proposi-
tion�3.15 in [1]. Hence we omit the detail. 

Proposition 3.  Let  S(i)  be  the  symbolic  transition  matrix  of  Y(i)
 for

i  1, 2. Suppose E is a factor-like matrix such that S(i)E  ES(i); then

there  exist  maps  π :W(i) → W(i)
 and  π :Y(i) → Y(i)

 that  both  preserve

topological entropy, where i + i  3. 

A factor map ϕ is almost invertible if every doubly transitive point
has exactly one preimage. Lemma 1 shows that the existence of a syn-
chronizing  word  is  a  necessary  and  sufficient  criterion  to  determine
whether ϕ is almost invertible. 

Lemma 1.  Suppose  ϕ :X → Y  is  a  one-block  factor  map.  Then  ϕ  is  al-
most invertible if and only if ϕ has a synchronizing word. 

Proof.  If  ϕ  is  almost  invertible,  then  dϕ
*  1.  Let  w  be  a  magic  word

and  i  be  a  magic  coordinate.  In  other  words,  dϕ(w, i)  1.  The  fact

that ϕ is right-resolving implies that dϕ(w, w)  1. Hence w is a syn-

chronizing word. 
On  the  other  hand,  suppose  w  is  a  synchronizing  word.  ϕ  being

right-resolving  indicates  dϕ(wa, wa)  1  for  some  a  such  that

wa ∈ B(Y).  That  is,  wa  is  a  magic  word  and  dϕ
*  1.  Therefore,  ϕ  is

almost invertible. □ 

The proof of the first statement of Theorem 2 is done by Lemma 1
and the following theorem. 

Theorem 5. (See [38, Theorem 3.4].) Suppose ϕ :X → Y is a factor map
and  X  is  an  irreducible  SFT.  If  ϕ  is  almost  invertible,  then
ϕ :ℳmax(X) → ℳmax(Y)  is  a  bijection.  Moreover,  hμ(X)  hϕμ(Y)  for

μ ∈ ℳmax(X). 

Next we continue the proof of Theorem 2. 
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Fix i ∈ 1, 2. Recall that the metric d(i) :W(i)⨯W(i) →  is given by 

d(i)(x, y)  
j∈ℤ

xj - yj

mi
j+1

for x, y ∈ W(i), where mi  W(i). 

To  formulate  the  explicit  form  of  the  Hausdorff  dimensions  of  the
hidden  and  output  spaces,  we  introduce  the  following  from  Pesin’s
well-known work. 

Theorem 6.  (See  [29,  Theorems  13.1  and  22.2].)  Let  (X, σ)  be  a  shift
space with (X)  m, and 0 < λ1, … , λm < 1. Suppose d is a metric

defined on X. If there exist K1, K2 > 0 such that 

K1
j0

n2

λij
< diami0, … , in2

 < K2
j0

n2

λij
,

K1
j0

n1

λij
< diami-n1

, … , i0 < K2
j0

n1

λij
,

for any cylinder I  i-n1
, … , in2

, n1, n2 ≥ 0, then 

dim�X  -
hμλ

(X)

∫Xlog�λi0
dμλ

 -2
hμλ±

(X)

∫Xlog�λi0
dμλ

±
,

where μλ is a maximal measure on X and μλ
±

 is a maximal measure on

the right-sided subspace X+/left-sided subspace X-. 

Suppose  μ(i)  is  a  maximal  measure  of  W(i).  For  any  cylinder

I  i-n1
, … , in2

,  the  diameters  of  i0, … , in2
  and  i-n1

, … , i0  are

1  mi
n2+1  and  1  mi

n1+1,  respectively.  Let  K1  1, K2  3,  and

λ1  ⋯  λmi
 1  (mi), apply Theorem 6, and we have 

dim�W(i)  -
hμ(i) W

(i)

∫W(i) log
1

mi

�dμ(i)


hμ(i) W
(i)

log�mi

 2
hμ(i),± W

(i)

log�mi

.

Moreover,  the  one-to-one  correspondence  between  ℳmaxW
(i)  and

ℳmaxY
(i) demonstrates that 

dimY(i)  sup
hνY

(i)

log�ni
: ν�is�invariant�on�Y(i) 

hϕ(i)μ(i) Y
(i)

log�ni


hμ(i) W
(i)

log�ni
.
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The last equality comes from Theorem 5. This completes the proof of
Theorem 2 part 2. 

Observe that 

dim�Y(i) 
hν(i) Y

(i)

log�ni

indicates  ν(i)  is  a  maximal  measure  on  Y(i).  Since  W(i)
 is  irreducible,

the  maximal  measure  μ(i)  is  unique.  Hence  there  is  a  bijection

π :ℳmaxY
(i) → ℳmaxY

(i) such that πν(i)  ν(i). Therefore, 

dim�Y(i) 
hπν(i) Y

(i)

log�ni


hν(i) Y
(i)

log�ni
.

This completes the proof of Theorem 2. 

Proof of Theorem 3 3.4

Whether  there  exists  a  factor  map  connecting  two  spaces  is  always  a
concerning  issue.  In  general,  it  is  difficult  to  construct  or  to  say  such
factor maps exist for a given pair of spaces. Proposition 3 proposes a
methodology  for  constructing  a  connection  between  two  spaces.  No-
tably  a  map  constructed  via  Proposition  3  preserves  topological  en-
tropy.  In  other  words,  it  only  works  for  those  spaces  reaching  the
same topological entropy if we restrict the factor maps. In this subsec-
tion, we turn our attention to the factor maps connecting spaces with
unequal topological entropies. 

Similarly to the proof of Theorem 2, demonstrating Theorem 3 re-

lies  mainly  on  the  existence  of  a  factor  map.  Instead  of  Y(1), Y(2),  we

start with examining whether there is a factor map from W(i)
 to W(i);

note here that i + i  3. 

Theorem 7.  Suppose  W(1)
 and  W(2)

 are  irreducible  with

hW(1) ≠ hW(2).  Suppose  hW(i) > hW(i),  where  i + i  3.  Then

there exists an infinite-to-one map π :W(i) → W(i)
 if one of the follow-

ing is satisfied. 

h(W(i))  h(Y), and there is a factor-like matrix F such that T(i)F  FT,
where T is the transition matrix of Y. 

1.

h(W(i)) < h(Y). 2.

Remark 1. (i) Suppose X, Y  are two irreducible SFTs with h(X) > h(Y).
In [34], Kitchens showed that if there is an infinite-to-one factor map
from  X+

 to  Y+,  then  there  exists  an  infinite-to-one  factor  map
π :X → Y.  This  reduces  the  investigation  of  Theorem  7  to  the  exis-

MCNN Structure: Complexity between Two Layers 335

Complex Systems, 24 © 2015 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.24.4.311



tence  of  an  infinite-to-one  map  between  the  right-sided  subspaces  of

W(1)
 and W(2). 

(ii)  Theorem  7  reveals  the  existence  of  an  infinite-to-one  map  be-
tween the hidden and output spaces whenever these two spaces hit dif-
ferent  topological  entropies;  however,  there  are  an  infinite  number  of
such  maps  in  general.  In  addition,  it  is  difficult  to  find  the  explicit
form  of  an  infinite-to-one  map.  This  is  an  important  issue  and  is  still
open in the field of symbolic dynamical systems. It helps for the inves-
tigation of MCNNs if a methodology can be proposed to find a con-
crete expression of an infinite-to-one map. 

The following corollary comes immediately after Theorem 7. 

Corollary 1. Under the same assumption of Theorem 7. Suppose further-

more  that  W(i) ≥ (Y)  and  7.1  is  satisfied.  Then  π :W(i) → W(i)

is an infinite-to-one factor map. 

Suppose  X  is  a  shift  space.  Let  P(X)  denote  the  collection  of  peri-
odic  points  in  X  and  let  Pn(X)  be  the  set  of  periodic  points  with

period n. Given two shifts X and Y, let qn(X) and qn(Y) be the cardi-

nality of ⋃k≥n Pk(X) and ⋃k≥n Pk(Y), respectively. If qn(X) ≤ qn(Y) for

n ≥ 1,  then  we  call  it  an  embedding  periodic  point  condition  and
write  it  as  P(X)�P(Y).  Theorem  8  asserts  a  necessary  and  sufficient
condition  concerning  the  existence  of  an  injective  map  between  X
and�Y. 

Theorem 8.  (Embedding  theorem.)  Suppose  X  and  Y  are  irreducible
SFTs. There is an embedding map ϕ :X → Y if and only if h(X) < h(Y)
and P(X)�P(Y). 

An  additional  question  is  the  existence  of  a  factor  map  between  X
and  Y.  Like  the  embedding  periodic  point  condition,  the  factor  peri-
odic  point  condition  indicates  that  for  every  x ∈ Pn(X),  there  exists  a

y ∈ Pm(Y) such that m is a factor of n and is denoted by P(X) ↘ P(Y). 

Theorem 9. (See [34, Theorem 4.4.5].) Suppose X and Y are irreducible
SFTs. There exists an infinite-to-one factor code ϕ :X → Y  if and only
if h(X) > h(Y) and P(X) ↘ P(Y). 

Proof.  (Proof  of  Theorem  7.)  Without  the  loss  of  generality,  we  may

assume that hW(1) < hW(2). It suffices to demonstrate there is an in-

finite-to-one map from W(2),+
 to W(1),+, due to the observation in Re-

mark 1(i). For ease of notation, the spaces in the upcoming proof are
referred to as right-sided subspaces. 

Suppose  that  condition  7.1  is  satisfied.  The  existence  of  factor-like

matrix F such that T(2)F  FT implies there is a map Φ(2) :W(2) → Y. 
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Recall that the graph representation G(1)
 of W(1)

 is obtained by ap-

plying subset construction to G, ℒ(1). Without the loss of generality,

we assume that G(1)
 is essential. That is, every vertex in G(1)

 is treated
as an initial state of one edge and as a terminal state of another. Sup-
pose  w  w1…wn  is  a  cycle  in  G.  If  the  initial  state  i(wk)  of  wk  is  a

vertex in G(1)
 for k  1, … , n, then w is also a cycle in G(1). 

Assume k is the only index where either i(wk) or t(wk) is not a ver-

tex in G(1), where t(e) denotes the terminal vertex of the edge e. First

we consider that only one of these two vertices is not in G(1). For the

case that i(wk) is not a vertex in G(1), there is a vertex, say vk, in G(1)

so  that  vk  is  a  grouping  vertex  that  contains  i(wk).  (In  fact,  each  ver-

tex  in  G(1)
 is  the  grouping  of  one  or  more  vertices  in  G,  and  so  is

G(2). The reader is referred to [27] for more details.) Hence there is an

edge  wk-1  in  G(1)
 such  that  i(wk-1)  i(wk-1)  and  t(wk-1)  vk.  In

other  words,  there  is  an  edge  in  G(1)
 that  can  be  related  to  wk-1.

Moreover,  there  is  an  edge (vk, t(wk))  in  G(1)
 if  t(wk)  is  a  vertex  in

G(1).  Hence  there  is  a  cycle  in  G(1)
 that  corresponds  to  w.  The  case

that t(wk) is not a vertex in G(1)
 can be conducted in an analogous dis-

cussion. For the case that both the initial and terminal states of wk are

not in G(1), combining the above demonstration implies there is a new
vertex  vk+1  and  two  new  edges  ek  (vk, vk+1),  ek+1  (vk+1, t(wk+1))

in G(1). That is, there is still a cycle in G(1)
 that corresponds to w. 

Repeating  the  process  if  necessary,  it  is  seen  that  for  every  cyclic

path in G with length n, there is an associated cyclic path in G(1)
 with

length m, and m divides n. Theorem 9 asserts there exists an infinite-

to-one factor Φ(1) :Y → W(1). Let π  Φ(1) ∘ Φ(2). Then π is an infinite-

to-one map from W(2) → W(1)
 by Theorem 1. 

Next,  for  another  case,  suppose  that  condition  7.2  is  satisfied.  It

suffices to demonstrate the existence of an embedding map from W(2)

to Y. The elucidation of the existence of a map from W(2)
 to Y can be

performed via a similar but converse argument, as with the discussion

of Φ(1). Hence we omit the details. Since the graph representation G(2)

of  W(2)
 comes  from  applying  subset  construction  to  G, ℒ(2),  it  can

be  verified  that  every  periodic  point  in  W(2)
 corresponds  to  a  cyclic

path in G(2), and for every cyclic path in G(2)
 we can illustrate a cyclic

path  in  G.  Theorem  8  demonstrates  the  existence  of  an  embedding

map Φ
(2)

:W(2) → Y. 

This completes the proof. □ 
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Once we demonstrate the existence of a factor map π :W(i) → W(i),
the  proof  of  Theorem  3  can  be  performed  using  methods  similar  to
the proof of Theorem 2. Hence we skip the proof. Instead, it is interest
ing to find if there is a criterion to determine whether π is uniform. 

Theorem 10. Suppose N, obtained from π as defined in Section 3.3, sat-
isfies the Markov condition of order k. Define 

M  mJ(0,k-1),J(1,k)J∈Wk+1
(1) ;

here  mJ(0,k-1),J(1,k)  is  defined  by  equation  (20).  Then  π  is  uniform  if

and only if 

ρM 
ρ(2)

ρ(1)
, (21)

where ρ(i)  is the spatial radius of the transition matrix T(i)
 of W(i)

 for
i  1, 2. 

Theorem  10  is  obtained  with  a  little  modification  of  the  proof  of
Proposition 6.1 in [36], thus we omit it here. The following corollary
comes immediately from Theorem 10. 

Corollary 2. Let N be defined as above. Suppose N satisfies the Markov

condition  and  equation  (21)  holds.  Then  πν(i) ∈ ℳmaxY
(i)  if

ν(i) ∈ ℳmaxY
(i). Furthermore, if 

dim�Y(i) 
hν(i) Y

(i)

log�ni
,

then 

dim�Y(i) 
hπν(i) Y

(i)

log�ni
.

Examples4.

Example 2.  Suppose  the  templates  of  an  SMCNN  are  given  by  the  fol-
lowing: 

a(1), ar
(1), z(1)  2.9, 1.7, 0.1

a(2), ar
(2), b(2), z(2)  -0.3, -1.2, 0.7, 2.3, 0.9.
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Then the basic set of admissible local patterns is 

ℬ   -+
--

, -+
+-

, +-
-+

, +-
++

, ++
-+

, ++
++

.

The transition matrix T of the solution space Y is 

T 

0 0 1 0

0 0 1 0

0 1 0 1

0 1 0 1

,

and  the  symbolic  transition  matrices  of  the  hidden  and  output  spaces
are 

S(1) 
∅ α1

α2 α3
and S(2) 

∅  α1 ∅

α2 ∅ α3

α2 ∅ α3

,

respectively.  Figure  1  shows  that  Y(1)
 and  Y(2)

 are  two  different

spaces. The topological entropy of Y(i)
 is related to the spectral radius

of  the  incidence  of  S(i).  An  easy  computation  implies

hY(1)  hY(2)  log�g,  where  g  1 + 5  2  is  the  golden

mean. 
Let 

E 

1 0

0 1

0 1

.

Then  S(2)E  ES(1).  Proposition  3  indicates  that  there  exist  factor

maps π :W(2) → W(1)
 and π :Y(2) → Y(1). More precisely, let 

W(1)  {x1, x2}, �W(2)  {x1
′ , x2

′ , x3
′ };

Y(1)  {y1, y2}, Y(2)  {y1
′ , y2

′ , y3
′ }.

Then 

π(x1
′ )  x1, π(x2

′  π(x3
′ )  x2;

π(y1
′ )  y1, π(y2

′ )  π(y3
′ )  y2.

See Figure 4. 
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Figure 4. The graph representation of the hidden and output spaces of Exam-
ple 2. The number on the edge is the transition probability. The left side repre-
sents Y(1)

 and the right side represents Y(2). 

Suppose  (Y)  {z1, z2, z3, z4};  the  factor  map  ψ :Y → Y(1)
 is

given by 

ψ(z1)  ψ(z3)  y1,

ψ(z2)  ψ(z4)  y2.

Set N  Niji≤i,�j≤2 and L1, L2 by 

N11  N21 
0 1

0 0
, N12 N22 

0 0

1 1

and  L1  0�1,  L2  (gg),  respectively.  A  straightforward  calculation

demonstrates that 

L1N11  0 ·L1, �L1N12 

g-1 ·L2, �L2N11  g ·L1, �L2N22  1 ·L2.

That is, N satisfies the Markov condition of order 1. Theorem 4 indi-

cates that Y(1)
 is an SFT with the unique maximal measure of entropy

ν(1), and ν(1),+  (pY(1) , PY(1) ), where 

pY(1) 
2 - g

3 - g
,

1

3 - g

and

PY(1) 
0 1

2 - g g - 1
 stoch(M),

M 
0

1

g

g 1

.

Applying Theorem 2, we have
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dim�W(1)  dim�Y(1)  2
hν(1),+ Y

(1)

log�2


2

g - 3�log�2
2 - g�log2 - g + g - 1�logg - 1  2

log�g

log�2
.

On the other hand, 

S(2)S(2) 

α1α2 ∅ α1α3

α3α2 α2α1 α3α3

α3α2 α2α1 α3α3

implies  that  every  word  of  length  3  in  Y(2)
 is  a  synchronizing  word.

That is, Y(2)
 is topologically conjugated to W(2). Since the unique max-

imal measure of W(2)
 is μ(2) with μ(2),+  (pW(2) , PW(2) ), where 

pW(2) 
2 - g

3 - g
,
2 - g

3 - g
,
g - 1

3 - g
,

PW(2) 

0 1 0

2 - g 0 g - 1

2 - g 0 g - 1

.

Theorem 2 suggests that 

dim�W(2)  2
hμ(2),+ W

(2)

log�3
 2

log�g

log�3
,

and 

dim�Y(2)  2
hϕ(2)μ(2),+ Y

(2)

log�2
 2

hμ(2),+ W
(2)

log�2
 2

log�g

log�2
.

πμ(2)  μ(1)  can  be  verified  without  difficulty,  thus  we  omit  the  de-
tails. 

Example 3. Suppose the template of the first layer is the same as in Ex-
ample 2, and 

a(2), ar
(2), b(2), br

(2), z(2)  -0.1, -1.1, 2.1, -1.4, 0.9.

The basic set of admissible local patterns of the solution space Y is 

ℬ 
-+

-+
,

--

-+
,

+-

+-
,

++

+-
,

+-

++
,

+-

--
.
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The transition matrix T of the solution space Y is 

T 

0 1 0 1

0 0 0 0

1 0 0 0

1 1 1 0

.

After careful examination, the hidden and output spaces are both mix-
ing with symbolic transition matrices 

S(1) 

∅ ∅ α1

α0 ∅ α1

∅ α2 ∅

, S(2) 

∅ ∅ α1 ∅

α2 ∅ ∅ ∅

∅ α3 ∅ α2

∅ ∅ α1 ∅

.

See  Figure  5.  Y(1)
 and  Y(2)

 are  FSE  since  hY(1)  hY(2)  log�ρ,

where ρ ≈ 1.3247 satisfies ρ3 - ρ - 1  0. Let 

E 

0 0 1

1 0 0

0 1 0

0 0 1

.

Notably,  T(2)E  ET(1)
 and  there  exists  no  factor-like  matrix  F  such

that S(2)F  FS(1)  or S(1)F  FS(2). It follows from S(1)  that every word

of  length  2  in  Y(1)
 is  a  synchronizing  word.  Hence  Y(1) ≅ W(1).  The

unique  maximal  measure  of  entropy  for  W(1),+
 is  μ(1),+ 

(pW(1) , PW(1) ), where pW(1)  0.1770, 0.4115, 0.4115 and 

PW(1) 

0 0 1

0.4302 0 0.5698

0 1 0

.

Hence 

dim�W(1)  2
hμ(1),+ W

(1)

log�3
≈ 0.5119,

and 

dim�Y(1)  2
hϕ(1)μ(1),+ Y

(1)

log�2
 2

hμ(1),+ W
(1)

log�2
≈ 0.8114.

Unlike Example 2, it can be verified (with or without computer as-

sistance) that Y(2), rather than an SFT, is a strict sofic shift since there
exists  no  k ∈ ℕ  such  that  every  word  of  length  k  is  a  synchronizing
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Figure 5. The  fractal  sets  of  the  hidden  and  output  spaces  of  Example  3.

The  templates  are  given  by  a(1), ar
(1), z(1)  [2.9, 1.7, 0.1]  and

a(2), ar
(2), b(2), br

(2), z(2)  [-0.1, -1.1, 2.1, -1.4, 0.9].  The  output  space

Y(2)
 is  a  strict  sofic  shift  rather  than  an  SFT.  Meanwhile,  the  hidden  space

Y(1)
 is an SFT. 

word  in  Y(2).  Nevertheless,  there  is  a  synchronizing  word  of  length  2
(i.e., α3  ++). Theorem 2.1 indicates that there is a one-to-one corre-

spondence  between  ℳmaxW
(2)  and  ℳmaxY

(2).  Since  the  unique

maximal  measure  of  W(2),+
 is  μ(2),+  (pW(2) , PW(2) ),  where

pW(2)  0.1770, 0.1770, 0.4115, 0.2345 and 

PW(2) 

0 0 1 0

1 0 0 0

0 0.4302 0 0.5698

0 0 1 0

,

we have

dim�W(2)  2
hμ(1),+ W

(1)

log�4
≈ 0.4057,

and 

dim�Y(2)  2
hϕ(2)μ(2),+ Y

(2)

log�2
 2

hμ(2),+ W
(2)

log�2
≈ 0.8114.
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Example 4. Suppose the template of the first layer is the same as in Ex-
ample 2, and 

a(2), ar
(2), b(2), br

(2), z(2)  1.3, -1.2, 0.7, 2.3, 0.8.

Then the basic set of admissible local patterns is 

ℬ  --
--

,
-+

--
,

-+

+-
,

+-

-+
,

+-

++
,

++

--
,

++

-+
,

++

++
.

The transition matrix T of the solution space Y, 

T 

1 0 1 0

0 0 1 0

0 1 0 1

1 1 0 1

,

suggests  that  Y  is  mixing.  It  is  not  difficult  to  see  that  the  symbolic
transition matrices of the hidden and output spaces are 

S(1) 
α0 α1

α2 α3

and 

S(2) 

α0 ∅ α1 ∅ ∅

∅ ∅ α1 ∅ ∅

∅ α2 ∅ α3 ∅

∅ ∅ ∅ α3 α2

α0 ∅ α1 ∅ ∅

,

respectively. See Figure 6 for the fractal sets of Y(1)
 and Y(2). 

Obviously Y(1)
 is a full 2-shift. It is remarkable that ϕ(1)μ(1)  is not a

Markov  measure.  The  unique  maximal  measure  for  W(1),+
 (also  for

Y(1),+)  is  the  uniform  Bernoulli  measure  μ(1),+  1  2, 1  2.  There-

fore,

dim�W(1)  dim�Y(1)  2
hμ(1),+ W

(1)

log�2
 2.

Since  hW(2)  log�ρ,  where  ρ ≈ 1.8668  satisfies  ρ4 - 2ρ3 + ρ - 10,

the factor map π :W(1) → W(2)
 must be infinite-to-one if it exists. The

fact  W(2)
 has  two  fixed  points,  which  can  be  seen  from  T(2),  asserts

that there exists an infinite-to-one factor map π :W(1) → W(2)
 by The-

orem 9. However, it is difficult to find the explicit form of π. 
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Figure 6. The  fractal  sets  of  the  hidden  and  output  spaces  of  Example  4.

The  templates  are  given  by  a(1), ar
(1), z(1)  [2.9, 1.7, 0.1]  and

a(2), ar
(2), b(2), br

(2), z(2)  [1.3, -1.2, 0.7, 2.3, 0.8].  It  is  seen  that  the  hid-

den space Y(1)
 is the unit square [0, 1]⨯ [0, 1], and so is W(1). Moreover, there

are infinite-to-one factor maps π :W(1) → W(2)
 and π : Y(1) → Y(2). 

Since the unique maximal measure of W(2),+
 is μ(2),+ (pW(2) , PW(2) )

with pW(2)  0.1888, 0.0658, 0.2294, 0.3524, 0.1636 and 

PW(2) 

0.5357 0 0.4643 0 0

0 0 1 0 0

0 0.2870 0 0.7130 0

0 0 0 0.5357 0.4643

0.5357 0 0.4643 0 0

,

the Hausdorff dimension of W(2)
 is 

dim�W(2)  2
hμ(2),+ W

(2)

log�5
≈ 0.7758.

Since W(2)
 is mixing, we have 

dim�Y(2)  2
hν(2),+ Y

(2)

log�2


2
hϕ(2)μ(2),+ Y

(2)

log�2
 2

hμ(2),+ W
(2)

log�2
≈ 1.8012.
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As a conclusion, in the present example, an infinite-to-one factor map
is associated with a different Hausdorff dimension. 

Example 5. Suppose the template of the first layer is the same as in Ex-
ample 2, and 

a(2), ar
(2), b(2), br

(2), z(2)  0.7, -1.1, 2.1, -1.4, 1.7.

The basic set of admissible local patterns of the solution space Y is 

ℬ  -+
-+

,
--

-+
,

+-

+-
,

++

+-
,

+-

++
,

+-

--
,

++

++
.

The transition matrix T of the solution space Y is 

T 

0 1 0 1

0 0 0 0

1 0 0 0

1 1 1 1

.

A  straightforward  examination  shows  that  the  hidden  and  output
spaces are both mixing with symbolic transition matrices 

S(1) 

∅ ∅ α1

α0 ∅ α1

∅ α2 α3

, S(2) 

∅ α2 α3

α1 ∅ ∅

∅ α0 α3

.

hY(1)  log�ρ  and  hY(2)  log�g,  where  ρ ≈ 1.8393  satisfies

ρ3 - ρ2 - ρ - 1  0. See Figure 7. 

Since W(2)
 has a fixed point, Theorem 9 implies there is an infinite-

to-one  factor  map  π :W1 → W(2).  The  unique  maximal  measure  of

W(1),+
 is  μ(1),+  (pW(1) , PW(1) )  with  pW(1)  0.0994, 0.2822, 0.6184

and 

PW(1) 

0 0 1

0.3522 0 0.6478

0 0.4563 0.5437

.

This suggests 

dim�W(1)  2
hμ(1),+ W

(1)

log�3
≈ 1.1094.

The symbolic transition matrix S(1) asserts that every word of length 2

in Y(1)
 is a synchronizing word, hence Y(1)

 is topologically conjugated

to W(1)
 and 

dim�Y(1)  2
hν(1),+ Y

(1)

log�2
 2

hϕ(1)μ(1),+ Y
(1)

log�2
≈ 1.7582.
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Figure 7. The  fractal  sets  of  the  hidden  and  output  spaces  of  Example  5.

The  templates  are  given  by  a(1), ar
(1), z(1)  [2.9, 1.7, 0.1]  and

a(2), ar
(2), b(2), br

(2), z(2)  [0.7, -1.1, 2.1, -1.4, 1.7].  It  is  demonstrated

that  there  is  an  infinite-to-one  factor  map  π :W(1) → W(2),  and  Y(1), Y(2)
 are

strictly sofic.

On  the  other  hand,  it  is  verified  that  the  unique  maximal  measure

of W(2),+
 is μ(2),+  (pW(2) , PW(2) ) with 

pW(2) 
2 - g

3 - g
,
2 - g

3 - g
,
g - 1

3 - g

and 

PW(2) 

0 2 - g g - 1

1 0 0

0 2 - g g - 1

.

Since every word of length 2 in Y(2)
 is a synchronizing word, we have 

dim�W(2)  2
hμ(2),+ W

(2)

log�3
 2

log�g

log�3
≈ 0.8760,

and 

dim�Y(2)  2
hν(2),+ Y

(2)

log�2
 2

hϕ(2)μ(2),+ Y
(2)

log�2
≈ 1.3884.
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Relation between the Hausdorff Dimensions of Two
Hidden Spaces

5.

Theorems  2  and  3  can  be  extended  to  two  spaces  that  are  induced
from a general n-layer cellular neural network equation (1) similar to
the  discussion  in  previous  sections.  Hence  we  illustrate  the  results
without providing a detailed argument. The solution space Y of equa-
tion�(1) is determined by 

ℬ ≡ ℬA(1), … , A(n), B(1), … , B(n), z(1), … , z(n) 

y-d
(n)⋯y-1

(n)y0
(n)y1

(n)⋯yd
(n)

⋮

y-d
(2)⋯y-1

(2)y0
(2)y1

(2)⋯yd
(2)

y-d
(1)⋯y-1

(1)y0
(1)y1

(1)⋯yd
(1)

⊆ -1, 1
ℤ2d+1⨯n .

For 1 ≤ ℓ ≤ n, set 

ℒ(ℓ)y-d
(n)…yd

(n) ⋄⋯ ⋄ y-d
(1)…yd

(1)  y-d
(ℓ)…yd

(ℓ).

The  hidden  space  Y(ℓ)
 is  then  defined  by  ℒ(ℓ)

 as  before.  (For  simplic-

ity, we also call Y(n)
 a hidden space instead of the output space.) Simi-

larly, Y(ℓ)
 is a sofic shift with respect to a right-resolving finite-to-one

factor  map  ϕ(ℓ) :W(ℓ) → Y(ℓ)
 and  an  SFT  W(ℓ).  Furthermore,  W(ℓ)

 can

be  described  by  the  transition  matrix  T(ℓ),  while  Y(ℓ)
 can  be  com-

pletely described by the symbolic transition matrix S(ℓ). 
For  1 ≤ i,  j ≤ n,  without  the  loss  of  generality,  we  assume  that

hY(i) ≥ hY(j) and Y(i) ≥ Y(j). 

Proposition 4.  Suppose  hY(i)  hY(j).  If  there  exists  a  factor-like  ma-

trix  E  such  that  S(i)E  ES(j),  then  there  are  finite-to-one  factor  maps

πij :W
(i) → W(j)

 and πij :Y
(i) → Y(j). For the case where Y(i)

 and Y(j)
 at-

tain  distinct  topological  entropies,  there  is  an  infinite-to-one  factor

map πij :W
(i) → W(j)

 if W(i) > (Y) and there exists a factor-like

matrix F such that T(i)F  FT. 

The relation of the Hausdorff dimensions of Y(i)
 and Y(j), if they ex-

ist, is organized as follows. 

Theorem 11.  Suppose  W(i)
 and  W(j)

 are  irreducible  SFTs,  and  there  ex-

ists a factor map πij :W
(i) → W(j). (See Figure 8 for a flow chart.)

Case I. Y(i), Y(j)
 share the same topological entropy. 

There  is  a  one-to-one  correspondence  between  ℳmax(W
(ℓ))  and

ℳmax(Y
(ℓ)), where ℓ  i, j. 

1.
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Figure 8. The flow chart of the existence of factor maps for arbitrary two hid-
den spaces. 

Let  mℓ  (W(ℓ)),  nℓ  (Y(ℓ)),  and  μ(ℓ)  be  a  maximal  measure  of

W(ℓ). If ϕ(i) has a synchronizing word, then 

2.

dim�W(ℓ) 
hμ(ℓ) (W

(ℓ))

logmℓ

�and� dim�Y(ℓ) 
hμ(ℓ) (W

(ℓ))

log�nℓ
.

Suppose ν(ℓ)  ϕ(ℓ)μ(ℓ). If 3.

dim�Y(i) 
hν(i) (Y

(i))

log�ni
,

then

dim�Y(j) 
hπν(i) (Y

(j))

log�nj


hν(j) (Y
(j))

log�nj

for some π. 

Case II. Y(i), Y(j)
 are associated with distinct topological entropies. 

Suppose πij :W
(i) → W(j)

 is a uniform factor. If 1.

dim�W(i) 
hμ(i) (W

(i))

log�mi

,
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then

dim�W(j) 
hμ(j) (W

(j))

log mj


hπμ(i) (W

(j))

log mj

.

If  ϕ(i)  has  a  synchronizing  word,  then  there  exists  a  factor  map

π :ℳmax(Y
(i)) → ℳmaxY

(i). 

2.

If 3.

dim�Y(i) 
hν(i) (Y

(i))

log�ni
,

then

dim�Y(j) 
hπν(i) (Y

(j))

log�nj
.

Conclusion and Further Discussion6.

This investigation elucidates whether there is a factor map π (resp. π)

connecting  W(i)
 and  W(j)

 (resp.  Y(i)
 and  Y(j)).  If  a  factor  map  does

exist, the push-forward measure of a maximal measure is also a maxi-
mal  measure,  provided  the  factor  map  is  either  finite-to-one  or
uniform. Moreover, the Hausdorff dimensions of two spaces are thus
related.  Topological  entropy  provides  a  medium  to  make  the  discus-
sion clearer. 

When Y(i)
 and Y(j)

 are FSE, the existence of a factor-like matrix as-
serts  the  existence  of  factor  map  π.  With  the  assistance  of  computer
programs, we can rapidly determine if there exists a factor-like matrix
for  a  given  multilayer  cellular  neural  network  (MCNN).  Moreover,
the factor map π can be expressed in an explicit form. For most of the

cases, there is no factor-like matrix for Y(i)
 and Y(j). 

Problem 3.  Suppose  there  is  a  factor  map  between  Y(i)
 and  Y(j).  Is

dim�Y(i)
 related to dim�Y(j)? Or, equivalently, is there a one-to-one cor-

respondence between ℳmaxY
(i) and ℳmaxY

(j)? 

A  partial  result  of  Problem  3  is  the  existence  of  synchronizing

words.  Lemma  1  demonstrates  that  if  ϕ(i)/ϕ(j)  has  a  synchronizing

word, then ϕ(i)/ϕ(j) is almost invertible. This implies a one-to-one corre-

spondence between ℳmaxY
(i) and ℳmaxY

(j). 

Problem 4.  How  large  is  the  portion  of  almost  invertible  maps  in  the
collection of factor maps?
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If  hY(i) ≠ hY(j),  on  the  other  hand,  we  propose  a  criterion  for

the existence of factor maps. We will not find the explicit form of the
factor map. 

Problem 5. Can we find some methodology so that we can write down
the explicit form of a factor map if it exists? 

For  the  case  where  hY(i) ≠ hY(j),  a  uniform  factor  provides  the

one-to-one  correspondence  between  the  maximal  measures  of  two
spaces. When the Markov condition is satisfied, Theorem 10 indicates
an  if-and-only-if  criterion.  Notably,  we  can  use  Theorem  10  only  if
the explicit form of the factor map is found. Therefore, the most diffi-
cult part is the determination of a uniform factor. 

Problem 6. How to find, in general, a uniform factor? 
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