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This paper continues our computer studies using virtual systems to
examine the behavior of subsystems in a system as a model of the be-
havior of social systems made up of individuals. The subsystems in our
virtual system are global cellular automata (GCAs) as suggested by
Wolfram [1], placed at the vertices of a GCA network (GCAN) as devel-
oped by Chandler [2]. The behavioral results are based on the four
classes of cellular automata output patterns as identified by Wolfram
[3] and are measured by the fraction of ordered GCAs in a GCAN.

Our objective has been to show how our theory of social dynamics
explains this behavior. That theory states that the behavior of a social
system and of our virtual systems model depends upon the external
environment of the system defined as centrality and the internal struc-
ture of the system defined as the four parameters of differentiation,
namely, diversity, connectedness, interdependence, and adaptability  of
the subsystems in the system. In previous papers we have shown the
effect of diversity and connectedness. In this paper we show that behav-
ior becomes more ordered and focused as interdependence and adapt-
ability increase and as centrality decreases.

Introduction1.

This paper continues our study of the variables that change the behav-
ior of virtual discrete systems. Our studies are motivated by the fact
that social systems are also discrete systems—systems made up of indi-
vidual subsystems that change incrementally (not continuously) as a
result of their interaction with each other. Therefore, studying virtual
discrete systems (models with individual cells) can lead to insights
into the causes of change in real social systems.

We continue to publish the application of this theory to real social
systems, including corporations [4, pp. 108–165], indigenous social
systems [5], the evolution of art [4, pp. 165–203], and the history  of
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American jazz [6]. We have also published two papers on virtual sys-
tems, which test part of our theory [7, 8]. We will discuss in this pa-
per the implications of all our experiments using virtual systems to
test our theory.

The Differentiation/Centrality Theory of System Change2.

The ability to study virtual discrete systems depends fundamentally
on the work of Wolfram that showed that the behavior of such sys-
tems falls into four and only four classes—chaos, complexity, and
two kinds of order [3]. In our theory, we use the word focus to de-
scribe the continuum from chaos to order. As output patterns of vir-
tual systems become more fixed and predictable, that is, more or-
dered, we see them as more focused. Similarly, the behavior of social
systems becomes more focused as they move from chaos to order.

We have developed the d/c theory to explain why systems become
more focused. The theory incorporates two social science variables:
differentiation (d) and centrality (c). Differentiation stands for the in-
ternal structure of the system. Centrality describes the external envi-
ronment of the system. Our theory is that greater focus, that is, the
change from chaos through complexity to order, is determined by the
ratio of these two variables: differentiation/centrality, or d/c [4,
p.�51]. As differentiation increases and centrality decreases, the system
becomes more focused.

Differentiation, the system’s internal ability to cope with its exter-
nal environment, can be broken down into four parameters, originally
applied by Page [9] as parameters for describing complex systems, but
used by us to measure differentiation. The four parameters are diver-
sity, connectedness (networks), interdependence, and adaptability
among the individuals in the system. The d/c ratio predicts that the
system should move toward order, become more focused, as each  of
the differentiation parameters increases, provided that centrality is
held constant.

Centrality is the measure of the external environment of the system
and can be thought of as the variety of information presented to the
system. Increasing centrality makes the system less focused and moves
the system back from order toward chaos—as long as differentiation
does not change. The system becomes overwhelmed by the increase in
external information.

Combining the effects of the two variables of differentiation and
centrality, we can say that the behavioral state of a system depends
upon d/c.

In an earlier paper we used virtual systems to model the effect on
focus of increases in diversity, the first differentiation parameter, and
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confirmed that there is a positive relationship between diversity and
focus [7].

In a second paper derived from our experiments with virtual sys-
tems, we investigated the relationship of connectedness to focus. Since
there are many different network structures, the relationship between
connectedness and focus is more complicated. For so-called random
networks, order increases when the number of connections for each
node decreases. In general, however, we found that order increases as
hierarchical structure increases [8].

In each case, centrality was kept constant as the two parameters of
diversity and connectedness were altered. The two papers confirmed
that our virtual systems moved toward order, with increasing differen-
tiation as the system becomes more and more capable of handling
outside information.

In this paper we use virtual discrete models to continue our study
of what happens to focus when the other two parameters of differenti-
ation—interdependence and adaptability—increase. In addition, we
examine the effect on focus of increasing centrality.

We use global cellular automata networks (GCANs) made up  of
interacting global cellular automata (GCAs), as described in detail
below.

Based on the d/c theory, we expect that order will increase with in-
creasing interdependence and ability to adapt but will decrease as we
increase centrality.

In the next section we outline our methodology.

Using Global Cellular Automata Networks to Examine
Adaptability, Centrality, and Interdependence

3.

Our studies are based fundamentally on cellular automata (CAs). A
simple one-dimensional CA uses one of the 256 rules that determine
how a given two-valued (two colors) cell changes its color based on
its current color and that of its immediate neighbors on its left and
right. The CA begins with a row of these cells, and each cell deter-
mines its color for the next time step using the specified rule. For ex-
ample, one rule for a black cell might be that if the two adjoining cells
are black, the cell remains black on the next step. All cells change si-
multaneously at each time step. The pattern developed after a number
of these time steps reveals the behavioral state of the CA and can be
observed to vary in focus from chaos to complexity to the two types
of order. Wolfram presents a detailed examination of these CAs and
the resulting four classes generated [3, p. 231].

There are many other more complicated CAs, including multi-
valued (colored) cells with large numbers of rules and CAs whose
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rules may involve more than just the two nearest neighbors. For all of
these, Wolfram found the same four classes.

In order to test the effect on focus when adaptability, centrality,
and interdependence are increased, we used GCANs, a network con-
sisting of many GCAs. A GCA is a one-dimensional CA that contains
two or more rules rather than just one rule and has a method of deter-
mining which rule applies at each time step [1].

In a GCAN as developed by Chandler [2], the GCA selects which
rule to use based on information from the other GCAs to which it is
connected in the GCAN. Each GCA can be thought of as an individ-
ual subsystem in the GCAN network.

In our experiments on the differentiation parameters of adaptabil-
ity and interdependence, we used GCAs in which individual cells can
be more than two colors (representing wider adaptability, as ex-
plained below), and in which each individual cell in the GCA can be
affected by more than just the cell’s nearest neighbors (increasing in-
terdependence).

As the number of colors or the number of neighbors increases, the
number of rules increases dramatically. If k is the number of colors
and r is the number of neighbors on each side, the number of rules is

kk
(2r+1)

. Thus, for simple CAs with two colors, dependent on only near-
est neighbors, the number of rules is 256, but for three colors there
are 7 625 597 484987 possible rules!

If we do not consider the location of the cells relative to each other
and just consider the average color of the cells under consideration,
the so-called totalistic approach [3 p. 60], we greatly reduce the num-

ber of rules to k(1+(k-1)(2r+1)). If r, the number of neighbors on each
side, is 1, then for two colors there are 16 totalistic rules, for three col-
ors there are 2187, and for four colors there are 1 048 576. In all the
GCA work presented here, we use the totalistic approach.

The GCAN we used was made up of 300 GCAs connected in a
complete network, that is, a network in which every GCA is con-
nected to all other GCAs. Of all network types, this network is the
most likely to produce chaos [8].

Each GCA has two rules randomly selected from a set of all possi-
ble totalistic rules for the given number of colors and the number  of
neighbors. In the study of adaptability and centrality, we use only

nearest neighbors r  1. For each time step, the GCA selects which

rule to use based on information from all the GCAs connected to it,
in this case, all of the GCAs in the complete network. The procedure
involves the repeated use of rule 30, the so-called random number gen-
erating rule, with the initial condition being the midpoint of all the
connected GCAs [2, 7].

42 J. Hay and D. Flynn

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.1.39



In the next sections we explain how the GCAN is modified to test
for the effects of changing interdependence, adaptability, and central-
ity.

Adaptability3.1

We are unable to dynamically model adaptation itself, so we propose
that increasing the number of alternative value choices for individual
cells within a GCA is the same as giving it more ability to adapt.
Hence, we modify the experiment by comparing results for GCAs
with varying numbers of colors to show the effect of adaptability on
changes in behavioral focus.

In each experimental run for a certain number of colors, we ran-
domly select the two rules to be used by each GCA from a fraction of
the maximum number of possible rules. The maximum number  of
rules for a given number k of colors for totalistic GCAs is given by

the formula k[1+(k-1)(2r+1)] for r neighbors on each side. This popula-
tion can still get very large as the number of colors increases. For
three colors and r equal to one, it is 2187, but for four colors it is
1 048 576. We randomly select the rules for each GCA from sets  of
various sizes taken from the entire pool of available rules.

We then run our GCAN so that each GCA takes 150 time steps
and examine the output of each GCA to determine if it is ordered or
chaotic. That is, we combine both Wolfram classes of order, and com-
bine complex and chaotic classes. We then determine the fraction  of
ordered GCAs among the 300 GCAs in the GCAN. We wish to see
what effect increasing the number of colors (adaptability) has on the
fraction ordered.

As adaptability (number of colors) increases, we expect order to in-
crease.

Centrality3.2

For each set of GCA colors, we are able to vary the size of the pool of
numbers from which rules are chosen for each GCA up to the maxi-
mum. Since this pool of rules is the environment of the GCAN, it rep-
resents centrality, which is defined as the information presented to a
system. In selecting pools of increasing size, we are presenting the sys-
tem, each GCA, with increasing centrality for a fixed number of col-
ors (which in the preceding section we used as a measure  of
adaptability).

As centrality goes up for a given number of colors, with more avail-
able rules, the resulting focus should decrease from a more ordered
state toward more chaos.
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Interdependence3.3

To  study  interdependence,  we  do  the  same  experiment  except  for  a
constant  number  of  colors  (adaptability  is  kept  constant)  and  for  a
constant pool of rules (fixed centrality). We vary the number of neigh-
bors  on  each  side  that  are  used  to  determine  the  color  of  each  cell  at
each  time  step  of  the  GCAs  in  the  GCAN.  As  the  number  of  neigh-
bors connected to each cell increases, we are increasing the interdepen-
dence  among  them.  Increasing  the  interdependence  among  the  cells,
while keeping adaptability, centrality, connectedness, and diversity all
constant, should increase order.

In  all  of  these  GCAN  experiments,  we  examine  the  state  of  all  the
GCAs in the GCAN after 150 time steps to find out the fraction of or-
dered  GCAs.  This  does  not  directly  measure  whether  the  state  of  the
total  GCAN  system  has  changed,  but  it  does  indicate  the  effect  of
changing the number of colors (adaptability), the number of available
rules  (centrality),  and  the  number  of  neighbors  (interdependence)  on
the prevalence of the ordered or chaotic state of individual GCAs. 

In  summary,  in  these  experiments  we  can  independently  demon-
strate the effects on focus of changes in adaptability, interdependence
(differentiation), and centrality. 

We  report  the  following  results  of  these  experiments  in  two  sepa-
rate  sections,  one  dealing  with  increasing  adaptability  and  centrality,
the second with the effects of changes in interdependence. 

Results4.

The Effect on System Focus of Increasing Adaptability 

(Differentiation) and Centrality
4.1

Since  we  are  using  the  same  GCAN  to  test  for  the  effects  of  higher
adaptability and higher centrality, we will combine the results. Increas-
ing  the  number  of  rules  in  the  rules  pool—higher  centrality—for  a
fixed  number  of  colors—constant  adaptability  (differentiation)—
should  decrease  order,  while  increasing  the  number  of  colors
(adaptability) for constant centrality should increase order.

Figure 1 is an example of what the resulting patterns look like for a
three-color GCAN. The chaotic result on the left is the result of draw-
ing  from  a  large  rule  pool;  the  ordered  pattern  on  the  right  comes
from a much smaller rule pool. 

Figure  2  combines  the  results  of  the  GCAN  experiments  on
changes in adaptability and centrality. We can see that for a fixed pop-
ulation set of rules, increasing the number of colors increases the frac-
tion ordered, as we would expect, since the colors represent adaptabil-
ity, one of the indicators of differentiation. 
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Second, for a fixed number of colors, increasing the population size
from which the rules are selected decreases the fraction ordered. Note
the size of the rule set is given as a logarithm to base ⅇ.

Figure 1. For a three-color GCA the example on the left is chaotic—large rule
pool, and on the right, ordered—smaller rule pool.
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Figure 2. The effect of the number of rules (centrality) and the number of col-
ors (ability to adapt) on the fraction of ordered GCAs.

Behavior of Discrete Systems 45

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.1.39



The Effect of Increasing Interdependence (Differentiation) on
System Focus

4.2

Figures 3 and 4 show the effect of increasing the number of neighbors
(interdependence) for a given number of colors (fixed adaptability)
and for two differently sized rule pools (fixed centrality).
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Figure 3. The effect of the number of neighbors (interdependence) on the frac-
tion of ordered GCAs for a given number of colors (adaptability). The pool of
numbers (centrality) from which the rules are drawn is 2186.
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Figure 4. The effect of the number of neighbors (interdependence) on the frac-
tion of ordered GCAs for a given number of colors (adaptability). The pool of
numbers (centrality) from which the rules are drawn is 1 048 576.

In each case, increasing interdependence (more neighbors) adds
more order, when adaptability and centrality are held constant.
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Discussion5.

In the first set of experiments, the results demonstrated that the
fraction ordered increased as adaptability (the number of colors)
increased. A greater number of colors increases the number of alter-
nate values for the cells in the GCA, which, in turn, increases the abil-
ity of that GCA to adapt. Thus, as we increase the ability to adapt,
we increase order, as we have outlined previously would be the case
[4, pp. 40–41].

The second experiments showed that when interdependence
(number of neighbors used) increased, so did order. The number  of
neighboring cells considered by each GCA cell at each step involved
more cells in each decision. Using more neighboring cells is equivalent
to individuals in a social system consulting more friends before mak-
ing a decision [4, pp. 39–40].

Combined with our earlier papers on virtual models of differentia-
tion, these results confirm that as the four parameters of differenti-
ation—diversity, connectedness, adaptability, and  interdependence—
increase, so does system focusing, as long as centrality does not vary.

It is also apparent from the first experiments that for any given
number of colors (differentiation), as we increase the size of the pool
of rules from which we select the rules for each GCA—which we ar-
gue represents increasing centrality—the fraction ordered decreases.
The system becomes more chaotic with higher centrality, as long as
the differentiation parameters are held constant. This effect is also ap-
parent when examining the differences between Figures 3 and 4. This
is as we expect, because when centrality increases, the d/c ratio goes
down, representing a loss of focusing.

Conclusion6.

This paper and our two previous papers use global cellular automata
(GCAs) and global cellular automata networks (GCANs) to model
the d/c theory of social focusing.

Our first paper [7] used GCANs to demonstrate that the increase
in the fraction ordered was the result of increasing diversity, often con-
sidered the major factor in keeping systems strong [10]. The implica-
tions for social systems are obvious: having a greater division of labor
in a social system helps keep it more organized.

In our second paper [8], again using GCANs, we studied a wide
range of networks and demonstrated how different networks affect
the fraction of ordered GCAs. With the exception of random net-
works, which are essentially unstructured and chaotic—a good exam-
ple is equal participation small groups—increasing the number of con-
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nections in organized structures produces more order. In general,
more hierarchical networks tend to be more ordered. The ultimate
hierarchy is a dictatorship.

In the present paper, we have shown that increasing the remaining
two parameters of differentiation—interdependence and the ability to
adapt—increases the fraction ordered overall. Thus, with all four
experiments on the four parameters of differentiation, we have demon-
strated that differentiation is more than simple diversity. Simply
having a variety of individuals in a system does not guarantee focus.
Focus also depends upon the other Page parameters of interdepen-
dence and adaptability, as well as the type of network connecting indi-
viduals.

Finally, in this paper, we have shown that increasing centrality de-
creases the fraction ordered. Together, these results support our the-
ory that social focus can be predicted by the d/c ratio.

There are deeper issues of how much computer models can model
social behavior. As with any model, economic or virtual, they require
assumptions, and those assumptions can be challenged.

On the other hand, the big advantage of virtual models is that we
can easily vary one variable at a time, while keeping other variables
constant, to isolate the relationship between independent and depen-
dent variables. Of course, social scientists have long used regression
analysis to isolate relationships statistically, but regression models re-
quire a lot of data, and the resulting statistics are only an indirect way
to draw out relationships. Studying relationships directly may be
more convincing.

Taken together, our papers support the d/c theory, using four indi-
cators for differentiation and one for centrality, along with the depen-
dent variable of focusing type.

The implications for social systems, be they small work groups or
large organization such as corporations or, indeed, entire countries, is
quite profound. In most social systems, it is possible to change some
of the factors we have examined and therefore change the behavioral
output of that social system, whether we wish to increase order or in-
crease creativity by moving from order into a complex state.

We look forward to other tests of our theory, both with real social
systems and with computer models.
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