
A Symbolic Dynamics Perspective of the 
Game of Three-Dimensional Life

Bo Chen
Fangyue Chen

Department of Mathematics, School of Science
Hangzhou Dianzi University
Hangzhou, Zhejiang, China

Genaro J. Martínez

Escuela Superior de Cómputo, Instituto Politécnico Nacional
México D. F., México
and
International Center of Unconventional Computing
University of the West of England
BS16 1QY Bristol, United Kingdom

Danli Tong

College of International Business
Zhejiang Yuexiu University of Foreign Languages 
Shaoxing, China

The  games  of  three-dimensional  life  are  the  extension  models  of
Conway’s  Game  of  Life.  Under  the  framework  of  symbolic  dynamics,
we undertake an analysis of the complexity of gliders in games of three-
dimensional  life  rules  by  the  directed  graph  representation  and  transi-
tion matrix. More specifically, the gliders here are topologically mixing
and  possess  positive  topological  entropy  on  their  concrete  subsystems.
Finally,  the  method  presented  in  this  paper  is  also  applicable  to  other
gliders in different D-dimensions. 

Introduction1.

Conway’s Game of Life, devised by John Horton Conway in 1970, is
a  two-dimensional  cellular  automaton  (CA)  endowed  with  the  emer-
gence of self-organization [1–4]. Ever since its inception, the Game of
Life has attracted much interest because of the surprisingly evolution-
ary  patterns.  For  some  of  the  many  research  results  regarding  the
Game  of  Life,  see  [5–16]  and  references  therein.  In  particular,  Bak
et�al.  [5–7]  used  some  concepts  of  statistical  mechanics  to  study  its
evolution and claimed it is a system presenting self-organized critical-
ity  without  any  conserved  quantity,  Garcia  et  al.  [8]  explored  some
statistical properties of its dynamics, Rendell [9, 10] conceived its spe-
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cific configurations that can simulate the special universal Turing ma-
chines, and Reia and Kinouchi [11] applied the single-site mean-field
approximation to explain the critical density. In addition, a series  of
its variants are designed according to the diversified tilings (aka tessel-
lations) or evolution rules [12–16].

With the development of computer technology, a growing number
of three-dimensional cellular automata (CAs) are conceived for the
sake of practical problems, such as prediction of solidification grain
structure [17], photoresist-etching process simulation [18], HIV infec-
tion analysis [19], effect analysis of microstructure on quasi-brittle
properties [20], prediction of granular shear flow [21], encryption
algorithm design of digital images [22], and others.

Interestingly, from the perspective of theoretical research, Bays
[23–25] has unearthed a host of rules endowed with gliders by intro-
ducing the Game of Three-Dimensional Life. A particular rule defines
a “Game of Life” if it satisfies two criteria: first, at least one glider ex-
ists and must occur “naturally” under random initial configurations
of live cells; second, all patterns in the rule must exhibit bounded
growth. Among the numerous CA rules, the ones exhibiting plentiful
gliders and glider collisions have received special attention. They dis-
play complex behaviors via the interactions of gliders from random
initial conditions. In general, gliders are localized structures of non-
quiescent and non-ether patterns (ether represents a periodic back-
ground) translating along the automaton’s lattice.

In this paper, we focus on providing an analytical method that is
applicable to the gliders in three-dimensional CAs. The rest of this pa-
per is organized as follows: Section 2 introduces some dynamical
properties of symbolic space and presents the definitions of chaos and
topological entropy. Section 3 demonstrates the chaotic symbolic dy-
namics of gliders in the Game of Three-Dimensional Life. Finally, Sec-
tion 4 highlights the main results.

The Preliminaries2.

For D-dimensional coordinate space ZD, each coordinate is marked

as a vector of integers l

 (ε1, ε2, … , εD). Its maximum absolute

value of the components l

  max{ε1, ε2, … , εD}. Then, the

D-dimensional symbolic space is defined by SZ
D


X  (Xl
) Xl

 ∈ S, l

∈ ZD, S  0, 1, … , k - 1. A feasible metric

d on SZ
D
is defined as
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d(X, X′)  max
i, j∈Z

1

l

 + 1

Xl
 ≠ X

l
′ ,

where X  (Xl
), X′  X

l
′ ∈ SZ

D
.

Let L  θ1, θn1
⨯θ1

(2), θn2
(2)⨯⋯⨯θ1

(D), θnD
(D) be the interval of l


,

where 1 ≤ i ≤ D, εi ∈ θ1
(i), θni

(i) and ni ∈ Z is the length of each inter-

val of εi. One n1⨯n2…⨯nD-word block in SZ
D
is a D-dimensional ma-

trix, denoted by

θ1, θ1
(2),… , θ1

(D)aL ≐ aθ1, θn1 
 aθ1(2), θn2

(2) ⋯ aθ1(D), θnD
(D),

where aθ1(i),θni
(i)  aθ1(i)

, aθ2(i)
, … , aθni

(i) , 1 ≤ i ≤ D. For θ1, θ1
(2),… , θ1

(D)aL,

the parameter θ1, θ1
(2), … , θ1

(D) is regarded as the initial coordinate

of the first vertex of a D-dimensional matrix, and the matrix increases
its area to L along the direction of each axis. For conven-
ience, θ1, θ1

(2),… , θ1
(D)aL is expressed simply as aL in the following.

A point Xl
 ∈ aL if and only if Xεi

∈ aθ1(i),θni
(i), 1 ≤ i ≤ D. In SZ

D
, the

cylinder set of an n1⨯n2…⨯nD-word block [a]L ∈ SZ
D

is

[a]L  X ∈ SZ
D

XL  aL. Thus, the cylinder sets generate a topol-

ogy on SZ
D
and form a countable basis for this topology. Therefore,

each open set is a countable union of cylinder sets. Endowed with this

topology, SZ
D
is compact, totally disconnected, and Hausdorff space.

For any nonzero vector n  (n1, n2, … , nD) ∈ SZ
D
, the shift map σ is

introduced as

[σn(X)]l
  Xl


+n  Xε1+n1, ε2+n2,… , εD+nD

for any X ∈ SZ
D
. In SZ

D
, let the map F : SZ

D
→ SZ

D
be a Boolean func-

tion of CA. Following [26, 27], some terminology and notations are
presented as follows.

Definition 1. The map F is chaotic on SZ
D
in the sense of Li–Yorke if

lim
n→∞

sup�d(Fn(x), Fn(y)) > 0, ∀ x, y ∈ SZD , x ≠ y;1.

lim
n→∞

inf�d(Fn(x), Fn(y))  0, ∀ x, y ∈ SZD .2.

We call X ∈ SZ
D
an n-period point of F if there exists the integer

n > 0 such that Fn(X)  X. Let P(F) be the set of all n-period points;

that is, P(F)  X ∈ SZ
D
∃ n > 0, Fn(X)  X. In particular,  if

A Symbolic Dynamics Perspective of the Game of Three-Dimensional Life 53

Complex Systems, 25 © 2016 Complex Systems Publications, Inc. 
https://doi.org/10.25088/ComplexSystems.25.1.51



F(X)  X  for  some  X ∈ SZ
D
,  then  X  is  called  a  fixed  point.  The  map

F is said to be topologically transitive if for any non-empty open sub-

sets  U  and  V  of  SZ
D

 there  exists  a  natural  number  n  such  that

Fn(U)⋂V ≠ ∅. The set P(F) is called a dense subset of SZ
D

 if, for any

X ∈ SZ
D

 and  any  constant  ε > 0,  there  exists  an  X′ ∈ P(F)  such  that
d(X, X′) < ε. The map F is sensitive to initial conditions if there exists

a  δ > 0  such  that,  for  X ∈ SZ
D

 and  for  any  domain  B(X)  of  X,  there
exists  an  X′ ∈ B(X)  and  a  natural  number  n  such  that
d(Fn(X), Fn(X′)) > δ. 

Definition 2.  The  map  F  is  chaotic  on  SZ
D

 in  the  sense  of  Devaney  if:

(1)�F  is  topologically  transitive;  (2)  P(F)  is  a  dense  subset  of  SZ
D
;  and

(3) F is sensitive to initial conditions. 

The  set  R ⊂ SZ
D

 is  called  an  (n, ε)-spanning  set  if  and  only  if  for

any  X ∈ SZ
D

 and  any  constant  n > 0,  ε > 0  there  exists  an  X′ ∈ R

such  that  dFi(X), Fi(X′) ≤ ε, i  0, 1, … , n - 1.  Rnε, S
ZD

, F  de-

notes the infimum of the cardinal number of an (n, ε)-spanning set of

F.  Similarly,  T ⊂ SZ
D

 is  called  an  (n, ε)-disjoint  set  if  and  only  if  for
any  X, X′ ∈ T  and  X ≠ X′

 there  exists  0 ≤ i < n  such  that

dFi(X), Fi(X′) > ε.  Tnε, S
ZD

, F  denotes  the  supremum  of  the  cardi-

nal  number  of  an  (n, ε)-disjoint  set  with  F.  Bowen’s  topological  en-
tropy is defined as follows:

ent(F)  lim
ε→∞

lim
n→∞

sup
1

n
log�Rnε, S

ZD
, F 

lim
ε→∞

lim
n→∞

sup
1

n
log�Tnε, S

ZD
, F.

In addition, F is topologically mixing if there exists a natural number
N such that Fn(U)⋂V ≠ ∅ for all n ≥ N. 

Theorem 1.

The  chaos  of  F  in  the  sense  of  Li–Yorke  can  be  deduced  from  positive
topological entropy. 

1.

The  chaos  of  F  in  the  sense  of  both  Li–Yorke  and  Devaney  can  be  de-
duced from topologically mixing. 

2.

A set U ⊆ SZ
D

 is F-invariant if F(U) ⊆ U and strongly F-invariant if
F(U)  U.  If  U  is  closed  and  F-invariant,  then  (U, F)  or  simply  U  is

called a subsystem of F. A set U ⊆ SZ
D

 is an attractor if there exists a
nonempty  clopen  F-invariant  set  U′

 such  that  ⋂n≥O Fn(U′)  U.  For

instance,  the  fixed-point  set  and  the  periodic-point  set  are  two  types
of simple attractors. Furthermore, the limit set of F actually defines a
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global attractor Ω  ⋂n≥O FnSZ
D
. Let ℬ denote a set of some finite

word blocks over S. And Λℬ is the set of the X ∈ SZ
D
, which is com-

posed of the whole elements in ℬ. Thus, ℬ is called the determinative

system of Λℬ and Λℬ is a subsystem of SZ
D
, σ. For a closed invari-

ant subset Λℬ ⊆ SZ
D
, Λℬ is called a subshift of σ. If there exist finite

word blocks in ℬ, Λℬ is called a finite-type subshift. It is of interest

that a special 2-order finite-type subshift can be constructed accord-
ing to any order finite-type subshift, and they are topologically conju-
gate. Subsequently, the directed graph representation and transition
matrix can be introduced as the effective tools of Λℬ.

Dynamics of the Game of Three-Dimensional Life3.

Following [23–25], the notation of each rule is denoted by E1, E2, …

/F1, F2, … ; the Ei and Fi are listed in ascending order. Here, the Ei
specifies the number of touching neighbors required to keep a living
cell alive at the next generation (the “safe environment” range), and
the Fi gives the number of touching neighbors required to bring a cur-

rently dead cell to life at the next generation (the “fertility” range).
In the following, we focus our attention on the discussion of the
symbolic dynamics of some representative gliders. Figure 1 illustrates
their configuration patterns. In addition, the gliders belong to differ-

ent rules; that is, the glider a belongs to rule 5,76, the glider b

belongs to rule 2,35, the glider c belongs to rule 3,85, the glider d

belongs to rule 8,5, the glider e belongs to rule 3,7/5, and the glider
f belongs to rule 2,5/5.

The three-dimensional symbolic space is

SZ
3
 X  Xk,i,j Xk,i,j ∈ S, k, i, j ∈ Z

and a metric d in SZ
3
is

d(X, X′)  max
k, i, j∈Z

1

maxk, i, j + 1
Xk,i,j ≠ Xk,i,j

′ ,

where X  Xk,i,j, X
′  Xk,i,j

′  ∈ SZ
3
. The shift map σ is

σp, s, t(X)k, i, j  Xk+p, i+s, j+t

for any X ∈ SZ
3
, k, i, j ∈ Z.
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Figure 1. The  configuration  patterns  of  gliders.  The  same  glider  presents,  if
needed,  in  different  directions  of  observing  angles.  The  arrows  (next  to  glid-
ers) roughly display the shift directions of gliders. 

In  SZ
3
,  one  q⨯m⨯n-word  block  is  a  q⨯m⨯n-order  matrix,  denot-

ed by 

aq⨯m⨯n  a1,m⨯n  a2,m⨯n ⋯  aq,m⨯n 

 a1, 1, 1  …  a1, 1, n 

   …   

 a1,m, 1  …  a1,m, n 



 a2, 1, 1  …  a2, 1, n 

   …   

 a2,m, 1  …  a2,m, n 

⋯

 aq, 1, 1  …  aq, 1, n 

   …   

 aq,m, 1  …  aq,m, n 

,

where  ak, i, j ∈ S, 1 ≤ k ≤ q, 1 ≤ i ≤ m, 1 ≤ j ≤ n.  In  SZ
3
,  the

cylinder  set  of  a  q⨯m⨯n-word  block  is  [a]q⨯m⨯n ∈ SZ
3
.  The  evolution

function  of  a  three-dimensional  CA  is  specified  as  F : SZ
3
→ SZ

3
,

S  0, 1.  The  local  rule  Fk, i, j  of  the  Game  of  Three-Dimensional

Life has 27 inputs and one output; that is,

[F(X)]k, i, j  NXk-1, i-1, j-1, Xk-1, i-1, j, Xk-1, i-1, j+1,

Xk-1, i, j-1, Xk-1, i, j, Xk-1, i, j+1, Xk-1, i+1, j-1, Xk-1, i+1, j,
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Xk-1, i+1, j+1, Xk, i-1, j-1, Xk, i-1, j, Xk, i-1, j+1, Xk, i, j-1,

Xk, i, j, Xk, i, j+1, Xk, i+1, j-1, Xk, i+1, j, Xk, i+1, j+1,

Xk+1, i-1, j-1, Xk+1, i-1, j, Xk+1, i-1, j+1, Xk+1, i, j-1, Xk+1, i, j,

Xk+1, i, j+1, Xk+1, i+1, j-1, Xk+1, i+1, j, Xk+1, i+1, j+1.

Obviously, for a concrete rule, there are 227 output results  of
[F(X)]k, i, j in all.

Subsequently, the q⨯m⨯n-block transformation B〈q⨯m⨯n〉 is de-

fined�as

Yk, i, j  
k′1

q


i′1

m


j′1

n

X(k-1)q+k′, (i-1)m+i′, (j-1)n+j′ · 2
(k′-1)mn+(i′-1)n+j′-1.

Let S

 Yk, i, j be a new symbolic set. After introducing the extended

space  S
Z3

 Y Yk, i, j ∈ S

, k, i, j ∈ Z and the particular distance, it

is demonstrated that the new three-dimensional CA has 2qmn states.

Let G refer to the new evolution function, and Yk, i, j  G(X)k, i, j has

227qmn output results. Furthermore, the block transformation B〈q⨯m⨯n〉

is a  homeomorphism, and the evolution function G is topologically
conjugate with F.

In the following, we explore in detail the symbolic dynamics of the
glider  d. For different directions of observing angles, the glider d can
be engineered to 23 other versions whose moving directions may be
different. As they possess the same dynamical behaviors (topologically
conjugate), we only select one case, whose two periodic patterns are
presented in Figure 2.

Figure 2. A simple schematic diagram of three coordinate axes and the two pe-
riodic patterns of the glider d. The positive directions are prescribed along the
H, V, and I axes, and each unit is given a concrete coordinate.

Because of the periodic shift characteristic, each glider is expressed

as several word blocks in SZ
3
. For instance, the glider d has two
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periodic  configurations,  which  are  distinguished  as  two  4⨯3⨯3-
word  blocks.  However,  the  appropriate  blocks,  especially  at  larger
sizes,  should  be  chosen  in  order  to  prevent  the  adjacent  blocks  from
destroying each other by evolution (add an extra layer of the elements
0  on  the  exterior  of  the  glider’s  cube).  In  particular,  the  glider  d  is
expressed  as  two  6⨯5⨯5-word  blocks.  To  some  extent,  two
6⨯5⨯5-word  blocks  are  mutually  independent.  Then,  by  intro-
ducing  the  block  transformation  B〈6⨯5⨯5〉,  each  Yk, i, j  over

S

 0, 1, … , 2150 - 1 stands for a 6⨯5⨯5-word block (k, i, j)X6⨯5⨯5 

X1, 5⨯5 X2, 5⨯5 ⋯ X6, 5⨯5  over  S  0, 1.  It  is  of  importance  to

mention  that  the  elements  316238 850  and  4 311252 000  actually
refer  to  the  decimal  notations  of  the  glider  d  in  two  periods,  respec-
tively.  For  instance,  when  Yk, i, j  316 238850,  X1, 5⨯5 

X6, 5⨯5  05⨯5, which is a zero matrix, 

X2,5⨯5 == X5,5⨯5 ==

0 0 0 0 0

0 0 1 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

and

X3,5⨯5 == X4,5⨯5 ==

0 0 0 0 0

0 0 1 1 0

0 0 1 1 0

0 0 1 0 0

0 0 0 0 0

.

When Yk, i, j  4 311252 000,

X1,5⨯5 == X6,5⨯5 == 05⨯5, X2,5⨯5 == X5,5⨯5 ==

0 0 0 0 0

0 0 0 0 0

0 0 0 1 0

0 0 0 0 0

0 0 0 0 0

and

X3,5⨯5 == X4,5⨯5 ==

0 0 0 0 0

0 0 1 1 0

0 1 1 1 0

0 0 0 0 0

0 0 0 0 0

.
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Proposition 1. For the glider d, there exists a subset

Λℬ4
 Y ∈ SZ

3

(k, i, j)Y3⨯3⨯3 ∈ ℬ4, ∀ k, i, j ∈ Z,

such that G10(Y) Λℬ4

 σ0, 1, -1(Y) Λℬ4

, ∀ Y ∈ Λℬ4
, where

(k, i, j)Y3⨯3⨯3 is

Yk,i,j Yk,i,j+1 Yk,i,j+2

Yk,i+1,j Yk,i+1,j+1 Yk,i+1,j+2

Yk,i+2,j Yk,i+2,j+1 Yk,i+2,j+2



Yk+1,i,j Yk+1,i,j+1 Yk+1,i,j+2

Yk+1,i+1,j Yk+1,i+1,j+1 Yk+1,i+1,j+2

Yk+1,i+2,j Yk+1,i+2,j+1 Yk+1,i+2,j+2



Yk+2,i,j Yk+2,i,j+1 Yk+2,i,j+2

Yk+2,i+1,j Yk+2,i+1,j+1 Yk+2,i+1,j+2

Yk+2,i+2,j Yk+2,i+2,j+1 Yk+2,i+2,j+2

and ℬ4 is

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;

k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,

where ki  0, 316 238850, 4 311 252 000 and i  1, 2, 3, 4. More-

over, Λℬ4
is a subshift of finite type of S

Z3

, σ0,1,-1.

From the mathematical point of view, directed graph theory pro-
vides a powerful tool for studying the subshift of finite type. A funda-
mental method for constructing finite shifts starts with a finite
directed graph and produces collections of bi-infinite walks (i.e.,
matrices of nodes) on the graph. A directed graph (v, E) consists of
a finite set v of vertices (or states) together with a finite set E of edges.
A finite path P  v1 → v2 → ⋯ → vm on a graph (v, E) is a finite

block of vertices vi from . The length of P is P  m. It is addressed

that Λℬ4
can be described by a finite directed graph ℬ4

 (ℬ4, E),

where each vertex is a 3⨯3⨯3-word block in ℬ4. Each edge e ∈ E

starts at a block denoted by (k, i, j)Y3⨯3⨯3 ∈ ℬ4 and terminates at the
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block (k, i, j)Y3⨯3⨯3
′

 if and only if 

Yk,i,j+1 Yk,i,j+2

Yk,i+1,j+1 Yk,i+1,j+2

Yk,i+2,j+1 Yk,i+2,j+2



Yk,i,j
′ Yk,i,j+1

′

Yk,i+1,j
′ Yk,i+1,j+1

′

Yk,i+2,j
′ Yk,i+2,j+1

′

and

Yk+1,i,j+1 Yk+1,i,j+2

Yk+1,i+1,j+1 Yk+1,i+1,j+2

Yk+1,i+2,j+1 Yk+1,i+2,j+2



Yk+1,i,j
′ Yk+1,i,j+1

′

Yk+1,i+1,j
′ Yk+1,i+1,j+1

′

Yk+1,i+2,j
′ Yk+1,i+2,j+1

′

and

Yk+2,i,j+1 Yk+2,i,j+2

Yk+2,i+1,j+1 Yk+2,i+1,j+2

Yk+2,i+2,j+1 Yk+2,i+2,j+2



Yk+2,i,j
′ Yk+2,i,j+1

′

Yk+2,i+1,j
′ Yk+2,i+1,j+1

′

Yk+2,i+2,j
′ Yk+2,i+2,j+1

′

.

Each  element  of  Λℬ4
 can  be  represented  as  a  certain  path  on  the

graph ℬ4
. All bi-infinite walks on the graph constitute the closed in-

variant  subsystem  Λℬ4
.  The  finite  directed  graph  of  Λℬ4

 is  shown  in

Figure  3.  The  3⨯3⨯3-word  blocks  of  vertices  are  presented  in  Ap-
pendix A in detail. 

It can be extrapolated accurately that the finite directed graph ℬ4

only consists of different cycles. A cycle is a path that starts and termi-
nates  at  the  same  vertex.  When  one  cycle  has  repeated  vertices,  it  is
called  the  reducible  cycle;  otherwise,  it  is  called  the  irreducible  cycle.
Any  cycle  can  be  compounded  by  the  irreducible  cycle.  The  period
with  period  points  of    on  Λℬ4

 is  the  length  of  the  cycle.  The  irre-

ducible  cycle  can  produce  the  irreducible  period  point  of  .  As  the
length  of  the  irreducible  cycle  is  less  than  the  number  of  vertices,  
has finite different periods. 

For example, the irreducible cycle

C : v2 →

v31 → v5 → v41 → v15 → v70 → v17 → v77 → v24 → v98 →

v18 → v78 → v25 → v99 → v19 → v82 → v2

in ℬ4
 can  produce  a  160-period  point  Y,  which  consists  of  a

16⨯16⨯16-word block 

Y16⨯16⨯16 

{(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16) /
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

(P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P1) /

(P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P1, P2) /

(P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P1, P2, P3) /

(P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P1, P2, P3, P4) /

(P6, P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P1, P2, P3, P4, P5) /

(P7, P8, P9, P10, P11, P12, P13, P14, P15, P16, P1, P2, P3, P4, P5, P6) /

(P8, P9, P10, P11, P12, P13, P14, P15, P16, P1, P2, P3, P4, P5, P6, P7) /

(P9, P10, P11, P12, P13, P14, P15, P16, P1, P2, P3, P4, P5, P6, P7, P8) /

(P10, P11, P12, P13, P14, P15, P16, P1, P2, P3, P4, P5, P6, P7, P8, P9) /

(P11, P12, P13, P14, P15, P16, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10) /

(P12, P13, P14, P15, P16, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11) /

(P13, P14, P15, P16, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12) /

(P14, P15, P16, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13) /

(P15, P16, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14) /

(P16, P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, P11, P12, P13, P14, P15)}.

v1

v2

v3

v4

v5

v6

v7 v8

v9
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v11
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v21
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v23
v24

v25

v26

v27

v28

v29

v30

v31

v32

v33 v34

v35

v36

v37v38

v39

v40

v41

v42
v43

v44
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v46 v47 v48 v49
v50

v51

v52

v53

v54

v55 v56

v57

v58

v59

v60
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Figure 3. Graph representation for the subsystem Λℬ4
 of the glider d. 
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Let Pj, 1 ≤ j ≤ 16 be the different 16-bit column vectors, 

P1  0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2T,

P2  0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0T,

P3  0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0T,

P4  0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0T,

P5  0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0T,

P6  1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0T,

P7  0, 1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1T,

P8  1, 0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0T,

P9  0, 2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1T,

P10  2, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0T,

P11  0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2T,

P12  1, 0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0T,

P13  0, 2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1T,

P14  2, 0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0T,

P15  0, 2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2T,

P16  2, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0T,

where  1  stands  for  316 238850,  2  stands  for  4 311252 000,  and  T
refers to the transposed operation.

It is of interest that the irreducible cycles actually define a series of
minimal  sets  of  Λℬ4

.  The  minimal  sets  imply  the  smallest  subsystems

of Λℬ4
, which are endowed with simple dynamical properties. As an il-

lustration,  the  irreducible  cycle  C  defines  a  minimal  set  Mℬ4
⊂ Λℬ4

.

Then  G10
Mℬ4

 is  topologically  transitive,  yet  has  zero  topological  en-

tropy. 

Let  S  {R0, R1, … , R105, R106}  be  a  new  symbolic  set,  where

Ri, i  0, … , 106  stand  for  elements  of  ℬ4,  respectively.  Then  a  new

symbolic space S
Z3

 can be constructed on S. 
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Denote by 

ℬ4 
Rk,i,j Rk,i,j+1

Rk,i+1,j


Rk+1,i,j Rk,i,j 

(k,i,j)Y3⨯3⨯3, Rk,i,j+1  Rk,i+1,j  Rk+1,i,j 

(k,i,j)Y3⨯3⨯3
′  ∈ S, s.t.

Yk,i,j+1 Yk,i,j+2

Yk,i+1,j+1 Yk,i+1,j+2

Yk,i+2,j+1 Yk,i+2,j+2



Yk,i,j
′ Yk,i,j+1

′

Yk,i+1,j
′ Yk,i+1,j+1

′

Yk,i+2,j
′ Yk,i+2,j+1

′

�and�

Yk+1,i,j+1 Yk+1,i,j+2

Yk+1,i+1,j+1 Yk+1,i+1,j+2

Yk+1,i+2,j+1 Yk+1,i+2,j+2



Yk+1,i,j
′ Yk+1,i,j+1

′

Yk+1,i+1,j
′ Yk+1,i+1,j+1

′

Yk+1,i+2,j
′ Yk+1,i+2,j+1

′

�and�

Yk+2,i,j+1 Yk+2,i,j+2

Yk+2,i+1,j+1 Yk+2,i+1,j+2

Yk+2,i+2,j+1 Yk+2,i+2,j+2



Yk+2,i,j
′ Yk+2,i,j+1

′

Yk+2,i+1,j
′ Yk+2,i+1,j+1

′

Yk+2,i+2,j
′ Yk+2,i+2,j+1

′

.

Further, the two-order subshift Λℬ4
 of σ is defined by 

Λℬ4
 R ∈ S

Z3

Rk, i, j ∈ S,

Rk, i, j  Rk, i, j+1 

Rk, i+1, j   


Rk+1, i, j      

          

≺ ℬ4, ∀ i, j ∈ Z .

Define  a  map  from  Λℬ4
 to  Λℬ4

 as  follows:  π :Λℬ4
→ Λℬ4

,  Y ↦ R,

where  Rk, i, j (k, i, j) (Y3⨯3⨯3),  ∀ k, i, j ∈ Z.  Then  it  follows  from  the

definition  of  Λℬ4
 that  for  any  Y ∈ Λℬ4

,  we  have  π(Y) ∈ Λℬ4
;  namely,

πΛℬ4
 ⊆ Λℬ4

.  It  can  easily  be  checked  that  π  is  a  homeomorphism

and  π∘σ  σ∘π.  Therefore,  the  topologically  conjugate  relationship

between Λℬ4
, σ and a two-order subshift of finite type Λℬ4

, σ is es-

tablished.  It  is  easy  to  calculate  the  transition  matrix  ℳ  of  the  sub-
shift Λℬ4

. Then ℳ is positive if all of its entries are non-negative, irre-

ducible if ∀ i, j there exists n such that ℳij
n > 0, and aperiodic if there

exists N such that ℳij
n > 0, n > N, ∀ i, j.
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Proposition 2. 

The nonwandering set ΩG10
Λℬ4

  Λℬ4
.1.

G10
Λℬ4

 is topologically transitive. 2.

The topological entropy of G10
Λℬ4

 is positive. 3.

G10
Λℬ4

 is topologically mixing. 4.

Proof.

The elements of ℳn
 are marked as ℳi, j

n , 1 ≤ i, j ≤ 107. Here each ℳi, j
n

shows  the  number  of  all  the  paths  from  vertex  vi  to  vertex  vj  whose

length  is  n.  Thus,  ℳi, i
n

 is  the  number  of  all  the  cycles  of  the  ith  vertex

with length n. As ℳi, i
n

 is positive for n  8, it is easy to verify that each

vertex has a particular cycle. 

1.

Here  σ0, 1, -1  is  topologically  transitive  on  Λℬ4
 if  the  transition  matrix

ℳ is irreducible. Further, the irreducibility of ℳ indicates that ℳ + ℐ is
aperiodic,  where  ℐ  is  the  107⨯107  identity  matrix.  Meanwhile,  it  is
easy to verify that (ℳ + ℐ)n is positive for n ≥ 8. Hence, G10

 is topolog-
ically transitive on Λℬ4

. 

2.

Let  ρ(ℳ)  be  the  maximum  positive  real  root  λ*  of  the  characteris-
tic  equation  of  ℳ.  The  characteristic  equation  is
-λ101(λ6 - λ5 - 2λ4 + 2λ3 - 2λ2 + 2λ - 2)  0.  It  can  be  calculated  that
ρ(ℳ) = 1.7654.  Recall  that  two  topologically  conjugate  systems  have
the same topological entropy and the topological entropy of σ0, 1, -1  on

Λℬ4
 equals  log�ρ(ℳ).  Therefore  the  topological  entropy  of  G10

Λℬ4
 is

log ρ(ℳ) = 0.568376.

3.

A two-order subshift of finite type is topologically mixing if and only if
its  transition  matrix  is  irreducible  and  aperiodic.  Meanwhile,  it  is  easy
to  verify  that  ℳn

 is  positive  for  n ≥ 12.  This  implies  that  ℳ  is  irre-
ducible and aperiodic. 

4.

Theorem 2.  G10
Λℬ4

 is  chaotic  in  the  sense  of  both  Li–Yorke  and

Devaney.

Moreover,  the  three-dimensional  shift  map  can  be  decomposed

into  three  one-dimensional  shift  maps  σp
I ,  σs

H,  and  σt
V.  For  instance,

the decomposition form is expressed as 

σp, s, t(Y)k, i, j ≐ σp
I (Y)k, i, j + σs

H(Y)k, i, j + σt
V(Y)k, i, j.

Thus,  a  discussion  of  the  symbolic  dynamics  of  the  shift  configura-

tions  in  three-dimensional  CAs  can  be  implemented  respectively  to

σp
I ,  σs

H,  and  σt
V,  whose  relevant  subsystems  are  found  in  one-dimen-

sional  symbolic  string  space  SZ  ⋯S⨯S⨯S⋯.  The  metric  d


 in  SZ  is
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defined as 

d

(y, y′)  max

i∈Z

1

max{i} + 1
yi ≠ yi

′ ,

where  y, y′ ∈ SZ.  In  SZ,  an  n-word  block  is  a  symbolic  string
(a1, a2, … , an).  For  the  glider  d,  in  order  to  understand  the  symbolic

dynamical properties of σ in three-dimensional subsystems, three one-
dimensional subsystems are analyzed as follows.

Corollary 1. The shift of the glider d along the I axis is σ0
I
 for each G10.

There exists a subset 

Λℬ4
I  y ∈ SZ i y[3]  (yi, yi+1, yi+2) ∈ ℬ4

I , ∀ i ∈ Z,

ℬ4
I  0, k1, 0, k2, 0, k3,

where ki  0, 316 238850, 4 311 252 000 and i  1, 2, 3.

Corollary 2.  The  shift  of  the  glider  d  along  the  H  axis  is  σ1
H

 for  each

G10. There exists a subset 

Λℬ4
H  y ∈ SZ i y[3]  (yi, yi+1, yi+2) ∈ ℬ4

H, ∀ i ∈ Z,

ℬ4
H  0, k1, 0, k2, 0, k3,

where  ki  0, 316 238850, 4 311 252 000  and  i  1, 2, 3.  ℬ4
H

 is  the

determinative  system  of  Λℬ4
H ,  which  is  a  configuration  set.  Λℬ4

H  is  a

subshift of finite type of S
Z
, σs

H. σ1
H

Λℬ4
H

 is topologically mixing and

possesses positive topological entropy.

Corollary 3.  The  shift  of  the  glider  d  along  the  V  axis  is  σ-1
V

 for  each

G10. There exists a subset 

Λℬ4
V  y ∈ SZ i y[3]  (yi, yi+1, yi+2) ∈ ℬ4

V, ∀ i ∈ Z,

ℬ4
V  0, k1, 0, k2, 0, k3,

where  ki  0, 316 238850, 4 311 252 000  and  i  1, 2, 3.  σ-1
V

Λℬ4
V

 is

topologically mixing and possesses positive topological entropy.

According  to  the  topological  conjugation  relation  between  G  and
F, the following equation can be easily obtained. 

Proposition 3. 

G10
Λℬ4

(Y)  σ0, 1, -1(Y) ⇔ F10 ΛB4
′
(X)  σ0, 5, -5(X),

where ΛB4
′  is the corresponding subsystem of SZ

3
 according to Λℬ4

.
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Consequently,  similar  to  G10
Λℬ4

,  it  is  relatively  trivial  to  investi-

gate  the  dynamical  properties  of  F10 ΛB4
′
.  Actually,  F10 ΛB4

′
(X) 

σ0, 5, -5(X) can be reduced to F2 ΛB4
′
(X)  σ0, 1, -1(X). 

Proposition 4.

The nonwandering set ΩF2 ΛB4
′
  ΛB4

′ . 1.

F2 ΛB4
′
 is topologically transitive. 2.

The topological entropy of F2 ΛB4
′
 is positive. 3.

F2 ΛB4
′
 is topologically mixing. 4.

Theorem 3.  F2 Λℬ4
′

 is  chaotic  in  the  sense  of  both  Li–Yorke  and

Devaney.

Then the dynamics of a series of gliders can be analyzed, and their
dynamical  characteristics  are  listed  in  Table  1.  It  is  to  be  noted  that
the  shift  functions  have  positive  topological  entropy,  as  well  as  being
topologically  mixing  in  their  subsets  Λℬj

,  j  1, … , 6.  Their  corre-

sponding  decimal  code  sets  of  determinative  systems  ℬj  are  given  in

Appendix B. 
In addition, there exists a growing number of the other subsystems

of  the  glider  d.  First,  the  block  transformation  B〈6ξ⨯5ξ⨯5ξ〉  is  intro-

duced as 

Yk, i, j  
k′1

6ξ


i′1

5ξ


j′1

5ξ

X(k-1)6ξ+k′, (i-1)5ξ+i′, (j-1)5ξ+j′ · 2
25(k′-1)ξ2+(i′-1)5ξ+j′-1,

where  ξ  2, 3, 4, ….  Similarly,  let  S〈6ξ⨯5ξ⨯5ξ〉  Yk, i, j  be  the  new

symbolic  set.  After  introducing  the  corresponding  extended  space

S〈6ξ⨯5ξ⨯5ξ〉
Z3

 and  the  particular  distance,  we  can  capture  an  unlimited

number of three-dimensional CAs of 2150ξ
3
-states. Let G〈6ξ⨯5ξ⨯5ξ〉  refer

to the new evolution function and G〈6ξ⨯5ξ⨯5ξ〉(Y)k, i, j  has 2
4050ξ3

 out-

put  results  in  all.  It  can  be  extrapolated  accurately  that  the  block
transformation  B〈6ξ⨯5ξ⨯5ξ〉  is  a  homeomorphism  and  the  evolution

function G〈6ξ⨯5ξ⨯5ξ〉 is topologically conjugate with F.
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Type Rule Period Block Shift Decomposition

a 5,7/6 4 5⨯5⨯4 

G20
Λℬ1

(Y)  σ0,1,-1(Y) σ0
I
 Period-1

⇕ σ1
H

 Bernoulli shift

F20 Λℬ1
′
(X)  σ0,5,-5(X) σ-1

V
 Bernoulli shift

b 2,3/5 4 6⨯6⨯6 

G12
Λℬ2

(Y)  σ1,0,0(Y) σ1
I
 Bernoulli shift

⇕ σ0
H

 Period-1

F12 Λℬ2
′
(X)  σ6,0,0(X) σ0

V
 Period-1

c 3,8/5 2 7⨯7⨯6 

G14
Λℬ3

(Y)  σ0,1,-1(Y) σ0
I
 Period-1

⇕ σ1
H

 Bernoulli shift

F14 Λℬ3
′
(X)  σ0,7,-7(X) σ-1

V
 Bernoulli shift

d 8,5 2 5⨯5⨯6 

G10
Λℬ4

(Y)  σ0,1,-1(Y) σ0
I
 Period-1

⇕ σ1
H

 Bernoulli shift

F10 Λℬ4
′
(X)  σ0,5,-5(X) σ-1

V
 Bernoulli shift

e 3,7/5 3 7⨯7⨯6 

G18
Λℬ5

(Y)  σ1,0,0(Y) σ1
I
 Bernoulli shift

⇕ σ0
H

 Period-1

F18 Λℬ5
′
(X)  σ6,0,0(X) σ0

V
 Period-1

f 2,5/5 3 9⨯5⨯5 

G15
Λℬ6

(Y)  σ1,0,0(Y) σ1
I
 Bernoulli shift

⇕ σ0
H

 Period-1

F15 Λℬ6
′
(X)  σ5,0,0(X) σ0

V
 Period-1

Table 1. Summary of the quantitative properties of subsystems of the gliders.

In  particular,  for  these  three-dimensional  CAs  of  2150ξ
3

 states,
there is a series of subsystems that is similar to the subset in Proposi-
tion 1. Their corresponding deterministic systems are 

0 v1 0

v1 0 v2

0 v2 0



v1 0 v2

0 v2 0

v2 0 v3



0 v2 0

v2 0 v3

0 v3 0

;

v1 0 v2

0 v2 0

v2 0 v3



0 v2 0

v2 0 v3

0 v3 0



v2 0 v3

0 v3 0

v3 0 v4

,
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where i  1, 2, 3, 4, and

vi  u1, ξ⨯ξ  u2, ξ⨯ξ ⋯  uξ, ξ⨯ξ 

 u1, 1, 1  …  u1, 1, ξ 

   …   

 u1, ξ, 1  …  u1, ξ, ξ 



 u2, 1, 1  …  u2, 1, ξ 

   …   

 u2, ξ, 1  …  u2, ξ, ξ 

⋯

 uξ, 1, 1  …  uξ, 1, ξ 

   …   

 uξ, ξ, 1  …  uξ, ξ, ξ 

,

where  each  uk, i, j  0, 316 238850, 4 311 252 000,  1 ≤ k ≤ ξ,

1 ≤ i ≤ ξ, 1 ≤ j ≤ ξ. 

In  this  paper,  G〈6⨯5⨯5〉  is  denoted  as  G  and  S〈6⨯5⨯5〉
Z3

 refers  to  S
Z3

.

For clarity, the following diagram commutes: 

SZ
3 B〈6⨯5⨯5〉 S

Z3 B〈6ξ⨯5ξ⨯5ξ〉 S〈6ξ⨯5ξ⨯5ξ〉
Z3

F G G〈6ξ⨯5ξ⨯5ξ〉

SZ
3

B〈6⨯5⨯5〉
S
Z3

B〈6ξ⨯5ξ⨯5ξ〉
S〈6ξ⨯5ξ⨯5ξ〉
Z3

Conclusion4.

In  this  paper,  the  chaotic  dynamics  of  the  gliders  in  games  of  three-
dimensional  life  are  explored  under  the  framework  of  symbolic  dy-
namics.  It  is  shown  that  the  gliders  considered  here  are  topologically
mixing and possess positive topological entropy on their concrete sub-
systems. Therefore, it is concluded that these gliders are chaotic in the
sense  of  both  Li–Yorke  and  Devaney.  Chaos  means  deterministic
behaviors  that  are  very  sensitive  to  the  initial  conditions;  that  is,  in-
finitesimal  perturbations  of  the  initial  conditions  will  lead  to  large
variations in dynamical behavior.
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Appendix

The Vertices of a Finite Directed GraphA.

The vertices of a finite directed graph of Λℬ4
 are presented as follows,

where 1 stands for 316238 850, and 2 stands for 4311 252000. 

v1  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

, v2  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

,

v3  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

, v4  

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

,

v5  

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

, v6  

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

,

v7  

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

, v8  

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

,

v9  

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

, v10  

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

,

v11  

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

, v12  

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

,

v13  

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

, v14  

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

,

v15  

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

, v16  

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

,

v17  

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

, v18  

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

,

v19  

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

, v20  

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

,

v21  

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

, v22  

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

,

v23  

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

, v24  

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

,
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v25  

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

, v26  

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

,

v27  

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

, v28  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1

,

v29  

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 2

, v30  

0 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

,

v31  

0 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 1

, v32  

0 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 2

,

v33  

0 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 0

, v34  

0 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 1

,

v35  

0 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 2

, v36  

0 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 0

,

v37  

0 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 1

, v38  

0 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 2

,

v39  

0 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 0

, v40  

0 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

,

v41  

0 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 2

, v42  

0 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 0

,

v43  

0 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 1

, v44  

0 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 2

,

v45  

0 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 0

, v46  

0 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 1

,

v47  

0 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 2

, v48  

0 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 0

,

v49  

0 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 1

, v50  

0 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 2

,

v51  

0 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 0

, v52  

0 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 1

,
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v53  

0 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

, v54  

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

,

v55  

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1

, v56  

1 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 2

,

v57  

1 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

, v58  

1 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 1

,

v59  

1 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 2

, v60  

1 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 0

,

v61  

1 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 1

, v62  

1 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 2

,

v63  

1 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 0

, v64  

1 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 1

,

v65  

1 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 2

, v66  

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 0

,

v67  

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

, v68  

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 2

,

v69  

1 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 0

, v70  

1 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 1

,

v71  

1 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 2

, v72  

1 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 0

,

v73  

1 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 1

, v74  

1 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 2

,

v75  

1 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 0

, v76  

1 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 1

,

v77  

1 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 2

, v78  

1 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 0

,

v79  

1 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 1

, v80  

1 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

,
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v81  

2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

, v82  

2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 1

,

v83  

2 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 2

, v84  

2 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 0

,

v85  

2 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 1

, v86  

2 0 0

0 0 0

0 0 1

0 0 0

0 0 1

0 1 0

0 0 1

0 1 0

1 0 2

,

v87  

2 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 0

, v88  

2 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 1

,

v89  

2 0 0

0 0 0

0 0 2

0 0 0

0 0 2

0 2 0

0 0 2

0 2 0

2 0 2

, v90  

2 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 0

,

v91  

2 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 1

, v92  

2 0 1

0 1 0

1 0 0

0 1 0

1 0 0

0 0 0

1 0 0

0 0 0

0 0 2

,

v93  

2 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 0

, v94  

2 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

,

v95  

2 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 1

0 1 0

1 0 2

, v96  

2 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 0

,

v97  

2 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 1

, v98  

2 0 1

0 1 0

1 0 2

0 1 0

1 0 2

0 2 0

1 0 2

0 2 0

2 0 2

,

v99  

2 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 0

, v100  

2 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 1

,

v101  

2 0 2

0 2 0

2 0 0

0 2 0

2 0 0

0 0 0

2 0 0

0 0 0

0 0 2

, v102  

2 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 0

,

v103  

2 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 1

, v104  

2 0 2

0 2 0

2 0 1

0 2 0

2 0 1

0 1 0

2 0 1

0 1 0

1 0 2

,

v105  

2 0 2

2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 0

, v106  

2 0 2

2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 1

,

v107  

2 0 2

2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

0 2 0

2 0 2

,
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The Determinative Systems of GlidersB.

The corresponding decimal code sets of determinative systems
ℬj, j  1, … , 6 are presented.

For the glider a, the determinative system is1.

ℬ1 == 

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,

ki  0, n1, n2, n3, n4 and i  1, 2, 3, 4, where

n1  157 301 732472 753 487872,

n2  382 914 066129 277 157376,

n3  307 109 474942 224 171008,

n4  87 838 209750 016 720896.

For the glider b, the determinative system is2.

ℬ2 == 

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,

ki  0, n1, n2, n3, n4 and i  1, 2, 3, 4, where

n1  1 426 112365 437 110779 069 669048 320,

n2  1 441 199759 666 120901 651 836436 480,

n3  71 248 204819 881 517263 855 747960 355907 987 296380 
518 400,

n4  71 248 204820 918 315100 583 069735 449887 616 897216 
675 840.
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For the glider c, the determinative system is 3.

ℬ3 == 

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,

ki  0, n1, n2 and i  1, 2, 3, 4, where

n1  1 737 652812 531 576869 185 173538 735313 197 061298
377 740063 979 195810 709504,

n2  107 839 992356 672 231205 423 157951 804061 011 470513 
723 684758 003 267634 462720.

For the glider d, the determinative system is 4.

ℬ4 == 

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,

ki  0, n1, n2 and i  1, 2, 3, 4, where

n1  162 264 707324 156 913662 044 271542 272,

n2  10 384 594273 175 548853 037 316624 613376.

For the glider e, the determinative system is 5.

ℬ5 == 

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,
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ki  0, n1, n2, n3 and i  1, 2, 3, 4, where

n1  89 530 297364 923 605508 146 705664 818118 918 144,

n2  539 231 843434 284 405901 976 779735 939138 261 719529 
625 828884 104 490338 222080,

n3  539 231 843434 159 220014 183 401125 745276 163 384563 
987 138183 581 413285 036032.

For the glider f , the determinative system is6.

ℬ6 == 

0 k1 0

k1 0 k2

0 k2 0



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0

;



k1 0 k2

0 k2 0

k2 0 k3



0 k2 0

k2 0 k3

0 k3 0



k2 0 k3

0 k3 0

k3 0 k4

,

ki  0, n1, n2, n3 and i  1, 2, 3, 4, where

n1  42 187 411976 088 540494 546 617854 066688,

n2  1 098 980723 400 879481 039 162633 706099 850 677091 041 
280,

n3  1 673 237945 072 905942 430 424223 935627 264.
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