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We present a method for predicting the large-scale evolution of a tag
system from its production rules. The tag system’s evolution is divided
into stages called “epochs” in which the tag system evolves
monotonously. The distribution of strings of symbols in the queue at
the beginning of an epoch determines the large-scale behavior of the tag
system during that epoch, including its growth rate. To predict the tag
system’s large-scale properties over multiple epochs, we show how to
predict the next epoch’s initial queue contents from the current epoch’s
initial queue contents. We compare the values predicted by this method
to simulations and find that great prediction accuracy is retained over
several epochs.

I 1. Introduction

I 1.1 Definition of a Tag System

A tag system is a model of computation comprised of a finite state ma-
chine and a queue. The queue contains symbols belonging to some al-
phabet Z. The finite state machine specifies a production function that
maps strings of 7 symbols (elements of X”) to strings of arbitrary
length (elements of £*).

In each step of a computation, n symbols are removed from the
front of the queue and the corresponding string from the production
function is added to the end of the same queue. This process is re-
peated until some halting condition is satisfied, such as there being
fewer than # symbols in the queue.

Tag systems were created by the mathematician and logician Emil
Leon Post, who is best known for his work in computability theory,
as an example of a Post canonical system that is deterministic or
monogenic, meaning that at most one string can be produced from
any given string in one step [1, 2].

The emergence of complex behavior in very simple systems has
been well documented and explored in detail in Stephen Wolfram’s
A New Kind of Science [3]. Wolfram’s Principle of Computational
Equivalence states that almost all processes that are not obviously sim-
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ple can be viewed as computations of equivalent sophistication. Even
small systems can, in principle, compute the same things as any com-
puter, given an appropriate translation of inputs and outputs.

It is therefore not entirely surprising that despite the simplicity of
their specification, tag systems have been shown to be capable of uni-
versal computation. This result was proven by Wang [4] and by
Cocke and Minsky [5] through the construction of a two-tag system
that can simulate a universal Turing machine. The search for other
small universal tag systems remains open [6, 7].

Another interesting property of tag systems is their connection to
problems in number theory. De Mol showed in [6] that the Collatz
problem, a well-known unsolved problem in number theory, can be re-
duced to a small tag system. Furthermore, Conway proved in [8] that
a generalization of the Collatz problem is algorithmically undecid-
able. Other undecidable variants of the Collatz problem are explored
in [9]. These examples support the principle of computational irre-
ducibility described by Wolfram in [3], which states that one cannot,
in general, shortcut computations performed by sufficiently powerful
automata.

Tag systems fall under this category. Although it is generally impos-
sible to predict the exact behavior of tag systems, our study of their
large-scale behavior could provide a useful heuristic to guide system-
atic searches for small tag system rules that can perform interesting
computations, including ones connected to problems in number the-
ory, like those of the Collatz problem.

Consider a simple two-tag system with the following production
rules:

aa - aab, ab — ab, ba - b, bb - ba. (1)
Figure 1 illustrates the evolution of this tag system when initialized

with a queue containing 10 symbols (where a symbols are colored
gray and b symbols are colored black).

Figure 1.

For this initial configuration, the tag system eventually reaches a
state where it only has one symbol in the queue and thus terminates.
Figure 2 illustrates the same tag system under a different initial config-
uration. For this configuration, the tag system becomes periodic.
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Figure 2.

Now consider a tag system with a different set of production rules:
aa - aba, ab - aa, ba - bbb, bb - ba. (2)

Figure 3 illustrates the evolution of this tag system when initialized
with a queue containing a random string of 10 symbols.

Figure 3.

For this initial configuration, the length of the queue grows with-
out bound. Furthermore, the queue of a tag system with these rules
cannot contract, because all productions have two or more symbols.
Correspondingly, if all productions had two or fewer symbols, the
queue of the tag system could never grow.

|l 1.2 Examples of Large-Scale Evolution

We can study the properties and behavior of tag systems like these on
a much larger scale, revealing interesting statistical properties. The fol-
lowing images illustrate the evolution of various two-tag systems for
5000 steps starting on a random initial state of 1000 symbols. Differ-
ent random initial states all tend to produce roughly the same shape
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for each tag system, indicating that their large-scale behavior is deter-
mined primarily by their production rules (Figure 4).

The tag system shown in Figure 5 appears to initially grow at a
rate of about one symbol every four steps, before it begins to level off
and asymptotically approach a growth rate of zero. Furthermore, we
can observe that the density of & symbols in the queue increases
sharply beyond this point, while the density of a symbols decreases.

Figure 4. aa — aab, ab — ab, ba —» b, bb - ba.

Figure 5. aa — bb, ab —» bb, ba - aaa, bb — bb.

The tag system shown in Figure 6 undergoes gradually decreasing
growth without a sharp phase transition, coupled with a gradually in-
creasing density of b symbols in the queue.

Figure 6. aa — bab, ab — bbb, ba - aab, bb - bb.
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The tag system shown in Figure 7 is initially roughly constant in
length, before transitioning to a long-term linear growth rate of ap-
proximately one symbol every five steps.

The tag system shown in Figure 8 has a phase of contraction before
entering a phase where it remains constant in length and dominated
by a symbols.

Figure 7. aa -» b, ab —» b, ba — aab, bb — abb.

Figure 8. aa — aa, ab - ba, ba — &, bb - ab.

The tag system shown in Figure 9 enters a phase where it becomes
entirely dominated by & symbols and remains constant in length, be-
fore entering another phase where it sharply contracts at a rate of ap-
proximately one symbol per step, until a single symbol remains.

Figure 9. aa — bbb, ab - ab, ba » bb, bb - b.

The tag system shown in Figure 10 at first contracts at a rate of ap-
proximately one symbol every two steps. It then transitions to a phase
where it gradually starts approaching a growth rate of one symbol per
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step, while becoming increasingly dominated by a symbols. Its shape
is reminiscent of an hourglass.

The tag system shown in Figure 11 exhibits a particularly interest-
ing behavior. The tag system repeatedly alternates between two
phases. In the first phase, the tag system becomes dominated by b sym-
bols while remaining roughly constant in length. In the second phase,
the densities of @ and b symbols become roughly equal while the tag
system contracts at a rate of approximately one symbol every two
steps.

Figure 10. aa — aaa, ab - b, ba - a, bb - b.

Figure 11. aa — bbb, ab - ab, ba — bb, bb - a.
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I 1.3 Epochs and Phase Transitions

There is a systematic way to study the large-scale growth patterns and
behavior of these tag systems, even if they are nonlinear (as demon-
strated by some of the previous examples). We will use this approach
to formulate an algorithmic procedure for predicting these large-scale
properties.

The first insight needed to understand the large-scale evolution of
these tag systems is that the history or evolution of the tag system can
be divided naturally into distinct stages, which we will refer to as
epochs.

The beginning of a new epoch occurs when all the symbols belong-
ing to the previous epoch have been consumed by the tag system (i.e.,
removed from the queue). Figure 12 illustrates the evolution of a tag
system where symbols in the queue are colored according to which
epoch they were produced in.

Figure 13 illustrates the same evolution, while highlighting the be-
ginning of each epoch with a vertical line.

Notice that the length of the queue tends to change in a relatively
linear manner within each epoch. The same can be said of the previ-
ous examples of two-tag systems. Figure 14 illustrates the evolution
of a tag system with decelerating growth.

Figure 12.

Figure 13.

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.2.79



86 C. Martin

Figure 14.

Figure 15 illustrates a tag system that exhibits a strong phase transi-
tion from contraction to growth on the second epoch.

Figure 15.

Figure 16 illustrates a tag system that repeatedly transitions be-
tween a phase of constant length and a phase of constant contraction.
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Figure 16.

The remainder of this paper will make the assumption that the dis-
tributions of symbols and strings of symbols on the queue are station-
ary along its length, meaning they do not change significantly from
the beginning to the end of the queue. If a distribution is stationary at
the beginning of an epoch, it will likely remain stationary at the begin-
ning of the next epoch, since the latter is generated from the former
by the same set of production rules. The stationarity assumption
means that the large-scale properties of a tag system tend to change
linearly within epochs.

The second key insight needed to predict the large-scale evolution
of a tag system is the following: the distribution of symbols on the
queue for the beginning of an epoch is entirely a function of the distri-
bution of symbols on the queue for the beginning of the previous
epoch.

In particular, the distribution of fuples of symbols on the queue for
the beginning of an epoch can be used to determine the distribution of
strings of symbols for the next epoch (by analyzing the production
rules of the tag system). From this string distribution, one can deter-
mine the distribution of tuples of symbols, which can, in turn, be used
to determine the string distribution for the #hird epoch, and so on.
This procedure follows.

word_probs[0] = initial_ word probs

for epoch in range (epochs):

prod_probs[epoch + 1] =
get_prod_probs (word_probs[epoch])
word_probs[epoch + 1] =

get_word_probs(prod_probs[epoch + 1])
where word_probs is the distribution of n-tuples on the tag system
queue and prod_probs is the distribution indicating the probability of
different string productions being generated at the beginning of an
epoch.

In the next section, we will describe how to find the production dis-
tribution from the tuple distribution and, with more difficulty, the tu-
ple distribution from the production distribution.
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I 2. Derivation

I 2.1 Generating a Production
Let p be the contents of the queue at the beginning of an epoch:

p:ql.qz.q3.....qm, (3)
where g; € X" and - denotes concatenation. The production rules con-

stitute a function f that maps strings of length 7 to strings of arbitrary
length:

f:2" > X% 4)

Hence the contents of the queue at the beginning of the next epoch
are

p=1fq) fq) fq3)---fq,,)

:7‘1.7‘2.73.....7

&)
md
where 7; € Z*. The concatenation of these productions, in turn, deter-

mines the productions that are generated in the epoch after the next
one. This process is illustrated in Figure 17.

q

q(t+1) !

q(t+2)

Figure 17.

The probability that 7; = s for some s € Z* is

P(r; =) = P(flq) = s) = P(UteZ” 9, =tNflg)= S) =
> Pai=tNfg)=5) =

tex”

3" Mg, = 0P{fig) = s[q, = 1) = ®
tex”

D P(g; = pP(f() =) = ' Plg; = 0[f(1) = 5],

tex” tex”

since P(f(t) =s) € {O, 1} if the tag system is deterministic. Conse-
quently, given the distribution of strings of length n at the begin-
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ning of an epoch, one can determine the distribution of strings pro-
duced during that epoch. Because the queue at the beginning of the
next epoch consists of the concatenation of these productions, one
can theoretically determine the distribution of strings of length » at
the beginning of the next epoch as well.

I 2.2 Selecting a Production Instance
Let i be a position selected uniformly at random from p. Recall the
definition of a uniform distribution:

X~US)=(VRc S)[P(X eR) = 7)

ﬂ(R)]
H(s)
where X is the random variable, S is the sample space, and y is a mea-
sure. In our case, X =iand § = [0, p):

R
Pii e R) = MR )

u(lo, p))

Let ioj be the statement that i belongs to 7;:

ioj@ |1'1 “ees .rj_1| < l < |rl “eee .1/],_1 7f]|

: )
@ZE[|7‘1-..-.7']471, rl""'r/71'7i|)'
The probability of this is
P(ZO])ZP(IE [|71.....1'7._1|, |r1.....7j_l.rj|))=

wlllry - ral [ o) .
[0, 7) (10

ry ey =y . bl

pl Ipl

Therefore, the probability of selecting a position that belongs to 7,
is proportional to the length of 7; (Figure 18). In other words, longer

production instances are more likely to contain the position that was
selected at random.

|I’j|

A
\J

Ipl

Figure 18.
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|l 2.3 Selecting a Production Type
Let i < s be the statement that 7 belongs to some 7; equal to s:

I<dse= Uie[l,m] ioj N r=s. (11)
The probability of this is
PG «s) = P(U/e[l,m] ioj N = s) =
Z P(in Nr = s) = Z P(ri = s)P(in |7 = s) =

jell,m] jell,m]
sl sl 2
P(?" = S)— = — P(r = S) = (1 )
,-e;m] "l Il ,-e;m] !
|s] |s]
P(r = s)— 1= P(r- = s)—m.
Tl ,c%n] "l

P(rl- = s) is factored from the sum because it is independent of ;. In-

tuitively, the production type s is expected to appear P(ri = s)m times
in p, where m is the total number of productions. Hence symbols be-
longing to s are expected to appear P(rj = s)m|s| times. The probabil-

ity that a randomly selected symbol belongs to s is the ratio of this
quantity to the total number of symbols, which is the length of p. The
expected length of p can be found as follows:

> |rj|] =

jell,m]

> Elrl=Ellrll > 1= Ellrlm,

jell,m] jell,m]

Ellpl] = E[|7'1 OREEN - [l=E

(13)

where E[lr;1] is factored from the sum because it is independent of ;.

Recall that the expected value of a function f of a random variable
X is

E[fX0] = > PX = 0)f(x), (14)
xeQ)
where  is the sample space. Hence
Ellrl= ) P(r; = s)is'l (15)
s'ex*

and the expected length of p is
E[|pl] = m Z P(r; = s')is'l. (16)

s'ex*
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Therefore
PG «s) = P(rl» = s)ﬂm =
Ipl
P(rA = s)|s|m P(r/« = s)|s| 17)

MYy P(r; = s')ls’ | Yoer P(r; = s)s'l
In other words, the probability of selecting a position belonging to

a production type is dependent on both the length of the production
and the probability of that production being generated.

|l 2.4 Selecting a String Given a Production
For any string s, let s,, be the substring of s starting at position a

(inclusive) and ending at position b (exclusive):
Sa:b = SaSa+15a+2+-Sb-25b-1- (18)

For all » € ", one can determine the probability that g,,,,, =7 as

follows:
P(qi:i+lrl = r) = P(Use)}* Qijspy = 71 < S) =
(g =7Ni<s) =
EZZ: : (19)
Z P(i < $)P(qjpy =7|i <)
sex*

The conditional probability P(g;,, =7|i <) depends on which

position j in s has been selected, and can be determined as follows:

P(ql vl = 7 | ¢4 S (U/E[O s Dizivr) = 7 N ])
Z (qi:i+|r| = 70/) = Z P(/)P(qi:iﬂﬂ =r|j). 20

7€l0slsh) j€L0,lsl)

Because i is selected uniformly at random from p, j is also selected
uniformly at random from s:

P( Aoy =7]i<s) = > POP(Giippy =7]1) =
7€l0,IsD

Z |1| (qlt+lr| |7)=|l Z (qzz+lr| 1‘|])

jEl0,lsh j€l0,lsl)

21

To determine P(q;;,,, = r|j), first consider whether j+|r| < |s| or

j+ Il = |s| (Figure 19). If j + || < |s|, check whether s; G = 1
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Irl

Isl

A
\/

Figure 19.

If j +|r| = |s|, check whether Sjils

begins with the remaining substring of 7 (or p,_i\\q.ivi = Tig—jn)
(Figure 20).

| = T0sl- and whether the rest of p

Isl
: >
j
Figure 20.
In summary:
Pijsy =7 <
{ Sisjril =T j+ Il <sl 22)
Sjisl = 704t [ Picjsistivinl = Tkl 1+ 171 Z sl-

Therefore
P(pi:i+|r| = ’) S .
{ 1 j+lrl <IslN Sjisi = 1 23)
P(Dijuigieln = Tshmgirt) 1+ 171 2 15OV Sjp = Toyqj-

I 2.5 Production Sequence Beginning with a String
Let p’ = p,_j\qp denote the rest of p, that is, the substring of p that

consists of the concatenation of all the production instances following
the production instance that contained the selected position i:

D=1y Ty (24)
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The probability that p’ begins with a string ¢ is

P(phy = 1) = P(Phy = tN | uex- 7, =5) =
P(Usez»« P6;|t| =1 = S) —
ZP(p6:|t| = tﬂrj = S) —

sex*

3 B(r; = )Py = t]7; = 5)-

sex*

93

(25)

To determine P(pf):m = t|r/- = s), first consider whether |t < |s| or

] > |s|. If |#| < |s], then the sequence begins with
bols of s match ¢ Alternatively, if |¢] > |s|, then
with ¢ if the first |s| symbols of # match s and the

t if the first [¢ sym-
the sequence begins
rest of the sequence

begins with the remaining symbols of ¢. This procedure is illustrated

in Figure 21.

Itl

N E AT AR

A
y

e VAW

Irjg2 |

Figure 21.

This means the conditional probability can be expressed as

P(P'o:m = t|7,- = s) =

1 [t < |s| mSO:ItI =t
Pl = tign) 111> 1sIN's =ty
0 otherwise.

Because 7; = s, it is the case that

’ - . . . . . - .. . . .
Pist:ie —(’i Tj+1 " Tjs2 it —(’; Ti+1 " Tj+2

(77‘+1 T2 "')0:|t‘—|7/-| = (’j+1 T2 "')0:|t|—|s|'

(26)

= 27)
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But if P(r; = s) is the same as P(r;,; = s) for all j (under the assump-
tion that the distribution of strings on the queue is stationary), then

P(p|,5|:|t| = t|s|:|t|) = P((’m T2t '“)O:Itlflsl = tlsl:lzl) = 28)
P((r 71 ot = itan) = POOss1-151 = Htan)-

In other words, the probability that the rest of the sequence begins
with the rest of ¢ is the same as the probability that the original se-
quence begins with the rest of # (under the assumption of stationar-
ity). This result provides us with a recursive formula for calculating
the probability that a string formed by a sequence of concatenated
productions begins with a particular string:

P(phuy = 1) = ) Plr; = s)P(phyy = t| 7 =5) =

sex*
1 11 < Isl N sg = ¢
DUR(r; =) PPy = tige) 1> 1Sl =ty = 9
sex 0 otherwise
1 1] < sl N soqq =
TP = 9)3 PPy = ti) 1> 15 Ns = 10y
e 0 otherwise.

In the next subsection, we will present the simplified version of this
procedure for a two-tag system together with an example of its appli-
cation.

| 2.6 Case for a Two-Tag System
Consider the probability that a pair of adjacent symbols randomly se-
lected from p corresponds to m, where 7 = myr; € £*. This probabil-
ity is
P@ipiyy =m = P(PiPi+1 =7 Usez* 1< 5) =
P(Usez* Pibiy =m(1i < 5) =

Z P(pipiy =nNi<s)= (30)
sex*

Z P(i < $)P(p;p;,q = 7|i < s).

sex*

In the previous section it was shown that

P(ri = s)ls|

Yees P(r/- = s’)ls’l .

Hence what remains to be determined is P(p;p;,; = 7|i <'s), or the

PG «s) = 31

probability of selecting a particular adjacent pair of symbols 7, given
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that the first element of that pair belongs to some production equal
to s.

The first element of the pair could be found in any position in s. Be-
cause 7 is distributed randomly and uniformly over p, the position of
the selected element is also distributed randomly and uniformly
over s.

For example, if s = bbb, then bbb, bbb, or bbb, where the under-
line indicates which position has been selected. Since i is uniformly dis-
tributed over every symbol position in p, each symbol position in s is
equally likely to be selected by i, given that i < s.

Consider s = bbb once again. Since every symbol in s is b, then

P(p; = b|i< bbb) = 1. (32)
What is the probability that p; ; = b? We know that
P(p;,1 = b|bbb) =P(p,.; = b|bbb) =1, (33)

since the symbol following the first and second positions in bbb is al-
ways b. But what about P(p,,; = b | bbb), namely, the probability that
b follows the last symbol in s? Clearly, in this case, p;,; will be a sym-
bol belonging to the next production, not the current one.

We can determine P(p;,; = b|bbb) by considering the first symbol

of every subsequent production, weighed by the probability of that
production.
For example, suppose that

P(r; = bbb) =1 /4,
P(r; =ab)=1/4,

34
P(r; = bb) =1/ 4, a
Pr;=a)=1/4.
We then know that
P(i <« bbb)=3 /8,
P(i < ab)=2/8,
P(i <« bb)=2/8, 5
Pi<a)=1/8.
Hence
P(py = b1bbE) = 3 sy = bIP(r; = 5) =
1 2 l0= 00t (36)

P(r; = bbb) +P(r, = bb) =1/4+1/4=1]2.
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We can then calculate P(p;,; = b|i < bbb) as

P(p;,1 = b|i < bbb) =
P(p,y = b N (bbb U bbb U bbb)) =

1/3+1/3+1/3-P(p,,, = b|bbb) = (37)
1/3+1/3+1/6=5]6.
Therefore P(p;p;,; = bb|i < bbb) = 5 / 6. In general,
1
P(p;, =rmyli<as)= — Z [s, = 7yl (38)
Isl ket
and
Pppi =nli<s) =
1
—|ls5-1 = 7o[By, + Z [SgSge1 = 7l (39)
sl kel0,1sl-1)

where B, is the probability that the next production begins with 7;:

By =P((rj)o = my) = P((rj)o =N Us'ez* = S,) _
P(US’EE* (o=mNry= s') =
Z P((r)o=m Nr;=5)=

s'ex* (40)
Z P(rl- = Sl)P(("/)o =m|r= s’) =

s'exr*

Z P(rl- = s’)[sf) =m].

s'ex*

It is possible to determine some properties of the tag system during
a particular epoch based on the initial pair probability distribution of
that epoch. For example, we can determine the expected queue
growth per step by calculating the expected length of the production
distribution:

Ellrll = > By =)' 41)

s'ex*
and subtracting #, since # symbols are deleted at each step.

We can also determine the density of different symbols at the begin-
ning of this epoch from the pair distribution by counting the occur-
rences of those symbols in each production and weighing the counts
by the probability of that production being generated, then summing
over all productions.
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I 2.7 Expected Length of the Queue
It is possible to estimate the length of the tag system’s queue at any
step along its evolution using the methods we have developed.

For an n-tag system, the duration or number of steps in an epoch is
the length of the queue at the beginning of that epoch divided by 7,
since 7 symbols are removed from the front of the queue in each step
of the computation.

The expected change in queue length during an epoch is the ex-
pected growth per step during that epoch times the number of steps.
Hence the expected length of the queue at the beginning of the next
epoch is given by

next length = current length + length change

= current length + length change per step xsteps

= current length + length change per step x
current length (42)

n
length change per step

= current lengthx |1 +
n

For example, the predicted queue length at the beginning of every
epoch for a particular set of rules, starting with 100 symbols in the
queue, is given in Table 1.

aa - aaa, ab > b, ba - a, bb > b

Epoch 0 1 2 3 4 5 6
Growth [ -0.500 [ 0.000] 0.444] 0.750[ 0.904] 0.966[ 0.989
Length | 100.00 | 75.00| 75.00| 91.65| 126.02 | 182.98 | 271.36

Table 1.

I 3. Algorithm

| 3.1 Two-Tag System Simulator
The following program, written in the Python 3 programming lan-
guage, simulates a two-tag system with the set of production rules

aa - bbb, ab - ab, ba - bb, bb - a (43)
for 10 epochs, starting with a random configuration of 10000 sym-

bols. The program prints the density of each symbol in the queue as
well as the length of the queue at the beginning of each epoch.

import random
# Returns the production to be appended to the gqueue

def get prod(word):
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if word == (0, 0):
return (1, 1, 1)

if word == (0, 1):
return (0, 1)

if word == (1, 0):
return (1, 1)

if word == (1, 1):

return (0,)

# Creates a queue with a random configuration of specified
length
def create_queue(length):

return tuple(random.choice([0, 1]) for n in
range(length))

# Updates the queue by deleting two symbols from the front
and
# appending a corresponding production to the back
def update(queue):
return queue[2:] + get_prod(queue[:2])

# Update the queue until all original symbols have been
deleted
def update_epoch(queue):
for n in range(int(len(queue)/2)):
queue = update(queue)
return queue

epochs = 10
queue = create_queue(10000)

for epoch in range(epochs):
print('Epoch ' + str(epoch))
print('Length: ' + str(len(queue)))

print('Density of a symbols: ' +
str(queue.count(0)/len(queue)))
print('Density of b symbols: ' +
str(queue.count(1l)/len(queue)))
print('")

queue = update_epoch(queue)
An example output for this particular set of rules follows.

Epoch 0

Length: 10000

Density of a symbols: 0.5006
Density of b symbols: 0.4994

Epoch 1

Length: 10006

Density of a symbols: 0.24475314811113333
Density of b symbols: 0.7552468518888666

Epoch 2

Length: 7452

Density of a symbols: 0.5017444981213097
Density of b symbols: 0.4982555018786903
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Epoch 3

Length: 7465

Density of a symbols: 0.2505023442732753
Density of b symbols: 0.7494976557267247

Epoch 4

Length: 5603

Density of a symbols: 0.5059789398536498
Density of b symbols: 0.49402106014635017

Epoch 5

Length: 5637

Density of a symbols: 0.24942345219088166
Density of b symbols: 0.7505765478091183

Epoch 6

Length: 4224

Density of a symbols: 0.506155303030303
Density of b symbols: 0.49384469696969696

Epoch 7

Length: 4250

Density of a symbols: 0.24776470588235294
Density of b symbols: 0.7522352941176471

Epoch 8

Length: 3178

Density of a symbols: 0.4977973568281938
Density of b symbols: 0.5022026431718062

Epoch 9

Length: 3171

Density of a symbols: 0.25449385052034057
Density of b symbols: 0.7455061494796594

The following Python code

import matplotlib.pyplot as plt
plt.title(‘Tag system simulations’)
plt.xlabel(’Step’)
plt.ylabel(‘Queue length’)
for trial in range(100):
lengths = []
queue = create_gqueue(10000)
while len(queue) >= 2:
lengths.append(len(queue))
queue = update(queue)
plt.plot(lengths, ‘,’, color='.75")
plt.show()

plots the queue length at every step for 100 tag systems with the same
rule set but with different initial conditions. The plot is shown in Fig-
ure 22.
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I 3.2 Two-Tag System Pr
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where @ + 8+ +§ = 1. Adding up the quantities for each pair yields
aa: 6/4+6/4=05/2,
ab: B+6/4+6/4=B+5/2,

ba: a/4+a/4+B/4+B/4+y/[4+y /4=
a/2+4B/2+y/2,

44
bb: a+a+a/4+a/4+B/4+B/4+y+y/4+ @)
y/4=5a/2+B/2+3y/2,
total :6 /2+B+6/2+a/2+B/2+y/2+5a )2+
B/2+3y/2=3a+2B+2y+6.
Dividing the quantity of each pair by the total yields
6/2 §
P(aa) = = 5
3a+28+2y+0 6a+4B8+4y+20
+0/2 26+6
P(ab) = e / = P >
3a+2B8+2y+0 6a+4B8+4y+20 45)
a/2+B/2+y/2 a+p+
P(b_a)z/ B/2+v/ _ B+y ,
3a+2B8+2y+6 6a+4B8+4y+26
Sa/2+B/2+3y/2 Sa+B+3
Dbl — [2+B[2+3v/2 _ B+3y
3a+26+2y+06 6a +46+4y+20

For instance, lettinga =8=y=6 =1 /4 yields

6a +4B+4y+ 206 =4,

P(aa) = 1/16 = 0.0625,

P(ab) = 3 /16 = 0.1875, (46)

P(ba) = 3 /16 = 0.1875,

P(bb) = 9 /16 = 0.5625,
which are the probabilities of randomly selecting each pair from the
queue, allowing us to predict the productions that will be generated
during this epoch. The following program implements this algorithm,

using it to predict the large-scale properties of the specified rule set of
a two-tag system.

# Returns the production to be appended to the gqueue
def get_prod(word):

if word == (0, 0):
return (1, 1, 1)

if word == (0, 1):
return (0, 1)

if word == (1, 0):
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return (1, 1)
if word == (1, 1):
return (0,)

# Returns the production distribution from the word
distribution
def get prod probs(word_probs, get prod):
prod_probs = {}
for word in word_probs:
prod = get_ prod(word)
if prod not in prod_probs: prod_probs[prod] = 0
prod_probs[prod] += word probs[word]
return prod_probs

# Normalizes a distribution into a probability distribution
def normalize(probs):
total = sum(probs.values())
for event in probs:
probs[event] /= total
return probs

# Returns the word distribution from the production
distribution
def get_word_ probs(prod_probs):

word_probs = {}

for prod in prod_probs:

if len(prod) == 0: continue
for pos in range(len(prod) - 1):
word = prod[pos:pos + 2]
if word not in word_probs: word_probs[word] = 0

word_probs[word] += prod_probs|[prod]
# Consider every production that could follow the
current one
for prod2 in prod probs:

if len(prod2) == 0: continue
word = (prod[-1], prod2[0])
if word not in word_probs: word_probs[word] = 0

word_probs[word] += prod_probs[prod] *
prod_probs[prod2]
return normalize(word_probs)

# Returns the expected density of symbols on the queue
def get_densities(word_probs):
densities = {}
for word in word_probs:
for symbol in word:
if symbol not in densities: densities[symbol] = 0
densities[symbol] += word_probs[word]
return normalize(densities)

def get_growth(word_probs, get_ prod):
expected_length = 0
for word in word_ probs:
expected_length += len(get_prod(word)) *
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word_probs[word]
return expected_length - 2

initial word _probs = {}
initial word_probs[(0, 0)] = .25

initial word_probs[ (0, 1)] = .25
initial word_probs[(1l, 0)] = .25
initial word_probs[(1l, 1)] = .25
word_probs = {}

prod_probs = {}

word_probs[0] = initial word_probs

epochs = 10

for epoch in range(epochs):
prod_probs[epoch + 1] =
get_prod_probs(word_probs[epoch], get_ prod)
word_probs[epoch + 1] = get word_probs(prod_probs[epoch
+17])

length = 10000

for epoch in range(epochs):
print(‘Epoch ‘ + str(epoch))
densities = get_densities(word probs[epoch])
growth = get_growth(word_probs[epoch], get_prod)

print(‘Length: ‘ + str(length))

print(‘Density of a symbols: ‘ + str(densities[0]))
print(‘Density of b symbols: ‘ + str(densities[1l]))
print (‘')

length *= (1 + growth/2)

Notice that the lengths of the string productions being considered
inside the get_prod_probs function do not appear explicitly because
the factors of |s| in the probability of that production being selected
from the queue and of selecting a particular position within that pro-
duction cancel each other.

The output for this particular set of rules follows.

Epoch 0

Length: 10000

Density of a symbols: 0.5
Density of b symbols: 0.5

Epoch 1

Length: 10000.0

Density of a symbols: 0.25
Density of b symbols: 0.75

Epoch 2

Length: 7500.0

Density of a symbols: 0.5
Density of b symbols: 0.5

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.2.79



104

Epoch 3
Length:
Density
Density

Epoch 4
Length:
Density
Density

Epoch 5
Length:
Density
Density

Epoch 6
Length:
Density
Density

Epoch 7
Length:
Density
Density

Epoch 8
Length:
Density
Density

Epoch 9
Length:
Density
Density

Notice
duced by

changepoints in the plot.

7500.0

of a symbols: 0.
of b symbols: 0.

5625.0

of a symbols: 0.
of b symbols: 0.

5625.0

of a symbols: 0.
of b symbols: 0.

4218.75

of a symbols: 0.
of b symbols: 0.

4218.75

of a symbols: 0.
of b symbols: 0.

3164.0625
of a symbols: 0.
of b symbols: 0.

3164.0625
of a symbols: 0.
of b symbols: 0.

25
75

25
75

25
75

25
75

C. Martin

the similarity of these values to those of the output pro-
the tag system simulator, and the similarity of the queue
lengths that were predicted by the algorithm to those of the sharp

I 4. Results

The following tables show the expected growth of the queue per step
along with the density of a and b symbols at the beginning of each
epoch for different tag system rule sets. These tables also show the ex-
pected length of the queue at the beginning of each epoch, assuming
an initial reference length of 100.

aa - aab, ab - ab, ba - b, bb > ba

Epoch 0 1 2 3 4 5 6
adensity | 0.500 [ 0.500| 0.467| 0.455| 0.450| 0.449 | 0.448
b density | 0.500 [ 0.500 [ 0.533] 0.545] 0.550[ 0.551] 0.552
Growth 0.000 [-0.125[-0.167 [ -0.181 [-0.186 [ -0.188 [-0.189
Length 100.00 [ 100.00 [ 93.75| 85.92 78.15| 70.88] 64.22
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aa - bb, ab > bb, ba - aaa, bb > bb

Epoch 0 1 2 3 4 5 6

a density | 0.500 [ 0.333 | 0.120 | 0.054 [ 0.026 | 0.013 | 0.006
b density | 0.500 | 0.667 | 0.880 | 0.946 | 0.974 0.987] 0.994
Growth 0.250 [ 0.083 ] 0.037] 0.017] 0.008 | 0.004 | 0.002
Length 100.00 {112.50 |117.17 [119.34 |120.35 |120.83 [121.07
aa - bab, ab - bbb, ba > aab, bb - bb

Epoch 0 1 2 3 4 5 6

a density | 0.500 [ 0.273 | 0.185| 0.129 [ 0.095| 0.071| 0.054
b density | 0.500 [ 0.727] 0.815] 0.871 | 0.905| 0.929 | 0.946
Growth 0.750 | 0.455| 0.296| 0.210 [ 0.153 | 0.115| 0.088
Length 100.00 [137.50 |168.78 [193.76 [214.11 [230.49 |243.74
aa > b, ab > b, ba - aab, bb - abb

Epoch 0 1 2 3 4 5 6

a density | 0.500 | 0.375] 0.389 | 0.400 [ 0.398 | 0.397| 0.397
b density | 0.500 | 0.625| 0.611] 0.600 [ 0.602 | 0.603 | 0.603
Growth 0.000 [ 0.250 | 0.222 | 0.200 [ 0.205 | 0.206 | 0.206
Length 100.00 [100.00 [112.50 [124.99 [137.49 [151.58 [167.19
aa - aa, ab - ba, ba - €, bb - ab
Epoch 0 1 2 3 4 5 6
adensity | 0.500[ 0.667] 0.767| 0.863] 0.929[ 0.965] 0.982
b density | 0.500 | 0.333 | 0.233] 0.137| 0.071] 0.035| 0.018
Growth [-0.500 |-0.571 [-0.500 |-0.306 [-0.152 |-0.073 [-0.036
Length 100.00 | 75..00 | 53.59 | 40.19| 34.04 | 31.45| 30.31
aa - bbb, ab - ab, ba - bb, bb > b

Epoch 0 1 2 3 4 5 6
a density | 0.500 [ 0.125] 0.100 [ 0.083 | 0.071 [ 0.062| 0.056
b density | 0.500 [ 0.875[ 0.900] 0.917] 0.929[ 0.938] 0.944
Growth 0.000 [-0.750 [-0.800 [ -0.833 [-0.857 [-0.875 [-0.889
Length 100.00 [ 100.00 | 62.50 | 37.50 | 21.88 [ 12.51| 7.034
aa - aaa, ab > b, ba > a, bb >'b

Epoch 2 3 4 5 6

a density | 0.500 | 0.667 | 0.833 | 0.932| 0.975[ 0.991] 0.997
b density | 0.500 [ 0.333 [ 0.167 ] 0.068 | 0.025| 0.009 | 0.003
Growth [-0.500| 0.000 [ 0.444 [ 0.750 [ 0.904 | 0.966 [ 0.989
Length 100.00 | 75.00 | 75.00 | 91.65 |126.02 [182.98 |271.36
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aa > bbb, ab - ab, ba - bb, bb - a

Epoch 0 1 2 3 4 S 6

a density | 0.500 [ 0.250] 0.500 [ 0.250] 0.500 [ 0.250 [ 0.500
b density | 0.500 | 0.750] 0.500 [ 0.750] 0.500 [ 0.750[ 0.500
Growth 0.000 [-0.500 | 0.000 |-0.500 | 0.000 [-0.500 | 0.000
Length 100.00 [ 100.00 | 75.00 [ 75.00 [ 56.25] 56.25| 42.19

The following table compares the values for these properties that
were predicted using our methods to values that were obtained from
simulations by averaging the results of 10 000 trials over six epochs.

aa > aaa, ab > b, ba > a, bb > b

Epoch [ o | 1 [ 2 | 3 | 4 | 5 | 6
Density of 2 in Queue

Predicted | 0.500 | 0.667 | 0.833 | 0.932 [ 0.975] 0.991 | 0.997
Measured | 0.500 [ 0.662 | 0.826 [ 0.925] 0.972| 0.990 | 0.997
Error 0.000 | 0.005 | 0.007 | 0.007| 0.003 [ 0.001| 0.000
Density of b in Queue
Predicted | 0.500 [ 0.333] 0.167 [ 0.068 | 0.025[ 0.009 | 0.003
Measured | 0.500 [ 0.338 ] 0.174 | 0.075| 0.028 | 0.010 | 0.003
Error 0.000 | 0.005| 0.007 | 0.007| 0.003 | 0.001| 0.000
Length of Queue
Predicted [100.00 [ 75.00 | 75.00 [ 91.65 [126.02 [182.98 |271.36
Measured {100.00 | 74.98 | 74.98 | 92.24 [126.80 |183.74 [272.16
Error 0.00 0.02 0.02] 0.59 0.78 0.76 0.80

A similar table can be created for the other rule sets. Other rule
sets demonstrate a similar relative error despite the difference in pro-
duction rules, corroborating the general accuracy and precision of the
method.

I 5. Conclusion

In this paper, we have developed a method for predicting the large-
scale properties of n-tag systems directly from their production rules.
From the distribution of tuples of # symbols on the queue at the begin-
ning of an epoch, one can predict the distribution of productions that
are generated during that epoch. In turn, from this distribution, one
can predict the distribution of tuples of symbols for the next epoch.
This process can be repeated for any number of epochs.

From the tuple distribution of an epoch, one can determine various
properties of the tag system’s evolution within that epoch. For exam-
ple, one can determine the density of particular symbols on the queue,
the growth of the queue, or the length of the queue at any step by lin-
ear interpolation between the expected length of the beginning of the
current epoch and that of the next epoch.
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We have compared the property values predicted using our meth-
ods to those measured by performing multiple simulations under ran-
dom initial configurations. These predictions retain great accuracy
even after several epochs.

Investigating other properties of the symbol distribution on the
queue and of the production rules themselves could yield further in-
sight into the large-scale behavior of tag systems. In particular, we
would like to find “shortcuts” for determining whether a particular
set of rules creates sharp phase transitions between epochs, as op-
posed to more gradual changes, or determining whether a particular
set of rules creates periodic behavior in the large-scale properties of
the tag system, as shown in one of the examples. One might also want
to determine whether and when the tag system reaches an equilibrium
distribution by examining the production rules of the tag system
directly.

I References

[1] M. L. Minsky, “Recursive Unsolvability of Post’s Problem of ‘Tag’ and
Other Topics in Theory of Turing Machines,” Annals of Mathematics,
74(3), 1961 pp. 437-455. doi:10.2307/1970290.

[2] E. L. Post, “Formal Reductions of the General Combinatorial Decision
Problem,” American Journal of Mathematics, 65(2), 1943 pp. 197-215.
d0i:10.2307/2371809.

[3] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
Inc., 2002.

[4] H. Wang, “Tag Systems and Lag Systems,” Mathematische Annalen,
152(1), 1963 pp. 65-74. doi:10.1007/BF01343730.

[5] J. Cocke and M. Minsky, “Universality of Tag Systems with P = 2,”
Journal of the ACM, 11(1), 1964 pp. 15-20.
doi:10.1145/321203.321206.

[6] L. De Mol, “Tag Systems and Collatz-Like Functions,” Theoretical Com-
puter Science, 390(1), 2008 pp. 92-101. doi:10.1016/j.tcs.2007.10.020.

[7] Y. Rogozhin, “Small Universal Turing Machines,” Theoretical Com-
puter Science, 168(2), 1996 pp. 215-240.
doi:10.1016/50304-3975(96)00077-1.

[8] J. H. Conway, “Unpredictable Iterations,” in Proceedings of the 1972
Number Theory Conference, Boulder, CO, Boulder: University of Col-
orado, 1972 pp. 49-52.

[9] E. Lehtonen, “Two Undecidable Variants of Collatz’s Problems,” Theo-
retical Computer Science, 407(1-3), 2008 pp. 596-600.
doi:10.1016/j.tcs.2008.08.029.

Complex Systems, 25 © 2016 Complex Systems Publications, Inc.
https://doi.org/10.25088/ComplexSystems.25.2.79


http://dx.doi.org/10.2307/1970290
http://dx.doi.org/10.2307/2371809
http://dx.doi.org/10.1007/BF01343730
http://dx.doi.org/10.1145/321203.321206
http://dx.doi.org/10.1016/j.tcs.2007.10.020
http://dx.doi.org/10.1016/S0304-3975(96)00077-1
http://dx.doi.org/10.1016/j.tcs.2008.08.029



