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Commutative  cellular  automata  are  a  class  of  cellular  automata  that
portray  certain  characteristics  of  commutative  behavior.  We  develop
the  notion  of  neighborhood  partitions  and  neighborhood  equivalence
classes to analyze and enumerate these automata.

Introduction1.

Totalistic  cellular  automata  were  introduced  by  Wolfram  [1,  2]  as  a
means of studying higher-color cellular automata within a reasonable
space  of  possible  rules.  The  underlying  principle  is  to  systematically
construct  a  subset  of  rules  within  all  the  possible  rules  of  the  higher-
color cellular automata, and the system in totalistic cellular automata
is to add up the values of the cells within the neighborhood and deter-
mine the next cell from this sum.

In this paper, we generalize this idea of taking a subset of the possi-
ble  rules  in  cellular  automata  by  partitioning  all  possible  neighbor-
hoods  into  neighborhood  equivalence  classes  and  use  this  tool  to
analyze  cellular  automata  containing  totalistic  cellular  automata—
commutative cellular automata.

Commutative cellular automata have the property that the state of
the  determined  cell  is  unaffected  by  the  ordering  of  the  cells  in  its
neighborhood  (some  of  these  cellular  automata  meet  the  criteria  of
quasi-linear  cellular  automata,  and  so  their  evolutions  can  be  com-
puted  more  efficiently  than  the  standard  cellular  automaton
algorithm�[3]).

The  Game  of  Life  is  a  case  of  outer-commutative  cellular  au-
tomata,  where  the  state  of  the  determined  cell  is  unaffected  by  the
noncenter cells.

Using  the  concept  of  neighborhood  equivalence  classes,  it  can  be
shown  that  certain  commutative  cellular  automata—totalistic  and
multiplistic—can  emulate  each  other  as  well  as  the  space  of  all  com-
mutative cellular automata. The space of all one-dimensional commu-
tative cellular automata will be enumerated by using g==Sort[{##}]&
as the transition function, and certain variations of commutative cellu-

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.1.23



lar  automata  will  be  considered.  This  study  is  a  concrete  exploration
of  the  simple  commutative  cellular  automata.  For  a  dynamical  sys-
tems  approach,  see  [4],  where  Pivato  has  studied  a  more  general  case
from an abstract point of view.

Representation of Cellular Automata2.

One way to generate smaller spaces in cellular automata is to consider

the  partition  of  the  set  of  all  neighborhoods.  Let  ai
(t)

 represent  the

value  of  a  cell  in  position  i  at  time  t,  where  the  value  a  belongs  to  a

color  set  ai
(t) ∈ s = {c1, c2, c3, … , ck}.  The  neighborhood  of  ai

(t)
 will

be denoted as γai
(t); in the case of one-dimensional cellular automata

of radius r = 1 the formula is given as

γai
(t) = ai-1

(t) , ai
(t), ai+1

(t) .

Conway’s  Game  of  Life  uses  a  Moore  neighborhood  [5,  6],  where
the neighborhood of a cell at position i, j is given by

γai, j
(t)  = ai-1, j+1

(t) , ai, j+1
(t) , ai+1, j+1

(t) ,

ai-1, j
(t) , ai, j

(t) , ai+1, j
(t) , ai-1, j-1

(t) , ai, j-1
(t) , ai+1, j-1

(t) .

The set of all possible neighborhoods is

Γ = sn = {(a1, a2, a3, … , an) a1, a2, a3, … , an ∈ s}.

It contains every n-tuple of the set of colors s, where n is the size of
the  neighborhood  (one-dimensional  cellular  automata  of  radius  r  im-
plies n = 2r + 1).

A  neighborhood  function  f  then  determines  what  the  value  of  the
cell in the next time step will be:

f : Γ → s, fai
(t) = ai

(t+1).

This type of generalization will allow for defining the tools needed
to  enumerate  slices  of  the  computational  space  of  cellular  automata.
The  motivation  for  doing  this  is  to  explore  a  space  of  cellular  au-
tomata that is large enough to handle, yet still produces interesting be-
havior.  The  main  slice  of  cellular  automata  presented  in  this  paper
will be of type one-dimensional commutative cellular automata.

Neighborhood Partitions and Equivalence Classes3.

The  set  of  all  possible  neighborhoods  Γ  is  partitioned  into  neighbor-
hood  equivalence  classes  such  that  two  neighborhoods  γ1, γ2 ∈ Γ  are
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in the same equivalence class if and only if

f(γ1) = f(γ2). (1)

We  call  this  partition  the  neighborhood  partition  of  the  cellular
automaton.

The function f for this totalistic cellular automaton is

f : s3 → s, fγai
(t) = hgγai

(t),

where g is a summation function and h maps this sum to the value of
the determined cell:

g : Γ → G, ga, b, c = a + b + c,

h :G → s.

For  convenience,  using  the  Wolfram  Language,  we  call  this  the
g==Plus  cellular  automaton.  And  for  all  of  the  cellular  automata  in
this  paper we  will  adopt  the  convention  that  g  stands  for  the  inner
function  of the  composition  in  the  neighborhood  function  f,  as  de-
fined.  The  rule  function  h  determines  the  particular  rule  the  cellular
automaton  is  using.  All  possible  mappings  G → s  is  the  space  of  all
possible rules for the cellular automata.

The partition for totalistic cellular automata is shown in Figure 1.

The  graphics  convention  shown  in  Figure  2  will  be  used  to  repre-
sent a neighborhood partition.
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Figure 1. The  neighborhood  partition  of  one-dimensional  radius  r = 1  totalis-
tic  cellular  automata  over  the  color  set  s = {0, 1, 2}.  The  notation  g(γ)  has
been added to represent the corresponding sums for each neighborhood equiv-
alence class.

For  the  partition  shown  in  Figure  1,  there  are  37 = 2187  rules,  as
there  are  k = 3  colors  and  seven  equivalence  classes.  The  number  of
rules  for  a  k-color  cellular  automaton  with  n  neighborhood  equiva-
lence  classes  in  its  partition  is  kn.  If  n < k,  then  the  cellular  automa-
ton  effectively  becomes  an  n-color  cellular  automaton,  as  there  are
only  n  maximum  mappings  in  the  neighborhood  function  f : Γ → s  to
the  color  set  s.  To  remove  this  degenerate  case,  it  is  required  that
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n ≥ k,  and  consequently  the  set  of  all  possible  nondegenerate  rule

space sizes is kn k, n ∈ ℕ, n ≥ k. This sequence will allow the flexi-

bility  of  adjusting  the  size  of  the  computational  space  that  is  desired
to  be  explored  in  cellular  automata.  A  plot  of  the  first  100  terms  of
this sequence is shown in Figure 3.

Figure 2.A  visual  representation  of  the  neighborhood  partition  of  one-dimen-
sional, radius r = 1 totalistic cellular automata over the color set s = {0, 1, 2}.
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Figure 3. The  logarithmic  plot  for  more  than  7000  values  of  the  sequence
{kn k, n ∈ ℕ, n ≥ k},  which  represents  the  set  of  all  possible  nondegenerate
rule space sizes for cellular automata.

The  size  of  the  number  of  rules  for  each  cellular  automaton  is  dis-
tributed  across  orders  of  magnitudes,  making  it  convenient  to  select
partitions  of  cellular  automata  of  certain  size  to  be  enumerated  on
computers.

The most general partition is the partition where all neighborhoods
belong to their own equivalence class, and indeed this is the standard
cellular automaton, which has been extensively studied by Wolfram.
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Multiplistic Cellular Automata4.

A  multiplistic  cellular  automaton  is  a  cellular  automaton  that  uses
g==Times  in  its  neighborhood  function.  The  partition  for  multiplistic

cellular automata using the color set 0, 1, 2 is shown in Figure 4.

The large equivalence class is due to the property that all neighbor-
hoods  containing  at  least  one  cell  of  value  0  will  always  output  0.
Hence  all  neighborhoods  containing  0  belong  to  this  equivalence
class. To remove this bias toward a particular cell color in multiplistic
cellular  automata,  a  color  set  without  0  can  be  chosen.  The  partition

shown in Figure 5 is multiplistic, using the color set 1, 2, 3.

Figure 4. The  neighborhood  partition  for  radius  r = 1  multiplistic  cellular  au-
tomata  over  the  color  set  s = {0, 1, 2}.  The  large  neighborhood  equivalence
class  in  the  center  is  all  the  neighborhoods  containing  0,  as  they  will  all  pro-
duce the same product of 0.

This partition is a superset of the totalistic cellular automata neigh-
borhood  partition  (Figure  2),  as  the  rules  can  be  selected  such  that
two equivalence classes will output the same cell color. This poses the
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question,  are  multiplistic  cellular  automata  more  general  than  totalis-
tic (excluding the color 0)? It turns out that totalistic and multiplistic
cellular automata are able to produce nearly all the same partitions.

Figure 5. The  neighborhood  partition  for  radius  r = 1  multiplistic  cellular  au-
tomata over  the color set s = {1, 2, 3}. The neighborhood equivalence  classes
can be joined in such a way as to reproduce the neighborhood partition of the
totalistic cellular automata in Figure 2.

Proof.  In  one-dimensional,  radius  r = 1  totalistic  cellular  automata
and  multiplistic  cellular  automata,  for  every  neighborhood
γ = (c1, c2, c3)  under  totalistic  cellular  automata  the  sum  will  be

gPlus(γ) = c1 + c2 + c3. Then there exists a multiplistic cellular automa-

ton  with  the  appropriate  color  set  such  that  the  neighborhood  is
γ′ = (ac1 , ac2 , ac3 ) for a ≠ 0. Consequently, the product will be

gTimes(γ
′) = ac1 ⨯ac2 ⨯ac3 = ac1+c2+c3 = agPlus(γ).

Hence  if  two  neighborhoods  γ1, γ2  are  in  the  same  neighborhood

equivalence class in the totalistic cellular automaton, then

gPlus(γ2) = gPlus(γ2)

agPlus(γ1) = agPlus(γ2)
�for�a ≠ 0

∃ γ1
′ , γ2

′ , gTimes(γ1
′ ) = agPlus(γ1), gTimes(γ2

′ ) = agPlus(γ2)

∴ gTimes(γ1
′ ) = gTimes(γ2

′ )�for�any�gPlus(γ2) = gPlus(γ2).

Therefore  for  any  partition  in  totalistic  cellular  automata,  there
will be an equivalent partition in multiplistic cellular automata.

The converse is partially true: for every multiplistic cellular automa-
ton,  there  will  be  an  equivalent  partition  in  totalistic  cellular  au-
tomata if 0 does not belong to the color set s of the multiplistic cellu-
lar automata 0 ∉ s.
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For  every  neighborhood  γ = (c1, c2, c3),  under  multiplistic  cellular

automata  the  product  will  be  gTimes(γ) = c1⨯c2⨯c3.  Then  there  exists

a totalistic cellular automaton with the appropriate color set such that

the  neighborhood  is  γ′ = log(c1), log(c2), log(c3).  Consequently,  the

sum will be

gPlus(γ
′) =

log(c1) + log(c2) + log(c3) = log(c1⨯c2⨯c3) = log(gTimes(γ)).

Hence  if  two  neighborhoods  γ1, γ2  are  in  the  same  neighborhood

equivalence class in multiplistic automata, then

gTimes(γ1) = gTimes(γ2)

log(gTimes(γ1)) = loggTimes(γ2)

∃ γ1
′ , γ2

′ , gPlus(γ1
′ ) = log(gTimes(γ1)), gPlus(γ2

′ ) = log(gTimes(γ2))

∴ gPlus(γ1
′ ) = gPlus(γ2

′ )�for�any�gTimes(γ2) = gTimes(γ2).□

When  0  belongs  to  the  color  set  of  multiplistic  cellular  automata,
the resulting partition would look somewhat similar to Figure 4, with
a  large  equivalence  class  containing  all  the  neighborhoods  with  at
least one 0. This cannot be done in totalistic cellular automata, where

log0 is undefined, and there is no such number x such that for any a,

x + a = x. Despite this however, the rule chosen in the totalistic cellu-
lar  automata  can  emulate  all  the  rules  in  a  multiplistic  cellular  au-
tomaton containing 0. In the diagram shown in Figure 6, the first six

Figure 6. The  neighborhood  partition  for  radius  r = 1  totalistic  cellular  au-
tomata over the color set s = {0, 1, 4}. Equivalent partition to multiplistic cel-
lular  automata  over  color  set  s = {1, 2, 3}  (Figure  5),  and  therefore  will  be
able  to  produce  the  exact  same  cellular  automata.  Other  possible  color  sets
that  produce  this  same  partition  for  totalistic  cellular  automata  are
{log(1), log(2), log(3)}, {1, 4, 13}.
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equivalence  classes  in  the  totalistic  cellular  automata  neighborhood
partition  can  always  be  assigned  to  the  same  value  in  the  neighbor-
hood  function,  effectively  allowing  the  totalistic  cellular  automata  to
emulate all the possible rules of the multiplistic cellular automata con-
taining 0 in Figure 4.

Commutative Cellular Automata5.

Totalistic  and  multiplistic  cellular  automata  are  in  a  more  general
class  of  cellular  automata—commutative  cellular  automata.  Commu-
tative  cellular  automata  are  cellular  automata  where  the  neighbor-
hood function f  is commutative over its arguments; that is, if two tu-
ples γ1, γ2  are permutations of each other, then f(γ1) = f(γ2). Then by

equation  (1),  γ1  and  γ2  come  under  the  same  neighborhood  equiva-

lence class. This function f is referred to as a commutative function.
To enumerate the space of commutative cellular automata, a func-

tion  that  satisfies  the  given  condition  will  be  needed.  The  function
could  be  meticulously  defined  for  each  and  every  possible  neighbor-
hood, but an easier alternative could be to use g==Sort[{##}]&. This
satisfies  the  condition  for  commutative  cellular  automata,  as  all per-
mutations  of  a  neighborhood  are  the  same  when  sorted  as  shown  in
Figure 7.

Figure 7. The neighborhood partition for radius r = 1 commutative cellular au-
tomata over the color set s = {0, 1, 2}. This partition is the same as the parti-
tions seen in multiplistic (Figure 5) and totalistic (Figure 6) cellular automata.

The  partition  shown  in  Figure  7  is  the  same  as  the  partitions  of
multiplistic  (Figure  5)  and  totalistic  (Figure  6)  cellular  automata  as
shown  before:  this  is  due  to  the  commutative  nature  of  addition  and
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multiplication.  The  following  commutative  cellular  automata  in  this
section were produced using the function g==Sort[{##}]&.

The  total  number  of  rules  in  these  commutative  cellular  automata

is  310 = 59 049.  Enumerating  a  random  sample  of  interesting  rules  in
this  space  of  cellular  automata  yielded  the  rules  shown  in  Figure  8
(the  automata  that  also  belong  to  totalistic  cellular  automata  have
been omitted, as they have been extensively studied).

All the cellular automata are symmetrical in the middle axis, as for

every  neighborhood  a, b, c,  its  mirror  c, b, a  belongs  in  the  same

equivalence class, as they are permutations of each other.
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����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����

����� ����� ����� �����
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Figure 8. (continues).
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Figure 8. Interesting  3-color,  radius  r = 1  commutative  cellular  automata.  All
the automata are symmetrical in the middle due to the commutative nature of
the automata.

Commutative  cellular  automata  could  also  have  only  two  colors,
which produces the partition shown in Figure 9.

Figure 9. Partition  of  radius  r = 1,  2-color  commutative  cellular  automata.  As
there  are  only  four  equivalence  classes  in  total,  the  total  number  of  possible
rules is 24 = 16.
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Figure 10.All  the  rules  for  2-color,  radius  r = 1  commutative  cellular  au-
tomata with initial condition of one black cell against a background of white
cells. These rules only produce simple and nested behavior.
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The rules shown in Figure 10 have either simple or nested behavior
and  are  not  very  interesting,  but  a  property  of  nested  behavior  is  the
preservation of randomness, as shown in Figure 11.

� � � �

� � � �

� � �� ��

�� �� �� ��

Figure 11.All  the  rules  for  2-color,  radius  r = 1  commutative  cellular  au-
tomata with random initial conditions.

One might consider extending these automata to radius r = 2. This
produces the partition shown in Figure 12.

Figure 12. Partition  of  2-color,  radius  r = 2  commutative  cellular  automata.
There  are  now  six  equivalence  classes,  hence  the  number  of  possible  rules  is
26 = 64.

The  number  of  possible  rules  is  now  26 = 64  (Figure  13),  still  less

than the number of possible elementary cellular automata at 28 = 256.
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Figure 13.All  the  rules  for  2-color,  radius  r = 2  commutative  cellular  au-
tomata;  unlike  radius  r = 1,  some  of  these  rules  display  highly  random
behavior.
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Increasing the radius of a cellular automaton has turned a commu-
tative cellular automaton with no complex behavior into one with in-
teresting  rules,  ranging  from  ones  with  localized  structures  to  ones
that seem completely random.

Outer-Commutative Cellular Automata6.

An  outer-commutative  cellular  automaton  is  a  cellular  automaton
where  the  neighborhood  function  f  is  commutative  over  all  cells  ex-
cluding  the  center  cell  (Figure  14).  That  is,  for  n = 2r + 1, r ∈ ℕ,  the
outer-commutative function g is

gc1, c2, … , c(n+1)/2, … , cn-1, cn =

g′c1, c2, … , c((n+1)/2)-1, c((n+1)/2)+1, … , cn-1, cn, c(n+1)/2,

where g′ is a commutative function.

Figure 14. The neighborhood partition for r = 1, k = 3 outer-commutative cel-
lular automata. The number of possible rules is 318 = 387 420 489.

A  well-known  two-dimensional  rule  of  outer-commutative  cellular
automata is Conway’s Game of Life. It uses the Moore neighborhood

γai, j
(t)  = ai-1, j+1

(t) , ai, j+1
(t) , ai+1, j+1

(t) ,

ai-1, j
(t) , ai, j

(t) , ai+1, j
(t) , ai-1, j-1

(t) , ai, j-1
(t) , ai+1, j-1

(t) ,

where the center cell is ai, j
(t) .

The  partition  of  outer-commutative  cellular  automata  is  also  a  su-
perset of the well-known outer-totalistic cellular automata (Figure 15).

Apart  from  the  larger  selection  of  possible  rules,  outer-commuta-
tive cellular automata display the same characteristics as commutative
cellular  automata—a  reflective  symmetry  about  the  center  axis.  Some
manifest  localized  structures,  some  appear  apparently  random,  and
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some  seem  to  have  an  “outer  shell”  of  cells  always  growing  and  sur-
rounding the inner part of the automata (Figure 16).

Figure 15.Neighborhood partition for r = 1, k = 3 outer-totalistic cellular au-
tomata. Number of rules is 315 = 14 348 907.
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Figure 16. (continues).
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Figure 16. Selected  3-color,  radius  r = 1  outer-commutative  cellular  automata
that are noncommutative.

Further Directions7.

One  possible  development  based  on  this  paper  would  be  to  invent  a
method  for  categorizing  and  enumerating  cellular  automata  parti-
tions. The class of commutative cellular automata could also be stud-
ied with more advanced New Kind of Science tools and is well within
the means of current computation capabilities.

Appendix

Wolfram Language CodeA.

The  code  used  for  enumerating  the  cellular  automata  space  and  con-
structing the neighborhood partition diagrams is as follows (note that
f is a global neighborhood function that takes in a list as the neighbor-
hood  argument  and  outputs  an  arbitrary  result  that  goes  into  the  de-
termination of the neighborhood equivalence classes).

����[�_� �����_� ������_] �=

������[{� = � ������ + �}�

���[�����[����� #] �� ���������[{�����[� /@ ������[������ �]]�

�������������[�� ������[�����]� ������[

�����[� /@ ������[������ �]]]] /� ���[�����[����� #] ��

���������[{�����[������[�����]] - �� �����}]]}]]]
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�������[��������_� ����_� �����_� ������_] �=

������{� = � ������ + �}�

����� �������������� �� �� 
� + �

�
�
� + �

�
� �����[����] /�

��������

���������[�����_� ����_� �����_� �_� �_] �=

������[{�������� = ����[������ ������ �]}�

��������[�������[��������� #� ������ �] �� ����� �]]

���������������������[�_� �����_� ����_� �_] �=

���[

������ /@ ���[��������[�� ������[���������[{#}� ���� → �����

��������� → ������ ��������� → ����] � /@ �]]�

��������[������[������ � � + �]� �]]� � �]
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